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Abstract:This paper deals with the estimation of the parameters, reliability and hazard rate functions of the 

mixture of two Weibull distributions (MTWD), with a common shape parameter, based on the generalized order 

statistics (GOS). The maximum likelihood and Bayes methods of estimation are used for this purpose with 

standard errors and credible intervals. The Markov Chain Monte Carlo (MCMC) method is used for obtaining 

Bayes estimates under the squared error loss function. Our results are specialized to progressive Type II 

censoring and Type II censoring. Comparisons are made between Bayesian and maximum likelihood estimates 

and between the two censoring types, progressive Type II censoring and Type II censoring. A real data set is 

used for illustration purpose. 
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I. Introduction 
The finite mixture of distributions have multiple uses in a various scientific fields such as physics, 

biology, medicine and industrial engineering, among others.  In fact, in life testing, each failure occurs may not 

has one type of failure, it could be categorized to more than one type.  Moreover, the failure time populations 

could be heterogeneous since it could be consisting of weak components corresponding to short lives and strong 

components corresponding to long lives. Mixtures of Weibull distributions are widely used to model lifetime 

data.  That is because of the flexibility of the Weibull distribution in modeling both increasing and decreasing 

failure rates. This flexibility mainly depends on the shape parameter; which led us, when estimating the 

distribution parameters, to let the value of this parameter to be known and controlled by the researcher carrying 

out the application. Where, it could be selected according to the type of failure rate that fits the data. For 

the increasing failure rate data, the shape parameter can be set to a value greater than one. While, for the 

decreasing failure rate data, the shape parameter can be set to a valueless than one; but for the constant failure 

rate data, the value of the parameter will be equal to one. This study is concerned with studying the finite 

mixture of two Weibull distributions, denoted by MTWD, as a lifetime model with two unknown scale 

parameters and a common known shape parameter. 

Some of the most important references that discussed different types of mixtures of distributions are the 

monographs by [1], [2], [3] and [4]. [5]considered Bayesian estimation of the mixing parameter, mean and 

reliability function of a mixture of two exponential lifetime distributions based on right censored samples.[6] 

studied and compared classical and Bayesian estimates of the parameters of a finite mixture of two Gomperetz 

lifetime models based on simulated data sets with Type I and Type II censoring. [7]obtained Bayesian predictive 

density of order statistics based on finite mixture models. Based on Type I censored samples from a finite 

mixture of two truncated Type I generalized logistic components,[8] computed Bayes estimates of parameters, 

reliability and hazard rate functions.[9]considered estimation for the parameters of mixed exponential 

distribution based on record statistics.[10]considered Bayes inference under a finite mixture of two compound 

Gompertz components model. [11]considered estimation forthe parameters of mixture of two component 

exponentiated gamma distribution. [12]applied the order statisticson a mixture model of exponentiated Rayleigh 

and exponentiated exponential distributions.  [13]estimated the parameters of a two-parameter weighted Lindley 

distribution based on hybrid censoring.[14]introduced the finite mixture of two exponentiatedKumaraswamy 

distributions.  

Mixtures of Weibull distributions are widely used to model lifetime data and they have been considered 

extensively by many authors, [15] estimated the parameters of a mixture Weibull distribution using MLE and 

Bayes estimation under Type I censoring.  [16]studied the classification of the aging properties of generalized 

mixtures of two or three Weibull distributions in terms of the mixing weights, scale parameters and a common 

shape parameter. [17]estimated the parameters from the mixture of two Weibull distributions under the 

informative and non-informative priors they also determined, the Bayes predictive intervals. A mixture of two 

and three Weibull distributions were used to analyze the data of failure times [18]. [19]proposed a mixture 

Weibull proportional hazards model to predict the failure of a mechanical system with multiple failure modes. 
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II. Model Description 
The considered MTWD, which is produced from mixing two Weibull distributions, the first with two 

parameters, the scale parameter𝛼1 > 0 , and the shape parameter, 𝛽 > 0 and the second also has the scale 

parameter𝛼2 > 0 , and the shape parameter, 𝛽 > 0.That is the scale parameters of the MTWD are α1 and α2 and 

the common shape parameteris𝛽, which is assumed as a known parameter, its value could be selected (greater, 

less or equals 1) according to the type of the failure rate that fits the data set under the study. 

The probability density function(PDF) of MTWDis given as  

𝑓 𝑡 = 𝑝𝑓1 𝑡 +  1 − 𝑝 𝑓2 𝑡   , 𝑡 > 0 (1) 

where0 ≤ 𝑝 ≤ 1,and the PDF of the j
th

 component, 𝑗 = 1,2, is 

𝑓𝑗  𝑡 =
𝛽𝑡𝛽−1

𝛼𝑗
𝛽

𝑒𝑥𝑝  −  
𝑡

𝛼𝑗
 

𝛽

 , 𝑡 > 0. (2) 

 

The cumulative distribution function(CDF), reliability function(RF) and hazard function (HF) of the MTWD 

are,respectively, given by 

𝐹 𝑡 = 𝑝  1 − 𝑒𝑥𝑝  −  
𝑡

𝛼1

 
𝛽

  + (1 − 𝑝)  1 − 𝑒𝑥𝑝  −  
𝑡

𝛼2

 
𝛽

  , (3) 

𝑅 𝑡 = 𝑝  𝑒𝑥𝑝  −  
𝑡

𝛼1

 
𝛽

  + (1 − 𝑝)  𝑒𝑥𝑝  −  
𝑡

𝛼2

 
𝛽

  . 
(4) 

 

𝐻 𝑡 =  
1

1 + 𝑔 𝑡 
 𝐻1 𝑡 +   1 −

1

1 + 𝑔 𝑡 
 𝐻2 𝑡 ,   

(5) 

where, 

𝑔 𝑡 =
 1 − 𝑝 𝑅2 𝑡 

𝑝𝑅1 𝑡 
, 

𝑅𝑗  𝑡 = 𝑒𝑥𝑝  − 
𝑡

𝛼𝑗
   ,   𝐻𝑗  𝑡 =

𝛽𝑡𝛽−1

𝛼𝑗
𝛽

, 𝑗 = 1,2. 

 

The mean, variance, skewness and kurtosis of the MTWDare computed for different values of the 

parameters and are given in Table (1). 

 

Table (1): Mean, variance, skewness and kurtosis of MTWD 

𝜃 = (𝑝, 𝛽, 𝛼1, 𝛼2) Mean variance skewness kurtosis 

𝜃 = (0.3,1,0.5,1.5) 1.2000 1.8600 2.3558 11.1779 

𝜃 = (0.3,2,0.5,1.5) 1.0634 0.5190 0.8872 3.3878 

𝜃 = (0.3,3.5,0.5,1.5) 1.0796 0.3037 0.1918 2.0173 

 

𝜃 = (0.1,3,1,2) 1.6966  0.4614  0.2132  2.5954  

𝜃 = (0.5,3,1,2) 1.3394 0.4626 0.7546 3.0271 

𝜃 = (0.8,3,1,2) 1.0715 0.2961 1.3503 5.3735 

 

𝜃 = (0.6,3,1.5,2.8) 1.8038 0.7959 0.8862 3.5089 

𝜃 = (0.6,3,2,2.8) 2.0717  0.7056  0.5122  3.2050  

𝜃 = (0.6,3,3.5,2.8) 2.8753 1.1982 0.3016 2.8712 

 

𝜃 = (0.7,2,1.5,1.1) 1.2229  0.4422  0.7458  3.5087  

𝜃 = (0.7,2,1.5,2.8) 1.6749 1.1214 1.3140 5.3765 

𝜃 = (0.7,2,1.5,3.4) 1.8344 1.6776 1.5685 6.0598 

 

Table (1) shows that, when the parameters (𝑝, 𝛼1, 𝛼2) are fixed, then the relationship between the shape 

parameter βand each of the skewness and kurtosis is inverse. However, when (𝛽, 𝛼1 , 𝛼2) are fixed we have 

positive relationship between the mixing proportion parameter 𝑝and each of the skewness and kurtosis. With the 

fixed(𝑝, 𝛽, 𝛼2) we have negative relationship between scale parameter 𝛼1and each of the skewness and kurtosis. 

With the fixed (𝛽, 𝑝, 𝛼1) we have positive relationship between scale parameter 𝛼2and  skewness and kurtosis.  
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III. Maximum Likelihood Estimation 
Let 𝑇1;𝑛,𝑚 ,𝑘 , 𝑇2;𝑛,𝑚 ,𝑘 , … , 𝑇𝑛;𝑛,𝑚 ,𝑘 , 𝑘 > 0, 𝑚 =  𝑚1, … ,𝑚𝑛−1 ∈ ℜ𝑛−1 , 𝑚1, … ,𝑚𝑛−1 ∈ ℜ, are n GOS 

drawn from the MTWD. The likelihood function (LF) is given in [20], for −∞ < 𝑡1, … , 𝑡𝑛 < ∞, by 

𝐿 𝜃 𝑡 = 𝑘 𝛾𝑖

𝑛−1

𝑖=1

   𝑅 𝑡𝑖  
𝑚 𝑖

𝑛−1

𝑖=1

𝑓 𝑡𝑖   𝑅 𝑡𝑛  
𝑘−1𝑓 𝑡𝑛 , (6) 

where,  𝑡 =  𝑡1, … , 𝑡𝑛 , 𝜃𝜖𝛩is parameter space, and 

𝛾𝑖 = 𝑘 + 𝑛 − 𝑖 + 𝑀𝑖 > 0,𝑀𝑖 =  𝑚𝜈

𝑛−1

𝜈=1

. 

Substituting (1) and (4), in (6), then the likelihood function takes the form of 

𝐿 𝜃 𝑡 ∝  𝑝𝑅1 𝑡𝑛 + (1 − 𝑝)𝑅2 𝑡𝑛  
𝑘−1 

  𝑝𝑅1 𝑡𝑖 + 𝑝2𝑅2 𝑡𝑖  
𝑚 𝑖

𝑛−1

𝑖=1

  (1 − 𝑝)𝑓1 𝑡𝑖 + 𝑝2𝑓2 𝑡𝑖  

𝑛

𝑖=1

. 
(7) 

Taking the logarithm of (7), to obtain  

ℓ 𝜃 = 𝑙𝑛 𝐿 𝜃 𝑡 ∝  𝑘 − 1 𝑙𝑛 𝑝𝑅1 𝑡𝑛 + (1 − 𝑝)𝑅2 𝑡𝑛   

+  𝑚𝑖 𝑙𝑛 𝑝𝑅1 𝑡𝑖 + (1 − 𝑝)𝑅2 𝑡𝑖  

𝑛−1

𝑖=1

 

+  𝑙𝑛 𝑝𝑓1 𝑡𝑖 + (1 − 𝑝)𝑓2 𝑡𝑖  

𝑛

𝑖=1

 . 

(8) 

Differentiating (8) with respect to the parameters p and 𝛼𝑗  , 𝑗 = 1,2. and equating to zero gives the 

following likelihood equations 

 

𝜕ℓ

𝜕𝑝
=  𝑘 − 1 𝜗∗ 𝑡𝑛 +  𝑚𝑖𝜗

∗ 𝑡𝑖 

𝑛−1

𝑖=1

+  𝜗 𝑡𝑖 

𝑛

𝑖=1

= 0

𝜕ℓ

𝜕𝛼1

= 𝑝   𝑘 − 1 𝜓∗
1
 𝑡𝑛 +  𝜉1 𝑡𝑖 

𝑛

𝑖=1

𝜓1 𝑡𝑖 +  𝑚𝑖𝜓
∗

1
 𝑡𝑖 

𝑛−1

𝑖=1

 = 0

𝜕ℓ

𝜕𝛼2

= (1 − 𝑝)   𝑘 − 1 𝜓∗
2
 𝑡𝑛 +  𝜉2 𝑡𝑖 

𝑛

𝑖=1

𝜓2 𝑡𝑖 +  𝑚𝑖𝜓
∗

2
 𝑡𝑖 

𝑛−1

𝑖=1

 = 0
 
 
 
 
 

 
 
 
 

. (9) 

Where, for j = 1, 2 

 

𝜗 𝑡𝑖 =
𝑓1 𝑡𝑖 − 𝑓2 𝑡𝑖 

𝑝𝑓1 𝑡𝑖 + (1 − 𝑝)𝑓2 𝑡𝑖 
  ,   𝜗∗ 𝑡𝑖 =

𝑅1 𝑡𝑖 − 𝑅2 𝑡𝑖 

𝑝𝑅1 𝑡𝑖 + (1 − 𝑝)𝑅2 𝑡𝑖 

𝜓𝑗  𝑡𝑖 =
𝑓𝑗  𝑡𝑖 

𝑝𝑓1 𝑡𝑖 + (1 − 𝑝)𝑓2 𝑡𝑖 
  ,   𝜓∗

𝑗
 𝑡𝑖 =

𝑅𝑗  𝑡𝑖 𝛽𝑡𝑖
𝛽𝛼𝑗

−𝛽−1

𝑝𝑅1 𝑡𝑖 + (1 − 𝑝)𝑅2 𝑡𝑖 

𝜉𝑗  𝑡𝑖 =  
−𝛽

𝛼𝑗
+ 𝛽𝑡𝑖

𝛽𝛼𝑗
−𝛽−1 

 
  
 

  
 

  

The solution of the three nonlinear likelihood equations in (9) using numerical method, yields the 

maximum likelihood (ML) estimates𝑝 , 𝛼 1 and 𝛼 2 . The ML estimates of the𝑅(𝑡)  and the𝐻(𝑡)  are given, 

respectively, by (4) and (5) after replacing 𝜃 = (𝑝, 𝛼1, 𝛼2) by their corresponding ML estimates. 

 

IV. Bayesian Estimation 
This section deals with Bayesian using conjugate and non-informative priors. 

4.1  Bayesian estimation using conjugate prior 

Let 𝑝, 𝛼1  and 𝛼2  are independent random variables such that 𝑝 follows 𝐵𝑒𝑡𝑎(𝑏1 , 𝑏2)  and for 𝑗 =
 1, 2, 𝛼𝑗  to follow an inverted gamma prior distribution with PDFs, respectively, given by 

𝜋 𝑝 =
1

𝛽(𝑏1 , 𝑏2)
 𝑝 𝑏1−1(1 − 𝑝)𝑏2−1  , 0 ≤ 𝑝 ≤ 1, 𝑏1 , 𝑏2 > 0. 
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𝜋 𝛼𝑗  =
𝛾𝑗

𝜏𝑗

𝛤𝜏𝑗
𝛼𝑗

−𝜏𝑗−1𝑒
−
𝛾𝑗

𝛼𝑗 ,       𝛼𝑗 > 0, 

where𝑗 =  1, 2 𝛼𝑗 >  0, (𝑏𝑗 , 𝜏𝑗 , 𝛾𝑗 )  >  0. 

A joint prior density function of 𝜃  =  (𝑝, 𝛼1 , 𝛼2)is then given by 

𝜋 𝜃 = 𝜋 𝑝 𝜋 𝛼1 𝜋 𝛼2 . 

π θ ∝  p b1−1(1 − p)b2−1  αj
−τj−1e

− 
γj

αj

2
j=1

2

j=1

. (10) 

It follows, from (10) and (7), that the joint posterior density function is given by 

𝜋∗ 𝜃 𝑡 = 𝐴1
−1𝑝𝑏1−1 1 − 𝑝 𝑏2−1  𝛼𝑗

−𝜏𝑗−1𝑒
− 

𝛾𝑗

𝛼𝑗

2
𝑗=1

2

𝑗=1

 𝑝𝑅1 𝑡𝑛 + (1 − 𝑝)𝑅2 𝑡𝑛  
𝑘−1 

  𝑝𝑅1 𝑡𝑖 + (1 − 𝑝)𝑅2 𝑡𝑖  
𝑚 𝑖

𝑛−1

𝑖=1

  𝑝𝑓1 𝑡𝑖 + (1 − 𝑝)𝑓2 𝑡𝑖  

𝑛

𝑖=1

, 

(11) 

where, 

𝐴1
−1 =  𝐿 𝜃 𝑡 𝜋(𝜃)𝑑𝜃

𝜃

. 

Under the squared error loss function (SE), the Bayes estimator of a function, say 𝜑 ≡ 𝜑(𝑝, 𝛼1 , 𝛼2),is given by 

𝜑 𝐵𝑠 = 𝐸 𝜑 𝑡 =  𝜑𝜋∗ 𝜃 𝑡 𝑑𝜃
𝜃

, (12) 

where the integral is taken over the three dimensional space. To compute the integral we propose to consider 

MCMC methods. 

The conditional posterior distribution of the parameters 𝑝, 𝛼1 and 𝛼2 using conjugate prior can be computed and 

written, respectively, by 

𝜋∗ 𝑝 𝛼1, 𝛼2, 𝑡 ∝  𝑝 𝑏1−1 1 − 𝑝 𝑏2−1 𝑝𝑅1 𝑡𝑛 + (1 − 𝑝)𝑅2 𝑡𝑛  
𝑘−1 

  𝑝𝑅1 𝑡𝑖 + (1 − 𝑝)𝑅2 𝑡𝑖  
𝑚 𝑖

𝑛−1

𝑖=1

  𝑝𝑓1 𝑡𝑖 + (1 − 𝑝)𝑓2 𝑡𝑖  

𝑛

𝑖=1

. 

𝜋∗ 𝛼𝑖 𝑝, 𝛼𝑗 , 𝑡 ∝ 𝛼𝑖
−𝜃1−1𝑒

−
𝛾1
𝛼𝑖  𝑝𝑅1 𝑡𝑛 + (1 − 𝑝)𝑅2 𝑡𝑛  

𝑘−1 

  𝑝𝑅1 𝑡𝑖 + (1 − 𝑝)𝑅2 𝑡𝑖  
𝑚 𝑖

𝑛−1

𝑖=1

  𝑝𝑓1 𝑡𝑖 + (1 − 𝑝)𝑓2 𝑡𝑖  

𝑛

𝑖=1

, 

where, 𝑖 ≠ 𝑗 𝑖and𝑗 = 1,2 . 
4.2 Bayesian estimation using non-informative prior 

Assuming that all of the parameters consisting 𝜃 are positive and independent, and that we are ignoring 

the prior information about 𝜃 so that we set improper non-informative prior to 𝛼𝑗 , 𝑗 =  1, 2, and p as follows 

π p ∝ 1 , π α1 ∝
1

α1

  , π α2 ∝
1

α2

.   

Hence, the joint prior density function of𝜃 =  (𝑝, 𝛼1 , 𝛼2) is then given by 

𝜋 𝜃 = 𝜋1(𝑝)𝜋2(𝛼1)𝜋3(𝛼2). 

𝜋 𝜃 ∝  (𝛼𝑗 )−1

2

𝑗=1

. (13) 

For𝑗 =  1,2,𝛼𝑗 >  0, it follows, from (13) and (7), that the joint posterior density function is given by 

𝜋∗ 𝜃 𝑡 = 𝐴2
−1  𝛼𝑗

−1

2

𝑗=1

 𝑝𝑅1 𝑡𝑛 + (1 − 𝑝)𝑅2 𝑡𝑛  
𝑘−1 

  𝑝𝑅1 𝑡𝑖 + (1 − 𝑝)𝑅2 𝑡𝑖  
𝑚 𝑖

𝑛−1

𝑖=1

  𝑝𝑓1 𝑡𝑖 + (1 − 𝑝)𝑓2 𝑡𝑖  

𝑛

𝑖=1

, 

(14) 

where, 

𝐴2
−1 =  𝐿 𝜃 𝑡 𝜋(𝜃)𝑑𝜃

𝜃

. 
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Under the squared error loss function (SE), the Bayes estimator of a function, say 𝜑 ≡ 𝜑(𝑝, 𝛼1 , 𝛼2), is 

given in (12) where the integral is taken over the three dimensional space. To compute the integral we propose 

to consider MCMC methods. 

The conditional posterior distribution of the parameters 𝑝, 𝛼1 and 𝛼2  using conjugate prior can be 

computed and written, respectively, by 

𝜋∗ 𝑝 𝛼1 , 𝛼2 , 𝑡 ∝  𝑝𝑅1 𝑡𝑛 + (1 − 𝑝)𝑅2 𝑡𝑛  
𝑘−1   𝑝𝑅1 𝑡𝑖 + (1 − 𝑝)𝑅2 𝑡𝑖  

𝑚 𝑖

𝑛−1

𝑖=1

 

  𝑝𝑓1 𝑡𝑖 + (1 − 𝑝)𝑓2 𝑡𝑖  

𝑛

𝑖=1

 

𝜋∗ 𝛼𝑖 𝑝, 𝛼𝑗 , 𝑡 ∝ 𝛼𝑖
−1 𝑝𝑅1 𝑡𝑛 +  1 − 𝑝 𝑅2 𝑡𝑛  

𝑘−1 

  𝑝𝑅1 𝑡𝑖 + (1 − 𝑝)𝑅2 𝑡𝑖  
𝑚 𝑖

𝑛−1

𝑖=1

 

  𝑝𝑓1 𝑡𝑖 + (1 − 𝑝)𝑓2 𝑡𝑖  

𝑛

𝑖=1

, 

where, 𝑖 ≠ 𝑗 𝑖and𝑗 = 1,2 . 
 

V. Numerical Computations 
In this section, the computations regarding the comparisons are performed and the MTWD with a 

common parameter 𝛽 = 1.5 is considered. A comparison between the ML and Bayesian estimates, under the 

squared error loss function (SE), is made by using Monte Carlo simulation study (based on progressive Type II 

censoring and Type II censoring) which is considered in subsection 5.1 and a real data set is considered in 

subsection 5.2. 

5.1 Mont Carlo simulation 

(1) Based on progressive Type II censored samples 

The estimation of the parameters  𝑝 , 𝛼1 , 𝛼2  using ML and Bayesian techniques on cases when parameter 𝛽 is 

known have been obtained, based of progressive Type II censored sample which is special case of GOS that can 

be derived from it, by choosing 

 𝑚𝑖 = 𝑅𝑖  ; 𝑖 = 1,2, … ,𝑚 − 1
𝛾𝑖 = 𝑅𝑟 + 1

 . (15) 

Therefore, the ML and Bayes estimates of the unknown parameters can be obtainedby substituting (15) 

in (6),and then the likelihood reduces to the following 

𝐿 𝜃 𝑡 ∝   𝑝𝑅1 𝑡𝑖 + (1 − 𝑝)𝑅2 𝑡𝑖  
𝑅𝑖

𝑚

𝑖=1

 𝑝𝑓1 𝑡𝑖 + (1 − 𝑝)𝑓2 𝑡𝑖  . 

We compare the performance of the ML and Bayes estimates with their standard deviation (SD), bias, 

mean squared errors(MSE) and the width of 95 % asymptotic confidence intervals (CI) and the width of 95% 

highest posterior density (HPD) intervals. The simulation is performed for different choices of the sample sizes 

n and censored sample sizesm.  The procedure is repeated for 40,000 times. We computed the estimates, their 

SD, bias, MSE, width of asymptotic CI and the HPD width for the ML method and Bayesian method (based on 

the MCMC technique). The results are reported in Tables (2) and (3). The HPD confidence widths are smaller 

than the widths of asymptotic CI.  It seems plausible to say that the performances of the ML estimates and 

Bayesian estimates are very comparable in most results. The SD is computed by take the square root of the 

variance; however the bias is computed by take the absolute value of the difference between true value of𝜃 and 

its estimate𝜃  and MSE is computed by add the variance to the bias squared    

It is clear from Tables (2) and (3) that the computed estimates of the parameters  𝑝 , α1  and α2  are 

better when the sample size increases.  Since, the MSE and bias are small.  One can see that the estimates of the 

complete samples are better than the censored ones.  In addition comparing the censored samples for the 

considered sample sizes, the ML and Bayesian estimates have smaller bias, MSE and interval width when the 

censoring is large.  That is the estimates are better than the corresponding estimates when the censoring is large.  

In general, the computed bias and MSE of Bayesian estimates are smaller than there corresponding for ML 

estimates.The estimates of the reliability and hazard rate functions are found after substituting the parameters 

estimates in their functions and fixed time.   
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Table (2): Classical and Bayesian estimates of the parameters, RF and HF at 𝑡0 = 0.5 with their SD, 

bias and MSE for progressive Type II censored samples from the MTWD with parameters𝑝 = 0.5 ,
α1 = 0.1 and α2 = 0.7 

      
 

n m 𝜃 ML  (SD) 

bias (MSE) 

                    Bayesian  

CP  (SD) 

bias (MSE) 

NP  (SD) 

bias (MSE) 

30 30 𝑝 0.3967 (0.1448) 
0.1033 (0.0316) 

0.5002 (0.0009) 
0.0002 (0.0000008) 

0.5022 (0.0022) 
 0.0022 (0.0000096) 

  𝛼1 0.0720 (0.0284) 

0.028 (0.0015) 

0.0958 (0.0019) 

0.0042 (0.000021) 

0.0996 (0.0009) 

0.0004 (0.00000097) 

  𝛼2 0.5263 (0.1254) 
0.1737 (0.0458) 

0.6990 (0.0009) 
0.001 (0.00000181) 

0.6988 (0.0006) 
0.0012 (0.0000018) 

  R(𝑡0) 0.1451 0.1711 0.1704 

  H(𝑡0) 2.6195 1.7162 1.7182 

 25 𝑝 0.3812 (0.1114) 

0.1188 (0.0265) 

0.4964(0.0016) 

0.0036 (0.0000155) 

0.4975 (0.0014) 

0.0025 (0.0000082) 

 

 

 𝛼1 0.1080 (0.0323) 

0.008 (0.0011) 

0.1002 (0.0022) 

0.0002 (0.0000048) 

0.10001 (0.0010) 

0.00001 (0.000001) 

  𝛼2 0.9984 (0.2383) 

0.2984 (0.1458) 

0.6991 (0.0015) 

0.0009 (0.000003) 

0.7003 (0.0010) 

0.0003 (0.0000010) 

  R(𝑡0) 0.2923236 0.1725109 0.1724 

  H(𝑡0) 1.012017 1.717216 1.7125 

50 50 𝑝 0.5192 (0.0971) 

0.0192 (0.0097) 

0.4990 (0.0007) 

0.001 (0.0000014) 

0.4995 (0.0011) 

0.0005 (0.00000146) 

  𝛼1 0.0660 (0.0151) 
0.034 (0.00138) 

0.1042 (0.0026) 
0.0042 (0.0000244) 

0.1014 (0.0010) 
0.0014 (0.0000029) 

  𝛼2 0.5486 (0.1086) 

0.1514 (0.03471) 

0.7017 (0.0011) 

0.0017 (0.0000041) 

0.6983 (0.0008) 

0.0017 (0.0000035) 

  R(𝑡0) 0.1225 0.1724 0.1712 

  H(𝑡0) 2.4609 1.7090 1.7205 

 25 𝑝 0.4148 (0.0752) 

0.0851 (0.0129) 

0.5004 (0.0010) 

0.0004 (1.3e-06) 

0.5011 (0.0008) 

0.0011 (2.1e-06) 

  𝛼1 0.1569 (0.0413) 
0.0569 (0.0049) 

0.0964 (0.0016) 
0.0035 (1.56e-05) 

0.0974 (0.0010) 
0.0025 (7.5e-06) 

  𝛼2 3.8578 (1.3268) 

3.1578 (11.7326) 

0.6967 (0.0026) 

0.0032 (1.7e-05) 

0.6969 (0.0018) 

0.0030 (1.2e-05) 

  R(𝑡0) 0.4852 0.1704 0.1702 

  H(𝑡0) 0.1905 1.7245 1.7242 

100 100 𝑝 0.4506 (0.0994) 

0.0494 (0.01232) 

0.4998 (0.0014) 

0.0002 (0.000002) 

0.4989 (0.0009) 

0.0011 (0.0000020) 

  𝛼1 0.0823 (0.0188) 
0.0177 (0.00066) 

0.1016 (0.0013) 
0.0016 (0.0000042) 

0.1021 (0.0017) 
0.0021 (0.0000073) 

  𝛼2 0.4530 (0.0689) 

0.2470 (0.06576) 

0.7017 (0.0012) 

0.0017 (0.0000043) 

0.6970 (0.0011) 

0.0030 (0.0000102) 

  R(𝑡0) 0.1049 0.1720 0.1711 

  H(𝑡0) 3.2800 1.7081 1.7255 

 25 𝑝 0.1726 (0.0344) 

0.3273 (0.1083) 

0.4977 (0.0012) 

0.0022 (6.3e-06) 

0.5042 (0.0026) 

0.0042 (2.5e-05) 

  𝛼1 0.1486 (0.0368) 
0.0486 (0.0037) 

0.0968 (0.0011) 
0.0031 (1.1e-05) 

0.0983 (0.0009) 
0.0016 (3.7e-06) 

  𝛼2 3.3370 (0.5472) 

2.6370 (7.2533) 

0.6981 (0.0019) 

0.0018 (7.01e-06) 

0.6996 (0.0021) 

0.0003 (4.5e-06) 

  R(𝑡0) 0.6619 0.1717 0.1699 

  H(𝑡0) 0.1843 1.7196 1.7145 

(CP and NP denote Bayesian estimates when conjugate and non-informative priors are considered, respectively.) 
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Table (3):Average 95% confidence/HPD intervals and their width under different progressive Type 

II censoring for 𝑝 = 0.5 ,   𝛼1 = 0.1   and   𝛼2 = 0.7 
n m 𝜃 CI 

[Width] 

Bayes   

HPDC 

[Width] 

HPDN 

[Width] 

30 30 𝑝 (0.1128,0.6806) 

[0.5678] 

(0.4985,0.5017) 

[0.0031] 

(0.4975,0.5051) [0.0075] 

  𝛼1 (0.0162,0.1278) 

[0.1115] 

(0.0928,0.0996) 

[0.0068] 

(0.0979,0.1015) [0.0035] 

  𝛼2 (0.2804,0.7721) 

[0.4917] 

(0.6967,0.7007) 

[0.0039] 

(0.6976,0.7002) [0.0026] 

 25 𝑝 (0.3784, 0.7959) 

[0.4175] 

(0.4994,0.5022) 

[0.0028] 

(0.4955,0.5005) [0.0049] 

  𝛼1 (0.0624, 0.1608) 

[0.0984] 

(0.0996,0.1065) 

[0.0068] 

(0.0981,0.1022) [0.0041] 

  𝛼2 (0.3759, 1.7711) 

[1.3952] 

(0.6953,0.7014) 

[0.0060] 

(0.6982,0.7020) [0.0038] 

50 50 𝑝 (0.3287,0.7096) 

[0.3809] 

(0.4975,0.5003) 

[0.0028] 

(0.4974,0.5014) [0.0039] 

  𝛼1 (0.0364,0.0956) 
[0.0591] 

(0.1001,0.1087) 
[0.0085] 

(0.0997,0.10330) 
[0.0035] 

  𝛼2 (0.3357,0.76152) 

[0.4257] 

(0.6996,0.7035) 

[0.0039] 

(0.6968,0.7001) [0.0032] 

 25 𝑝 (0.2673,0.5623) 
[0.2950] 

(0.4985,0.5023) 
[0.0038] 

(0.4994,0.5024) [0.0030] 

  𝛼1 (0.0758,0.2379) 0.1621 (0.0941,0.1002) 

[0.0060] 

(0.0954,0.0993) [0.0038] 

  𝛼2 (1.2574,6.4583) 
[5.2009] 

(0.6917,0.7004) 
[0.0087] 

(0.6940,0.7005) [0.0064] 

100 100 𝑝 (0.2558,0.6455) 

[0.3897] 

(0.4972,0.5020) 

[0.0048] 

(0.4966,0.5004) [0.0037] 

  𝛼1 (0.0453,0.1193) 

[0.0740] 

(0.0997,0.1043) 

[0.0046] 

(0.0990,0.1052) [0.0062] 

  𝛼2 (0.3179,0.5881) 

[0.2702] 

(0.6996,0.7041) 

[0.0045] 

(0.6948,0.6991) [0.0042] 

 25 𝑝 (0.1050,0.2401) 
[0.1351] 

(0.4953,0.5002) 
[0.0049] 

(0.5001,0.5087) [0.0085] 

  𝛼1 (0.0763,0.2209) 

[0.1445] 

(0.0951,0.0992) 

[0.0041] 

(0.0963,0.1001) [0.0037] 

  𝛼2 (2.2644,4.4096) 
[2.1451] 

(0.6946,0.7010) 
[0.0063] 

(0.6951,0.7024) [0.0072] 

(HPDC and HPDN denote the HPD intervals when conjugate and non-informative priors are considered 

respectively.) 

(2) Based on Type II censored samples 

The estimation of the parameters  𝑝 , 𝛼1 , 𝛼2  using the ML and Bayesian techniques on cases when the 

parameter 𝛽 is known have been obtained, based on Type II censored sample which is special case of GOS, that 

can be derived from it by choosing 

 𝑚𝑖 = 0   ; 𝑖 = 1,2, … , 𝑟 − 1
𝑘 = 𝑛 − 𝑟 + 1

 . (16) 

By substituting (16) in (6), the likelihood equations reduced to the following  

𝐿 𝜃 𝑡 ∝  𝑅(𝑡𝑟) 𝑛−𝑟   𝑓(𝑡𝑖)

𝑟

𝑖=1

  

It is clear from Tables (4) and (5) that the computed estimates of the parameters  𝑝, 𝛼1 and 𝛼2 are better 

when the sample size increases.  Since, the MSE and bias are small.  One can see that the estimates of the 

complete samples are better than the censored ones.  In addition, comparing the censored samples for the 

considered sample sizes, the ML and Bayesian estimates have smaller bias, MSE and interval width when the 

censoring is large.  That is the estimates are better than the corresponding estimates when the censoring is small.  

In general, the computed bias and MSE of Bayesian estimates are smaller than there 

correspondingcomputedbias and MSE for the ML estimates. 
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Table (4):Classical and Bayesian estimates of the parameters, RF and HF at 𝑡0 = 0.5  with their SD, 

MSE and bias for Type II censored samples from the MTWD with parameters𝑝 = 0.5 , 𝛼1 =
0.1  and 𝛼2 = 0.7 

n 
 

m 𝜃 ML (SD) 
bias (MSE)  

                                Bayes  

CP (SD) 

bias (MSE) 

NP (SD) 

bias (MSE) 

30 30 𝑝 0.3707 (0.1270) 

0.1293 (0.03285) 

0.5002 (0.0008) 

0.0002 (0.0000006) 

0.4987 (0.0018) 

0.0013 (0.0000049) 

  𝛼1 0.0784 (0.0257) 

0.0216 (0.00113) 

0.0998 (0.0013) 

0.0002 (0.0000017) 

0.1008 (0.0015) 

0.0008 (0.0000029) 

  𝛼2 0.6030 (0.1332) 

0.0970 (0.02715) 

0.7031 (0.0021) 

0.0031 (0.0000140) 

0.7032 (0.0022) 

0.0032 (0.0000151) 

  R(𝑡0) 0.1814 0.1722 0.1728 

  H(𝑡0) 2.1364 1.7024 1.7024 

 15 𝑝 0.4362 (0.1747) 

0.0638 (0.03459) 

0.4986 (0.0007) 

0.0014 (0.0000025) 

0.4989 (0.0009) 

0.0011 (0.0000020) 

  𝛼1 0.1156 (0.0472) 
0.0156 (0.00247) 

0.0967 (0.0023) 
0.0033 (0.0000162) 

0.1003 (0.0013) 
0.0003 (0.0000018) 

  𝛼2 0.6745 (0.2101) 

0.0225 (0.04479) 

0.7009 (0.0010) 

0.0009 (0.0000018) 

0.6959 (0.0019) 

0.0041 (0.0000204) 

  R(𝑡0) 0.1861 0.1721 0.1708 

  H(𝑡0) 1.8163 1.7095 1.7290 

50 50 𝑝 0.5014 (0.1590) 

0.0014 (0.02528) 

0.5036 (0.0017) 

0.0036 (0.0000159) 

0.5012 (0.0018) 

0.0012 (0.0000047) 

  𝛼1 0.1271 (0.0432) 
0.0271 (0.00260) 

0.0985 (0.0018) 
0.0015 (0.0000055) 

0.1024 (0.0014) 
0.0024 (0.0000077) 

  𝛼2 0.6479 (0.1575) 

0.0521 (0.02752) 

0.6982 (0.0013) 

0.0018 (0.0000049) 

0.7013 (0.0014) 

0.0013 (0.0000037) 

  R(𝑡0) 0.1580 0.1697 0.1715 

  H(𝑡0) 1.9329 1.7199 1.7098 

 30 𝑝 0.4656 (0.1032) 

0.0344 (0.01183) 

0.5051 (0.0032) 

0.0051 (0.0000363) 

0.5021 (0.0012) 

0.0021 (0.0000059) 

  𝛼1 0.0929 (0.0236) 
0.0071 (0.00061) 

0.1003 (0.0009) 
0.0003 (0.0000009) 

0.1030 (0.0013) 
0.0030 (0.0000107) 

  𝛼2 0.8005 (0.2076) 

0.1005 (0.05319) 

0.6999 (0.0012) 

0.0001 (0.000015) 

0.6966 (0.0018) 

0.0034 (0.0000148) 

  R(𝑡0) 0.2095 0.1697 0.1700 

  H(𝑡0) 1.4006 1.7143 1.7272 

100 100 𝑝 0.5075 (0.0828) 

0.0075 (0.00069) 

0.4966 (0.0013) 

0.0034 (0.0000133) 

0.4995 (0.0010) 

0.0005 (0.0000013) 

  𝛼1 0.0937 (0.0177) 

0.0063 (0.000353) 

0.0951 (0.0015) 

0.0049 (0.0000263) 

0.0996 (0.0010) 

0.0004 (0.0000012) 

  𝛼2 0.6280 (0.0945) 

0.0720 (0.01411) 

0.7005 (0.0013) 

0.0005 (0.0000019) 

0.7014 (0.0018) 

0.0014 (0.0000052) 

  R(𝑡0) 0.1493 0.1727 0.1720 

  H(𝑡0) 2.0132 1.7104 1.7085 

 50 𝑝 0.2493 (0.0715) 
0.2507 (0.06796) 

0.5020 (0.0013) 
0.0020 (0.0000057) 

0.5017 (0.0012) 
0.0017 (0.0000043) 

  𝛼1 0.0783 (0.0225) 

0.0217 (0.00098) 

0.0972 (0.0014) 

0.0028 (0.0000098) 

0.1006 (0.0015) 

0.0006 (0.0000026) 

  𝛼2 0.6000 (0.0843) 

0.1000 (0.01711) 

0.70001 (0.0011) 

0.00001 (0.0000012) 

0.7014 (0.0013) 

0.0014 (0.0000037) 

  R(𝑡0) 0.2150 0.1707 0.1713 

  H(𝑡0) 2.1521 1.7128 1.7091 
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Table (5): Average 95% confidence/HPD intervals with their width under different Type II 

censoring for fixed 𝑝 = 0.5 ,   𝛼1 = 0.1   and   𝛼2 = 0.7 
n m 𝜃 CI 

[Width] 

                      Bayes   

HPDC 

[Width] 

HPDN 

[Width] 

30 30 𝑝 (0.1216,0.6198) 

[0.4981] 

(0.4985,0.5016) [0.0030] (0.4953,0.5014) [0.0060] 

  𝛼1 (0.0280,0.1288) 

[0.1007] 

(0.0977,0.1023) [0.0046] (0.0985,0.1038) [0.0052] 

  𝛼2 (0.3419,0.8641) 

[0.5221] 

(0.6998,0.7064) [0.0066] (0.6995,0.7064) [0.0069] 

 15 𝑝 (0.0938,0.7787) 

[0.6848] 

(0.4969,0.5000) [0.0031] (0.4967,0.5007) [0.0039] 

  𝛼1 (0.0229,0.2083) 

[0.1853] 

(0.0919,0.1005) [0.0085] (0.0979,0.1029) [0.0050] 

  𝛼2 (0.2626,1.0865) 

[0.8239] 

(0.6991,0.7030) [0.0038] (0.6928,0.6997) [0.0068] 

50 50 𝑝 (0.2398,0.7630) 

[0.5231] 

(0.4999,0.5064) [0.0065] (0.4984,0.5044) [0.0059] 

  𝛼1 (0.0560,0.1982) 
[0.1421] 

(0.0947,0.1013) [0.0065] (0.0997,0.1047) [0.0050] 

  𝛼2 (0.3888,0.9069) 

[0.5181] 

(0.6956,0.7007) [0.0051] (0.6991,0.7039) [0.0048] 

 30 𝑝 (0.2958,0.6354) 
[0.3395] 

(0.4996,0.5101) [0.0104] (0.4994,0.5036) [0.0042] 

  𝛼1 (0.0541,0.1318) 

[0.0777] 

(0.0983,0.1019) [0.0035] (0.0999,0.1049) [0.0050] 

  𝛼2 (0.4590,1.1420) 
[0.6830] 

(0.6977,0.7022) [0.0044] (0.6945,0.7012) [0.0067] 

100 100 𝑝 (0.3712,0.6437) 

[0.2725] 

(0.4945,0.5000) [0.0054] (0.4969,0.5013) [0.0043] 

  𝛼1 (0.0644,0.1229) 

[0.0585] 

(0.0927,0.0987) [0.0060] (0.0978,0.1015) [0.0037] 

  𝛼2 (0.4724,0.7835) 

[0.3111] 

(0.6979,0.7026) [0.0046] (0.6974,0.7035) [0.0060] 

 50 𝑝 (0.1317,0.3669) 
[0.2352] 

(0.4998,0.5038) [0.0040] (0.4996,0.5041) [0.0045] 

  𝛼1 (0.0412,0.1154) 

[0.0741] 

(0.0945,0.0999) [0.0054] (0.0974,0.1030) [0.0055] 

  𝛼2 (0.4613,0.7387) 
[0.2773] 

(0.6972,0.7024) [0.0051] (0.6994,0.7040) [0.0046] 

5.2 Real data analysis 

In this subsection, a real data set has been analyzed. This data set represents the time between failures 

of secondary reactor pumps. This data set has been originally discussed by [21]and [22] . The chance of the 

failure of the secondary reactor pump is of the increasing nature in early stage of the experiment and after that it 

decreases. It has been checked by [23] that flexible Weibull distribution is well fitted model to this data set. The 

times between failures of 23 secondary reactor pumps are as follows: 2.160, 0.150, 4.082, 0.746, 0.358, 0.199, 

0.402, 0.101, 0.605, 0.954, 1.359, 0.273, 0.491, 3.465, 0.070, 6.560, 1.060, 0.062, 4.992, 0.614, 5.320, 0.347, 

and 1.921. 

 

Table (6): Classical and Bayesian estimates of the parameters, RF and HF at 𝑡0 = 0.5  with their SD 

for the real data set under progressive Type II censoring 
m 𝜃 ML (SD)                        Bayes  

CP (SD) NP (SD) 

 𝑝 0.5522 (0.1593) 0.5524 (0.0030) 0.5540 (0.0012) 

 𝛼1 0.4043 (0.1427) 0.4031 (0.0018) 0.4048 (0.0010) 

Complete  𝛼2 3.0255 (0.9763) 3.0260 (0.0018) 3.0288 (0.0033) 

 R(𝑡0) 0.4358 0.4352 0.4350 

 H(𝑡0) 0.5088 0.5086 0.5096 

 𝑝 0.4385 (0.1329) 0.4406 (0.0012) 0.4418 (0.0022) 

 𝛼1 0.38647(0.1348) 0.3894 (0.0013) 0.3825 (0.0020) 

18  𝛼2 3.9042 (1.2420) 3.9009 (0.0018) 3.9051 (0.0015) 

 R(𝑡0) 0.5263 0.5257 0.5228 

 H(𝑡0) 0.3921 0.3942 0.3930 

 𝑝 0.3520 (0.1367) 0.3546 (0.0014) 0.3552 (0.0018) 

 𝛼1 0.3574 (0.1541) 0.3577 (0.0010) 0.3576 (0.0009) 

15 𝛼2 3.3218 (1.0288) 3.3194 (0.0014) 3.3210 (0.0013) 

 R(𝑡0) 0.5601 0.5584 0.5580 

 H(𝑡0) 0.3668 0.3684 0.3687 
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Table (7):Average 95% confidence/HPD intervals with their width for the real data set under progressive Type 

II censoring 
m 𝜃 CI 

[Width] 

                      Bayes   

HPDC 

[Width] 

HPDN 

[Width] 

 𝑝 (0.2400, 0.8645) 

[0.6244] 

(0.5475, 0.5575) 

[0.0099] 

(0.5515, 0.5557) 

[0.0041] 

Complete 𝛼1 (0.1246, 0.6841) 

[0.5595] 

(0.4000, 0.4062) 

[0.0062] 

(0.4029, 0.4067) 

[0.0038] 

 𝛼2 (1.1119, 4.9390) 

[3.8270] 

(3.0227, 3.0282) 

[0.0054] 

(3.0245, 3.0348) 

[0.0102] 

 𝑝 (0.1780, 0.6990) 
[0.5210] 

(0.4379, 0.4421) 
[0.0042] 

(0.4382, 0.4451) 
[0.0069] 

18 𝛼1 (0.1222, 0.6507) 

[0.5285] 

(0.3863, 0.3913) 

[0.0050] 

(0.3803, 0.3870) 

[0.0067] 

 𝛼2 (1.4699, 6.3385) 
[4.8685] 

(3.8987, 3.9055) 
[0.0067] 

(3.9028, 3.9081) 
[0.0052] 

 𝑝 (0.0840, 0.6201) 

[0.5360] 

(0.3518, 0.3568) 

[0.0050] 

(0.3525, 0.3602) 

[0.0076] 

15 𝛼1 (0.0553, 0.6595) 
[0.6042] 

(0.3554, 0.3593) 
[0.0038] 

(0.3559, 0.3591) 
[0.0031] 

 𝛼2 (1.3053, 5.3383) 

[4.0330] 

(3.3174, 3.3223) 

[0.0049] 

(3.3188, 3.3237) 

[0.0048] 

 

Table (8):Classical and Bayesian estimates of the parameters, RF and HRF at 𝑡0 = 0.5  with their SD  forthereal 

data set under Type II censoring 
m θ ML(SD) Bayes  

CP(SD) NP(SD) 

 p 0.5522 (0.1593) 0.5546 (0.0015) 0.5573 (0.0016) 

 α1 0.4043 (0.1427) 0.4046 (0.0007) 0.4067 (0.0019) 

Complete α2 3.0255 (0.9763) 3.0247 (0.0012) 3.0239 (0.0015) 

 R(t0) 0.4358 0.4344 0.4335 

 H(t0) 0.5088 0.5101 0.5120 

 p 0.6295 (0.1530) 0.6301 (0.0008) 0.6293 (0.0009) 

 α1 0.4667 (0.1636) 0.4636 (0.0011) 0.4677 (0.0016) 

20 α2 4.5123 (2.2741) 4.5113 (0.0009) 4.5155 (0.0016) 

 R(t0) 0.4399 0.4382 0.4405 

 H(t0) 0.4942 0.4945 0.4941 

 

Table (9):Average 95% confidence/HPD intervals with their width for real data set under Type II censoring 
m Par CI 

[Width] 

Bayes (MCMC)  

HPDC 
[Width] 

HPDN 
[Width] 

 𝑝 (0.2400, 0.8645) 

[0.6244] 

(0.5525, 0.5575) 

[0.0049] 

(0.5534, 0.5596) 

[0.0061] 

Complete 𝛼1 (0.1246, 0.6841) 

[0.5595] 

(0.4028, 0.4060) 

[0.0032] 

(0.4030, 0.4092) 

[0.0062] 

 𝛼2 (1.1119, 4.9390) 

[3.8270] 

(3.0225, 3.0266) 

[0.0040] 

(3.0209, 3.0265) 

[0.0055] 

 𝑝 (0.3296, 0.9295) 
[0.5999] 

(0.6286, 0.6318) 
[0.0031] 

(0.6277, 0.6312) 
[0.0035] 

20 𝛼1 (0.1460, 0.7874) 

[0.6413] 

(0.4614, 0.4657) 

[0.0043] 

(0.4654, 0.4706) 

[0.0051] 

 𝛼2 (0.0551, 8.9696) 
[8.9145] 

(4.5090, 4.5128) 
[0.0037] 

(4.5119, 4.5178) 
[0.0059] 

 

VI. Conclusion 
In this paper, some achievements have been done for the MTWD model, with a common shape 

parameter, based on GOS. The GOS approach is used for obtaining the statistical inferences of MTWD. All the 

results that have been obtained for GOS of MTWD can be specialized to any special cases of GOS. In this 

paper, the progressive Type II censored sample and Type II censored sample  are used as special cases of GOS. 

The ML estimates are obtainedusingthenlm (Non-Linear Minimization) routine of R 3.0.3 to compute the 

nonlinear ML equation.  Bayesian estimates based on SE loss function are obtained by using MCMC technique 

under  two cases, first with the conjugate prior distributions and the other case with the  non-informative prior 

distributions. The simulation have been studied under different sizes and different censoring schemes in 
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progressive Type II censored samples and Type II censored samples. In many situations, Bayesian estimates are 

more efficient than ML estimates. 

In general, Bayesian estimation is better than ML because the MSE of Bayesian is less than MSE of 

ML. Bayesian estimation with conjugate prior and non-informative prior have the same quality because the SD, 

bias, MSE and width are similar. But in some cases using conjugate prior is better than non-informative prior 

because the MSE in conjugate prior is less than MSE in non-informative prior and this appears in parameter 𝑝 

computations. For each n when m is large, the estimates have smaller MSE than their corresponding, when m is 

small. Usually for each m when n is small, the estimates have smaller MSE than their corresponding, when n is 

large.  Finally, the estimation based on the progressive Type II censoring is better than the corresponding 

estimation based on  censoringType II because the MSE in the progressive Type II censoring is less than the 

MSE in the censoring Type II in the same value of n and m.  
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