Presic Type Common Fixed Point Theorem for Four Maps in Complex Valued b-Metric Spaces

K.P.R.Rao ${ }^{1}$, E.Taraka Ramudu ${ }^{2}$
${ }^{1}$ Department of Mathematics,Acharya Nagarjuna University,Nagarjuna Nagar -522 510, A.P., India
${ }^{2}$ Department of Science and Humanities,Nova College of Engineering and Technology,Jupudi-521 456, Krishna Dt.,Andhra Pradesh, India.

Abstract

In this paper, we obtain a Presic type fixed point theorem for two pairs of jointly $2 k$-weakly compatible maps in complex valued b-metric spaces. We also give an example to illustrate our main theorem.

Keywords: b-metric spaces, Jointly $2 k$-weakly compatible pairs,Presic type theorem.

I. Introduction and Preliminaries

There are several generalizations of the Banach contraction principle in literature on fixed point theory. Presic [1] generalized the Banach contraction principle as follows.Throughout this paper N and C denote the set of all positive integers and complex numbers respectively.

Theorem 1.1.([1]) Let (X, d) be a complete metric space, k be a positive integer and $T: X^{k} \rightarrow X$ be a mapping satisfying
(1.1.1) $d\left(T\left(x_{1}, x_{2}, \cdots, x_{k}\right), T\left(x_{2}, x_{3}, \cdots, x_{k+1}\right)\right) \leq \sum_{i=1}^{k} q_{i} d\left(x_{i}, x_{i+1}\right)$
for all $x_{1}, x_{2}, \cdots, x_{k}, x_{k+1} \in X$, where $q_{i} \geq 0$ and $\sum_{i=1}^{k} q_{i}<1$. Then there exists a unique point $x \in X$ such that $T(x, x, \ldots, x)=x$. Moreover, if $x_{1}, x_{2}, \cdots, x_{k+1}$ are arbitrary points in X and for $n \in \mathrm{~N}$,
$x_{n+k}=T\left(x_{n}, x_{n+1}, \cdots, x_{n+k-1}\right)$, then the sequence $\left\{x_{n}\right\}$ is convergent
and $\lim _{n \rightarrow \infty} x_{n}=T\left(\lim x_{n}, \lim x_{n}, \ldots \lim x_{n}\right)$.
Inspired by the Theorem 1.1, Ciric and Presic [2] proved following theorem.
Theorem 1.2. ([2]) Let (X, d) be a complete metric space, k a positive integer and $T: X^{k} \rightarrow X$ be a mapping satisfying

$$
d\left(T\left(x_{1}, x_{2}, \cdots, x_{k}\right), T\left(x_{2}, x_{3}, \cdots, x_{k+1}\right)\right) \leq \lambda \max \left\{d\left(x_{i}, x_{i+1}\right): 1 \leq i \leq k\right\}
$$

for all $x_{1}, x_{2}, \cdots, x_{k}, x_{k+1}$ in X, where $\lambda \in[0,1)$. Then there exists a point $x \in X$ such that $x=T(x, x, \ldots, x)$. Moreover, if $x_{1}, x_{2}, \cdots, x_{k+1}$ are arbitrary points in X and for $n \in \mathrm{~N}$, $x_{n+k}=T\left(x_{n}, x_{n+1}, \cdots, x_{n+k-1}\right)$,then the sequence $\left\{x_{n}\right\}$ is convergent and $\lim x_{n}=T\left(\lim x_{n}, \lim x_{n}, \ldots \lim x_{n}\right)$. If in addition, we suppose that on diagonal $\Delta \subset X^{k}$, $d(T(u, u, \ldots, u), T(v, v, \ldots, v))<d(u, v)$ holds for $u, v \in X$ with $u \neq v$, then x is the unique fixed point satisfying $x=T(x, x, \ldots, x)$.

Recently Rao et al.[3,4] obtained some Presic type theorems for two and three maps in metric spaces.Now we give the following definition of [3,4]
Definition 1.3. Let X be a non empty set and $T: X^{2 k} \rightarrow X$ and $f: X \rightarrow X$.The pair (f, T) is said to be $2 k$-weakly compatible if $f(T(x, x, \ldots, x))=T(f x, f x, \ldots, f x)$ whenever $x \in X$ such that $f x=T(x, x, \ldots, x)$.

Using this definition, Rao et al. [3] proved the following

Theorem 1.4 .([3]) Let (X, d) be a metric space, k a positive integer and $S, T: X^{2 k} \rightarrow X$, $f: X \rightarrow X$ be mappings satisfying
(1.4.1) $d\left(S\left(x_{1}, x_{2}, \cdots, x_{2 k}\right), T\left(x_{2}, x_{3}, \cdots, x_{2 k+1}\right)\right) \leq \lambda \max \left\{d\left(f x_{i}, f x_{i+1}\right): 1 \leq i \leq 2 k\right\}$
for all $x_{1}, x_{2}, \cdots, x_{2 k}, x_{2 k+1}$ in X,
$d\left(T\left(y_{1}, y_{2}, \cdots, y_{2 k}\right), S\left(y_{2}, y_{3}, \cdots, y_{2 k+1}\right)\right) \leq \lambda \max \left\{d\left(f y_{i}, f y_{i+1}\right): 1 \leq i \leq 2 k\right\}$
for all $y_{1}, y_{2}, \cdots, y_{2 k}, y_{2 k+1}$ in X, where $0<\lambda<1$,
(1.4.3) $d(S(u, \cdots, u), T(v, \cdots, v))<d(f u, f v)$, for all $u, v \in X$ with $u \neq v$.
(1.4.4) Suppose that $f(X)$ is complete and either (f, S) or (f, T) is a $2 k$ - weakly compatible pair.
Then there exists a unique point $p \in X$ such that $f p=p=S(p, \cdots, p)=T(p, \cdots, p)$.
Azam et al.[5] introduced the concept of complex valued metric spaces and obtained sufficient conditions for the existence of common fixed points of a pair of mappings satisfying a contractive condition. Later several authors for example, refer [6-14] proved fixed and common fixed point theorems in the setting of complex valued metric spaces.

In this paper, we obtain a common fixed point theorem of Presic type for four mappings in complex valued b-metric spaces.We present one example to illustrate our main theorem. We also obtain some corollaries. To begin with, we recall some basic definitions, notations and results.

Let $z_{1}, z_{2} \in \mathrm{C}$. Define a partial order \lesssim on C follows:
$\mathrm{z}_{1} \precsim \mathrm{z}_{2}$ if and only if $\operatorname{Re}\left(z_{1}\right) \leq \operatorname{Re}\left(z_{2}\right), \operatorname{Im}\left(z_{1}\right) \leq \operatorname{Im}\left(z_{2}\right)$.
Thus $\mathrm{z}_{1} \precsim \mathrm{z}_{2}$ if one of the following holds:
(1) $\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)$,
(2) $\operatorname{Re}\left(z_{1}\right)<\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)$,
(3) $\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)<\operatorname{Im}\left(z_{2}\right)$,
(4) $\operatorname{Re}\left(z_{1}\right)<\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)<\operatorname{Im}\left(z_{2}\right)$.

Clearly $\mathrm{z}_{1} \precsim \mathrm{z}_{2} \Rightarrow\left|z_{1}\right| \leq\left|z_{2}\right|$.
We will write $\mathrm{z}_{1} \preccurlyeq \mathrm{z}_{2}$ if $z_{1} \neq z_{2}$ and one of (2), (3) and (4) is satisfied. Also we will write $z_{1} \prec z_{2}$ if only (4) is satisfied.
Definition 1.5. ([5]) Let X be a non empty set. A function $d: X \times X \rightarrow \mathrm{C}$ is called a complex valued metric on X if for all $x, y, z \in X$ the following conditions are satisfied:
(i) $0 \precsim d(x, y)$ and $d(x, y)=0$ if and only if $x=y$;
(ii) $d(x, y)=d(y, x)$;
(iii) $d(x, y) \precsim d(x, z)+d(z, y)$.

The pair (X, d) is called a complex valued metric space.
Now, we briefly recall the definitions and lemmas about complex valued b-metric spaces introduced by Rao et al.[15].
Definition 1.6.([15]) Let X be a non empty set and $s \geq 1$. A function $d: X \times X \rightarrow \mathrm{C}$ is called a complex valued b-metric on X if for all $x, y, z \in X$ the following conditions are satisfied:
(i) $0 \lesssim d(x, y)$ and $d(x, y)=0$ if and only if $x=y$;
(ii) $d(x, y)=d(y, x)$;
(iii) $d(x, y) \precsim s[d(x, z)+d(z, y)]$.

The pair (X, d) is called a complex valued b-metric space.
Note. If $z_{1}=a+i b$ and $z_{2}=\alpha+i \beta$ then we define $\max \left\{z_{1}, z_{2}\right\}=\max \{a, \alpha\}+i \max \{b, \beta\}$.
Definition 1.7.([15]) Let (X, d) be a complex valued b-metric space.

1. A point $x \in X$ is called interior point of a set $A \subseteq X$ whenever there exists $0 \prec r \in \mathrm{C}$ such that $B(x, r)=\{y \in X: d(x, y) \prec r\} \subseteq A$.
2. A point $x \in X$ is called a limit point of a set $A \subseteq X$ whenever there exists $0 \prec r \in \mathrm{C}$ such that $B(x, r) \cap(X-A) \neq \phi$.
3. A subset $B \subseteq X$ is called open whenever each point of B is an interior point of B.
4. A subset $B \subseteq X$ is called closed whenever each limit point of B is in B.
5. The family $F=\{B(x, r): x \in X$ and $0 \prec r\}$ is a sub basis for a topology on X. We denote this complex topology by τ_{c}. Indeed, the topology τ_{c} is Hausdorff.
Let $\left\{x_{n}\right\}$ be a sequence in X and $x \in X$.If for every $c \in \mathrm{C}$ with $0 \lesssim \mathrm{c}$ there is $n_{0} \in \mathrm{~N}$ such that for all $n>n_{0}, d\left(x_{n}, x\right) \prec c$, then $\left\{x_{n}\right\}$ is said to be convergent to x and x is the limit point of $\left\{x_{n}\right\}$.We denote this by $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x$ as $n \rightarrow \infty$. If for every $c \in \mathrm{C}$ with $0 \prec c$ there is $n_{0} \in \mathrm{~N}$ such that for all $n>n_{0}, d\left(x_{n}, x_{n+m}\right) \prec c$, where $m \in \mathrm{~N}$, then $\left\{x_{n}\right\}$ is called a Cauchy sequence in (X, d). If every Cauchy sequence is convergent in (X, d) then (X, d) is called a complete complex valued b-metric space. We require the follwing lemmas.
Lemma 1.8.([15]) Let (X, d) be a complex valued b-metric space and let $\left\{x_{n}\right\}$ be a sequence in X . Then $\left\{x_{n}\right\}$ converges to x if and only if $\left|d\left(x_{n}, x\right)\right| \rightarrow 0$ as $n \rightarrow \infty$.
Lemma 1.9.([15]) Let (X, d) be a complex valued b-metric space and let $\left\{x_{n}\right\}$ be a sequence in X . Then $\left\{x_{n}\right\}$ is a Cauchy sequence if and only if $\left|d\left(x_{n}, x_{n+m}\right)\right| \rightarrow 0$ as $n, m \rightarrow \infty$.

One can easily prove the following lemma
Lemma 1.10. Let (X, d) be a complex valued b-metric space and let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in X converging to x and y respectively. Then
(i) $\frac{1}{s}|d(x, z)| \leq \lim _{n \rightarrow \infty}\left|d\left(x_{n}, z\right)\right| \leq s|d(x, z)|$ for all $z \in X$,
(ii) $\frac{1}{s^{2}}|d(x, y)| \leq \lim _{n \rightarrow \infty}\left|d\left(x_{n}, y_{n}\right)\right| \leq s^{2}|d(x, y)|$.

Before proving our main theorem we give the following new definition.
Definition 1.11. Let X be a nonempty set, k a positive integer and $S, T: X^{2 k} \rightarrow X$ and $f, g: X \rightarrow X$. The pairs (f, S) and (g, T) are said to be jointly $2 k$-weakly compatible if $f(S(x, x, \ldots, x))=S(f x, f x, \ldots, f x)$ and $g(T(x, x, \ldots, x))=T(g x, g x, \ldots, g x)$ whenever there exists $x \in X$ such that $f x=S(x, x, \ldots, x)$ and $g x=T(x, x, \ldots, x)$.
Now we give our main theorem.

II. Main Result

Theorem 2.1. Let (X, d) be a complete complex valued b-metric space with $s \geq 1$ and k be any positive integer. Let $S, T: X^{2 k} \rightarrow X$ and $f, g: X \rightarrow X$ be mappings satisfying
(2.1.1) $S\left(X^{2 k}\right) \subseteq g(X), T\left(X^{2 k}\right) \subseteq f(X)$,
(2.1.2) $d\left(S\left(x_{1}, x_{2}, \ldots, x_{2 k}\right), T\left(y_{1}, y_{2}, \ldots, y_{2 k}\right)\right) \lesssim \lambda \max \left\{\begin{array}{l}d\left(g x_{1}, f y_{1}\right), d\left(f x_{2}, g y_{2}\right), \\ d\left(g x_{3}, f y_{3}\right), d\left(f x_{4}, g y_{4}\right), \\ \ldots \ldots \ldots . ~ \\ d\left(g x_{2 k-1}, f y_{2 k-1}\right), d\left(f x_{2 k}, g y_{2 k}\right)\end{array}\right\}$

$$
\forall x_{1}, x_{2}, \ldots, x_{2 k}, y_{1}, y_{2}, . ., y_{2 k} \in X, \text { where } \lambda \in\left(0, \frac{1}{s^{2 k}}\right) .
$$

(2.1.3) (f, S) and (g, T) are jointly $2 k$-weakly compatible pairs,
(2.1.4) Suppose $z=f u=g u$ for some $u \in X$ whenever there exists a sequence $\left\{y_{2 k+n}\right\}_{n=1}^{\infty}$ in X such that $\lim _{n \rightarrow \infty} y_{2 k+n}=z \in X$.
Then z is the unique point in X such that $z=f z=g z=S(z, z, \ldots, z, z)=T(z, z, \ldots, z, z)$.
Proof. Suppose $x_{1}, x_{2}, \ldots, x_{2 k}$ are arbitrary points in X, From (2.1.1), define

$$
\begin{aligned}
& y_{2 k+2 n-1}=S\left(x_{2 n-1}, x_{2 n}, \ldots, x_{2 k+2 n-2}\right)=g x_{2 k+2 n-1}, \\
& y_{2 k+2 n}=T\left(x_{2 n}, x_{2 n+1}, \ldots, x_{2 k+2 n-1}\right)=f x_{2 k+2 n}, \text { for } n=1,2, \ldots
\end{aligned}
$$

Let $\alpha_{2 n}=d\left(f x_{2 n}, g x_{2 n+1}\right)$ and $\alpha_{2 n-1}=d\left(g x_{2 n-1}, f x_{2 n}\right)$, for $n=1,2, .$.
Write $\theta=\lambda^{\frac{1}{2 k}}$ and $\mu=\max \left\{\frac{\left|\alpha_{1}\right|}{\theta}, \frac{\left|\alpha_{2}\right|}{(\theta)^{2}}, \ldots, \frac{\left|\alpha_{2 k}\right|}{(\theta)^{2 k}}\right\}$.
Then $0<\theta<1$ and by the selection of μ, we have

$$
\begin{equation*}
\left|\alpha_{n}\right| \leq \mu(\theta)^{n} \text { for } n=1,2, \ldots, 2 k \tag{1}
\end{equation*}
$$

Consider

$$
\begin{align*}
\alpha_{2 k+1} & =d\left(g x_{2 k+1}, f x_{2 k+2}\right) \\
= & d\left(S\left(x_{1}, x_{2}, \ldots, x_{2 k-1}, x_{2 k}\right), T\left(x_{2}, x_{3}, \ldots, x_{2 k}, x_{2 k+1}\right)\right) \\
& \leq \lambda \max \left\{\begin{array}{l}
d\left(g x_{1}, f x_{2}\right), d\left(f x_{2}, g x_{3}\right), \\
d\left(g x_{3}, f x_{4}\right), d\left(f x_{4}, g x_{5}\right), \\
\ldots \ldots \ldots . ~ \\
d\left(g x_{2 k-1}, f x_{2 k}\right), d\left(f x_{2 k}, g x_{2 k+1}\right)
\end{array}\right\} \\
& =\lambda \max \left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \ldots, \alpha_{2 k-1}, \alpha_{2 k}\right\} . \\
\left|\alpha_{2 k+1}\right| & \leq \lambda \max \left\{\mu \theta, \mu(\theta)^{2}, \ldots, \mu(\theta)^{2 k}\right\}, \text { from(1) } \\
& =\lambda \mu \theta=\mu \theta(\theta)^{2 k}=\mu(\theta)^{2 k+1} \tag{2}
\end{align*}
$$

Also
$\alpha_{2 k+2}=d\left(f x_{2 k+2}, g x_{2 k+3}\right)$
$=d\left(T\left(x_{2}, x_{3}, \ldots, x_{2 k}, x_{2 k+1}\right), S\left(x_{3}, x_{4}, \ldots, x_{2 k+1}, x_{2 k+2}\right)\right)$
$=d\left(S\left(x_{3}, x_{4}, \ldots, x_{2 k+1}, x_{2 k+2}\right), T\left(x_{2}, x_{3}, \ldots, x_{2 k}, x_{2 k+1}\right)\right)$

$=\lambda \max \left\{\alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5} \ldots, \alpha_{2 k}, \alpha_{2 k+1}\right\}$.
$\left|\alpha_{2 k+2}\right| \leq \lambda \max \left\{\mu(\theta)^{2}, \mu(\theta)^{3}, \ldots, \mu(\theta)^{2 k+1}\right\}$, from (1)

$$
\begin{equation*}
=\lambda \mu(\theta)^{2}=\mu(\theta)^{2}(\theta)^{2 k}=\mu(\theta)^{2 k+2} \tag{3}
\end{equation*}
$$

Continuing in this way, we get $\left|\alpha_{n}\right| \leq \mu(\theta)^{n}$, for $n=1,2, \ldots$.
Consider

$$
\begin{aligned}
& d\left(y_{2 k+2 n-1}, y_{2 k+2 n}\right) \\
& =d\left(S\left(x_{2 n-1}, x_{2 n}, \ldots,, x_{2 k+2 n-2}\right), T\left(x_{2 n}, x_{2 n+1}, \ldots, x_{2 k+2 n-1}\right)\right)
\end{aligned}
$$

$$
\begin{align*}
& =\lambda \max \left\{\alpha_{2 n-1}, \alpha_{2 n}, \ldots ., \alpha_{2 k+2 n-3}, \alpha_{2 k+2 n-2}\right\} . \\
& \left|d\left(y_{2 k+2 n-1}, y_{2 k+2 n}\right)\right| \\
& \leq \lambda \max \left\{\mu(\theta)^{2 n-1}, \mu(\theta)^{2 n}, \ldots, \mu(\theta)^{2 k+2 n-3}, \mu(\theta)^{2 k+2 n-2}\right\} \\
& =\lambda \mu(\theta)^{2 n-1}=\mu(\theta)^{2 k}(\theta)^{2 n-1}=\mu(\theta)^{2 k+2 n-1} \tag{5}\\
& \text { Also } \\
& d\left(y_{2 k+2 n}, y_{2 k+2 n+1}\right) \\
& =d\left(T\left(x_{2 n}, x_{2 n+1}, \ldots, x_{2 k+2 n-1}\right), S\left(x_{2 n+1}, x_{2 n+2}, \ldots, x_{2 k+2 n}\right)\right) \\
& =d\left(S\left(x_{2 n+1}, x_{2 n+2}, \ldots, x_{2 k+2 n}\right), T\left(x_{2 n}, x_{2 n+1}, \ldots, x_{2 k+2 n-1}\right)\right) \\
& \lesssim \lambda \max \left\{\begin{array}{l}
d\left(g x_{2 n+1}, f x_{2 n}\right), d\left(f x_{2 n+2}, g x_{2 n+1}\right), \\
d\left(g x_{2 n+3}, f x_{2 n+2}\right), d\left(f x_{2 n+4}, g x_{2 n+3}\right), \\
\left.\ldots \ldots x_{2 k+2 n}, g x_{2 k+2 n-1}\right)
\end{array}\right\} \\
& =\lambda \max \left\{\alpha_{2 n}, \alpha_{2 n+1}, \alpha_{2 n+2}, \alpha_{2 n+3} \ldots, \alpha_{2 k+2 n-1}\right\} . \\
& \left|d\left(y_{2 k+2 n}, y_{2 k+2 n}\right)\right| \\
& \leq \lambda \max \left\{\mu(\theta)^{2 n}, \mu(\theta)^{2 n+1}, \ldots, \mu(\theta)^{2 k+2 n-2}, \mu(\theta)^{2 k+2 n-1}\right\} \\
& =\lambda \mu(\theta)^{2 n}=\mu(\theta)^{2 k}(\theta)^{2 n}=\mu(\theta)^{2 k+2 n} \tag{6}
\end{align*}
$$

From (5),(6), we have $\left|d\left(y_{2 k+n}, y_{2 k+n+1}\right)\right| \leq \mu(\theta)^{2 k+n}$,for $n=1,2,3, \ldots \ldots$. (7)
Now, using(7),for $m>n$ consider

$$
\begin{aligned}
\left|d\left(y_{2 k+n}, y_{2 k+m}\right)\right| & \leq\left(\begin{array}{l}
s\left|d\left(y_{2 k+n}, y_{2 k+n+1}\right)\right|+s^{2}\left|d\left(y_{2 k+n+1}, y_{2 k+n+2}\right)\right| \\
+s^{3}\left|d\left(y_{2 k+n+2}, y_{2 k+n+3}\right)\right|+\ldots+ \\
s^{m-n-1}\left|d\left(y_{2 k+m-1}, y_{2 k+m}\right)\right|
\end{array}\right) \\
& \leq\binom{ s \mu(\theta)^{2 k+n}+s^{2} \mu(\theta)^{2 k+n+1}+s^{3} \mu(\theta)^{2 k+n+2}}{+\ldots+s^{m-n-1} \mu(\theta)^{2 k+m-1}} \\
& \leq \mu\left[\begin{array}{l}
(s \theta)^{2 k+n}+(s \theta)^{2 k+n+1}+(s \theta)^{2 k+n+2} \\
+\ldots+(s \theta)^{2 k+m-1}
\end{array}\right], \text { since } s \geq 1
\end{aligned}
$$

$$
\begin{aligned}
& \leq \mu(s \theta)^{2 k}\left[\frac{(s \theta)^{n}}{1-s \theta}\right] \text { since } s \theta=s \lambda^{\frac{1}{2 k}}<s \cdot \frac{1}{s}=1 \\
& \rightarrow 0 \text { as } n \rightarrow \infty, m \rightarrow \infty
\end{aligned}
$$

Hence $\left\{y_{2 k+n}\right\}$ is a Cauchy sequence in (X, d).
Since X is complete,there exists $z \in X$ such that $y_{2 k+n} \rightarrow z$ as $n \rightarrow \infty$.
From(2.1.4), there exists $u \in X$ such that $z=f u=g u$.
Now consider
$\left|d\left(S(u, u, \ldots, u), y_{2 k+2 n}\right)\right|$.
$=\left|d\left(S(u, u, \ldots, u), T\left(x_{2 n}, x_{2 n+1}, \ldots, x_{2 n+2 k-1}\right)\right)\right|$
$\leq \lambda \max \left\{\begin{array}{l}\left|d\left(g u, f x_{2 n}\right)\right|,\left|d\left(f u, g x_{2 n+1}\right)\right|, \\ \left.\ldots \ldots \ldots, \ldots \ldots x_{2 k+2 n-2}\right)\left|,\left|d\left(f u, g x_{2 k+2 n-1}\right)\right|\right.\end{array}\right\}$
Letting $n \rightarrow \infty$ and using (8),Lemma 1.10(i), we get
$\frac{1}{s}|d(S(u, u, \ldots, u), f u)| \leq 0$ so that $S(u, u, \ldots, u)=f u$
Similarly we have $T(u, u, \ldots, u)=g u$
Since (f, S) and (g, T) are jointly $2 k$-weakly compatible pairs and from (9),(10), we have

$$
\begin{align*}
& f z=f(f u)=f(S(u, u, \ldots, u))=S(f u, f u, \ldots, f u)=S(z, z, \ldots, z) \tag{11}\\
& \text { and } \quad g z=T(z, z, \ldots, z, z)
\end{align*}
$$

Now using (10), (11), we get

$$
\begin{align*}
d(f z, z) & =d(f z, g u) \\
& =d(S(z, z, \ldots, z, z), T(u, u, \ldots, u, u)) \\
& \geqq \lambda \max \left\{\begin{array}{l}
d(g z, f u), d(f z, g u), \\
d(g z, f u), d(f z, g u), \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \ldots \ldots, \ldots, \ldots \\
d(g z, f u), d(f z, g u)
\end{array}\right\} \\
& =\lambda \max \{d(g z, z), d(f z, z)\} . \tag{13}
\end{align*}
$$

Thus $d(f z, z) \precsim \lambda \max \{d(g z, z), d(f z, z)\}$
Similarly, we have $d(g z, z) \precsim \lambda \max \{d(g z, z), d(f z, z)\}$
From (13)and (14), we have

$$
\begin{equation*}
\max \{|d(g z, z)|,|d(f z, z)|\} \leq \lambda \max \{|d(g z, z)|,|d(f z, z)|\} \tag{15}
\end{equation*}
$$

which in turn yields that $f z=z=g z$
From (11),(12)and (15), we have $f z=z=g z=S(z, z, \ldots, z, z)=T(z, z, \ldots, z, z)$
Suppose that there exists $z^{\prime} \in X$ such that

$$
z^{\prime}=f z^{\prime}=g z^{\prime}=S\left(z^{\prime}, z^{\prime}, \ldots, z^{\prime}, z^{\prime}\right)=T\left(z^{\prime}, z^{\prime}, \ldots, z^{\prime}, z^{\prime}\right)
$$

Then from (2.1.2), we have

$$
\left|d\left(z, z^{\prime}\right)\right|=\left|d\left(S(z, z, \ldots, z, z), T\left(z^{\prime}, z^{\prime}, \ldots, z^{\prime}, z^{\prime}\right)\right)\right|
$$

$$
\left.\begin{array}{l}
\leq \lambda \max \left\{\begin{array}{l}
\left|d\left(g z, f z^{\prime}\right)\right|,\left|d\left(f z, g z^{\prime}\right)\right| \\
\ldots
\end{array}\right. \\
\left|d\left(g z, f z^{\prime}\right)\right|,\left|d\left(f z, g z^{\prime}\right)\right|
\end{array}\right\}
$$

This implies that $z^{\prime}=z$.
Thus z is the unique point in X satisfying (16).
Now we give an example to illustrate our main Theorem 2.1.
Example 2.2. Let $X=[0,1]$ and $d(x, y)=i|x-y|^{2}$ and $k=1$.
Define $S(x, y)=\frac{3 x^{2}+2 y}{\sqrt{4608}}, T(x, y)=\frac{2 x+3 y^{2}}{\sqrt{4608}}, f x=\frac{x}{6}$ and $g x=\frac{x^{2}}{4}$
for all $x, y \in X$. Then clearly $s=2$. Then for all $x_{1}, x_{2}, y_{1}, y_{2} \in X$, we have

$$
\begin{aligned}
d\left(S\left(x_{1}, x_{2}\right), T\left(y_{1}, y_{2}\right)\right) & =i\left|\frac{3 x_{1}^{2}+2 x_{2}}{\sqrt{4608}}-\frac{2 y_{1}+3 y_{2}^{2}}{\sqrt{4608}}\right|^{2} \\
& =i \frac{1}{4608}\left|\left(3 x_{1}^{2}-2 y_{1}\right)+\left(2 x_{2}-3 y_{2}^{2}\right)\right|^{2} \\
& \precsim i \frac{1}{4608}\left(\left|3 x_{1}^{2}-2 y_{1}\right|+\left|2 x_{2}-3 y_{2}^{2}\right|\right)^{2} \\
& \precsim i \frac{1}{2304}\left(\left|3 x_{1}^{2}-2 y_{1}\right|^{2}+\left|2 x_{2}-3 y_{2}^{2}\right|^{2}\right) \\
& =i \frac{1}{16}\left(\left|\frac{x_{1}^{2}}{4}-\frac{y_{1}}{6}\right|^{2}+\left|\frac{x_{2}}{6}-\frac{y_{2}^{2}}{4}\right|^{2}\right) \\
& \precsim i \frac{1}{8} \max \left\{\left|\frac{x_{1}^{2}}{4}-\frac{y_{1}}{6}\right|^{2},\left|\frac{x_{2}}{6}-\frac{y_{2}^{2}}{4}\right|^{2}\right\} \\
& =\frac{1}{8} \max \left\{d\left(g x_{1}, f y_{1}\right), d\left(f x_{2}, g y_{2}\right)\right\}
\end{aligned}
$$

Here $\lambda=\frac{1}{8} \in\left(0, \frac{1}{4}\right)=\left(0, \frac{1}{2^{2}}\right)=\left(0, \frac{1}{s^{2 k}}\right)$.
Thus (2.1.2) is satisfied.
One can easily verify the remaining conditions of Theorem 2.1 .
Clearly 0 is the unique point in X such that $\mathrm{f} 0=0=\mathrm{g} 0=\mathrm{S}(0,0, \ldots, 0,0)=\mathrm{T}(0,0, \ldots, 0,0)$.
Corollary 2.3. Let (X, d) be a complex valued b-metric space with $s \geq 1$ and k be any positive integer. Let
$S, T: X^{2 k} \rightarrow X$ and $f: X \rightarrow X$ be mappings satisfying
(2.3.1) $S\left(X^{2 k}\right) \subseteq f(X), T\left(X^{2 k}\right) \subseteq f(X)$,
(2.3.2) $d\left(S\left(x_{1}, x_{2}, \ldots, x_{2 k}\right), T\left(y_{1}, y_{2}, \ldots, y_{2 k}\right)\right) \leq \lambda \max \left\{d\left(f x_{i}, f y_{i}\right): 1 \leq i \leq 2 k\right\}$

$$
\forall x_{1}, x_{2}, \ldots, x_{2 k}, y_{1}, y_{2}, . ., y_{2 k} \in X, \text { where } \lambda \in\left(0, \frac{1}{s^{2 k}}\right)
$$

(2.3.3) $f(X)$ is a complete sub space of X,
(2.3.4) (f, S) or (f, T) is a $2 k$-weakly compatible pair.

Then there exists a unique point $u \in X$ such that $u=f u=S(u, u, . ., u, u)=T(u, u, . ., u, u)$.
Corollary 2.4. Let (X, d) be a complex valued b-metric space with $s \geq 1$ and k be any positive integer.
Let $S: X^{k} \rightarrow X$ and $f: X \rightarrow X$ be mappings satisfying
(2.4.1) $S\left(X^{k}\right) \subseteq f(X)$,
(2.4.2) $d\left(S\left(x_{1}, x_{2}, \ldots, x_{k}\right), S\left(y_{1}, y_{2}, \ldots, y_{k}\right)\right) \leq \lambda \max \left\{d\left(f x_{i}, f y_{i}\right): 1 \leq i \leq k\right\}$
$\forall x_{1}, x_{2}, \ldots, x_{k}, y_{1}, y_{2}, . ., y_{k} \in X$, where $\lambda \in\left(0, \frac{1}{s^{k}}\right)$,
(2.4.3) $f(X)$ is a complete sub space of X,
(2.4.4) (f, S) is a k-weakly compatible pair.

Then there exists a unique point $u \in X$ such that $u=f u=S(u, u, . ., u, u)$.
Corollary 2.5. Let (X, d) be a complete complex valued b-metric space with $s \geq 1$ and k be any positive integer. Let $S, T: X^{2 k} \rightarrow X$ be mappings satisfying
(2.5.1) $d\left(S\left(x_{1}, x_{2}, \ldots, x_{2 k}\right), T\left(y_{1}, y_{2}, \ldots, y_{2 k}\right)\right) \leq \lambda \max \left\{d\left(x_{i}, y_{i}\right): 1 \leq i \leq 2 k\right\}$

$$
\forall x_{1}, x_{2}, \ldots, x_{2 k}, y_{1}, y_{2}, . ., y_{2 k} \in X, \text { where } \lambda \in\left(0, \frac{1}{s^{2 k}}\right) .
$$

Then there exists a unique point $u \in X$ such that $u=S(u, u, . ., u, u)=T(u, u, \ldots, u, u)$.

References

[1]. S.B.Presic, Sur une classe d^{\prime} inequations aux differences finite et sur la convergence de certaines suites, Pub de l^{1} inst. Math. Belgrade, 5(19), (1965), 75-78.
[2]. Lj.B.Ciric and S.B. Presic, On Presic type generalization of Banach contraction mapping principle, Acta. Math. Univ. Comenianae, LXXVI (2), (2007), 143-147.
[3]. K.P.R.Rao, G.N.V.Kishore and Md.Mustaq Ali, Generalization of Banach contraction principle of Presic type for three maps, Math.Sci. 3(3), (2009), 273-280.
[4]. K.P.R.Rao, Md.Mustaq Ali and B.Fisher, Some Presic type generalization of Banach contraction principle, Math.Moravica 15(2011), 41-47.
[5]. A.Azam, B.Fisher and M.Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim. 32(3),(2011),243-253.
[6]. C.Klin-eam and C.Suanoom, Some common fixed point theorems for generralized contractive type mappings on complex valued metric spaces, Abstr.Appl.Anal.,2013,6 pages, Article ID 604215, doi.10.1155/2013/604215.
[7]. F. Rouzkard and M. Imdad, Some common fixed point theorems on complex valued metric spaces, Comp. Math.Appls., 64,(2012), 1866-1874.
[8]. H. K. Nashine, M. Imdad and M. Hasan, Common fixed point theorems under rational contractions in complex valued metric spaces,J. Nonlinear Sci. Appl., 7,(2014), 42-50.
[9]. K.Sitthikul and S.Saejung, Some fixed points in complex valued metric spaces, Fixed point theory Appl.,2012,11 pages,Article ID 189
[10]. M.A.Kutbi, A.Azam, J.Ahmad, and C.Di Bari, Some common fixed point results for generalized contraction in complex valued metric spaces, J.Appl.Math.,2013,10 pages,ArticleID 35297.
[11]. M.Kumar,P. Kumar and S. Kumar,Common fixed point theorems in complex valued metric spaces,J. Ana. Num. Theor. 2(2),(2014), 103-109 .
[12]. N.Singh, D.Singh, A.Badal and V.Joshi,Fixed point theorems in complex valued metric spaces, Journal of the Egyptian Mathematical Society, (2015),1-8 .
[13]. R.K.Verma and H.K.Pathak,Common fixed point theorems for a pair of mappings in complex valued metric spaces,Journal of mathematics and computer Science, 6 (2013), 18-26.
[14]. W.Sintunavarat and P.Kumam, Generalized common fixed point theorems in complex valued metric spaces and applications, J.Inequal.appl.,2012, 11 pages, Article ID 84.
[15]. K.P.R.Rao, P.Ranga Swamy and J.Rajendra Prasad,A common fixed point theorem in complex valued b-metric spaces, Bulletin of Mathematics and Statistics Research,1(1),(2013),1-8.

