Presic Type Common Fixed Point Theorem for Four Maps in Complex Valued *b*-Metric Spaces

K.P.R.Rao¹, E.Taraka Ramudu²

¹Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar -522 510, A.P., India. ²Department of Science and Humanities, Nova College of Engineering and Technology, Jupudi -521 456, Krishna Dt., Andhra Pradesh, India.

Abstract: In this paper, we obtain a Presic type fixed point theorem for two pairs of jointly 2k-weakly compatible maps in complex valued b-metric spaces. We also give an example to illustrate our main theorem. **Keywords:** b-metric spaces, Jointly 2k-weakly compatible pairs, Presic type theorem.

I. Introduction and Preliminaries

There are several generalizations of the Banach contraction principle in literature on fixed point theory. Presic [1] generalized the Banach contraction principle as follows. Throughout this paper N and C denote the set of all positive integers and complex numbers respectively.

Theorem 1.1.([1]) Let (X, d) be a complete metric space, k be a positive integer and $T: X^k \to X$ be a mapping satisfying

(1.1.1)
$$d(T(x_1, x_2, \dots, x_k), T(x_2, x_3, \dots, x_{k+1})) \le \sum_{i=1}^{k} q_i d(x_i, x_{i+1})$$

for all $x_1, x_2, \dots, x_k, x_{k+1} \in X$, where $q_i \ge 0$ and $\sum_{i=1}^{k} q_i < 1$. Then there exists a unique point $x \in X$ such

that T(x, x, ..., x) = x. Moreover, if x_1, x_2, \dots, x_{k+1} are arbitrary points in X and for $n \in \mathbb{N}$,

 $x_{n+k} = T(x_n, x_{n+1}, \dots, x_{n+k-1})$, then the sequence $\{x_n\}$ is convergent

and $\lim x_n = T(\lim x_n, \lim x_n, \dots, \lim x_n)$.

Inspired by the Theorem 1.1, Ciric and Presic [2] proved following theorem.

Theorem 1.2. ([2]) Let (X,d) be a complete metric space, k a positive integer and $T: X^k \to X$ be a mapping satisfying

$$d(T(x_1, x_2, \dots, x_k), T(x_2, x_3, \dots, x_{k+1})) \le \lambda \max\{d(x_i, x_{i+1}): 1 \le i \le k\}$$

for all $x_1, x_2, \dots, x_k, x_{k+1}$ in X, where $\lambda \in [0,1)$. Then there exists a point $x \in X$ such that $x = T(x, x, \dots, x)$. Moreover, if x_1, x_2, \dots, x_{k+1} are arbitrary points in X and for $n \in \mathbb{N}$, $x_{n+k} = T(x_n, x_{n+1}, \dots, x_{n+k-1})$, then the sequence $\{x_n\}$ is convergent and $\lim_{n \to \infty} x_n = T(\lim_{n \to \infty} x_n, \lim_{n \to \infty} x_n, \dots, \lim_{n \to \infty} x_n)$. If in addition, we suppose that on diagonal $\Delta \subset X^k$, $d(T(u, u, \dots, u), T(v, v, \dots, v)) < d(u, v)$ holds for $u, v \in X$ with $u \neq v$, then x is the unique fixed point satisfying $x = T(x, x, \dots, x)$.

Recently Rao et al.[3,4] obtained some Presic type theorems for two and three maps in metric spaces. Now we give the following definition of [3,4].

Definition 1.3. Let X be a non empty set and $T: X^{2k} \to X$ and $f: X \to X$. The pair (f,T) is said to be 2k-weakly compatible if f(T(x, x, ..., x)) = T(fx, fx, ..., fx) whenever $x \in X$ such that fx = T(x, x, ..., x).

Using this definition, Rao et al. [3] proved the following

Theorem 1.4 .([3]) Let (X,d) be a metric space, k a positive integer and $S,T: X^{2k} \to X$, $f: X \to X$ be mappings satisfying

$$(1.4.1) \ d(S(x_1, x_2, \dots, x_{2k}), T(x_2, x_3, \dots, x_{2k+1})) \le \lambda \max\{d(fx_i, fx_{i+1}): 1 \le i \le 2k\}$$

for all $x_1, x_2, \dots, x_{2k}, x_{2k+1}$ in X ,

 $(1.4.2) \ d(T(y_1, y_2, \dots, y_{2k}), S(y_2, y_3, \dots, y_{2k+1})) \le \lambda \max\{d(fy_i, fy_{i+1}): 1 \le i \le 2k\}$

for all
$$y_1, y_2, \dots, y_{2k}, y_{2k+1}$$
 in X, where $0 < \lambda < 1$,

- (1.4.3) $d(S(u,\dots,u),T(v,\dots,v)) < d(fu,fv)$, for all $u, v \in X$ with $u \neq v$.
- (1.4.4) Suppose that f(X) is complete and either (f,S) or (f,T) is a 2k weakly compatible pair.

Then there exists a unique point $p \in X$ such that $fp = p = S(p, \dots, p) = T(p, \dots, p)$.

Azam et al.[5] introduced the concept of complex valued metric spaces and obtained sufficient conditions for the existence of common fixed points of a pair of mappings satisfying a contractive condition. Later several authors for example, refer [6-14] proved fixed and common fixed point theorems in the setting of complex valued metric spaces.

In this paper, we obtain a common fixed point theorem of Presic type for four mappings in complex valued b-metric spaces.We present one example to illustrate our main theorem. We also obtain some corollaries. To begin with, we recall some basic definitions, notations and results.

Let $z_1, z_2 \in \mathbf{C}$. Define a partial order \leq on \mathbf{C} follows:

$$z_1 \leq z_2$$
 if and only if $Re(z_1) \leq Re(z_2)$, $Im(z_1) \leq Im(z_2)$.

Thus $z_1 \preceq z_2$ if one of the following holds:

- (1) $Re(z_1) = Re(z_2)$ and $Im(z_1) = Im(z_2)$,
- (2) $Re(z_1) < Re(z_2)$ and $Im(z_1) = Im(z_2)$,
- (3) $Re(z_1) = Re(z_2)$ and $Im(z_1) < Im(z_2)$,

(4) $Re(z_1) < Re(z_2)$ and $Im(z_1) < Im(z_2)$.

Clearly $z_1 \preceq z_2 \Longrightarrow |z_1| \le |z_2|$.

We will write $z_1 \leq z_2$ if $z_1 \neq z_2$ and one of (2), (3) and (4) is satisfied. Also we will write $z_1 \prec z_2$ if only (4) is satisfied.

Definition 1.5. ([5]) Let X be a non empty set. A function $d: X \times X \to C$ is called a complex valued metric on X if for all $x, y, z \in X$ the following conditions are satisfied:

(i) $0 \leq d(x, y)$ and d(x, y) = 0 if and only if x = y;

(ii)
$$d(x, y) = d(y, x)$$
;

(iii) $d(x, y) \preceq d(x, z) + d(z, y)$.

The pair (X, d) is called a complex valued metric space.

Now, we briefly recall the definitions and lemmas about complex valued b-metric spaces introduced by Rao et al.[15].

Definition 1.6.([15]) Let X be a non empty set and $s \ge 1$. A function $d: X \times X \to \mathbb{C}$ is called a complex valued b - metric on X if for all $x, y, z \in X$ the following conditions are satisfied:

(i) $0 \leq d(x, y)$ and d(x, y) = 0 if and only if x = y;

- (ii) d(x, y) = d(y, x);
- (iii) $d(x, y) \preceq s[d(x, z) + d(z, y)]$.
- The pair (X,d) is called a complex valued b metric space.

Note. If $z_1 = a + ib$ and $z_2 = \alpha + i\beta$ then we define $\max\{z_1, z_2\} = \max\{a, \alpha\} + i \max\{b, \beta\}$. Definition 1.7.([15]) Let (X, d) be a complex valued b -metric space.

- 1. A point $x \in X$ is called interior point of a set $A \subseteq X$ whenever there exists $0 \prec r \in \mathbb{C}$ such that $B(x,r) = \{y \in X : d(x, y) \prec r\} \subseteq A$.
- 2. A point $x \in X$ is called a limit point of a set $A \subseteq X$ whenever there exists $0 \prec r \in \mathbb{C}$ such that $B(x,r) \cap (X-A) \neq \phi$.
- 3. A subset $B \subseteq X$ is called open whenever each point of B is an interior point of B.
- 4. A subset $B \subseteq X$ is called closed whenever each limit point of B is in B.
- 5. The family $F = \{B(x, r) : x \in X \text{ and } 0 \prec r\}$ is a sub basis for a topology on X. We denote this complex topology by τ_c . Indeed, the topology τ_c is Hausdorff.

Let $\{x_n\}$ be a sequence in X and $x \in X$. If for every $c \in \mathbb{C}$ with $0 \leq c$ there is $n_0 \in \mathbb{N}$ such that for all $n > n_0$, $d(x_n, x) \prec c$, then $\{x_n\}$ is said to be convergent to x and x is the limit point of $\{x_n\}$. We denote this by $\lim_{n \to \infty} x_n = x$ or $x_n \to x$ as $n \to \infty$. If for every $c \in \mathbb{C}$ with $0 \prec c$ there is $n_0 \in \mathbb{N}$ such that for all $n > n_0$, $d(x_n, x_{n+m}) \prec c$, where $m \in \mathbb{N}$, then $\{x_n\}$ is called a Cauchy sequence in (X, d). If every Cauchy sequence is convergent in (X, d) then (X, d) is called a complete complex valued b-metric space. We require the following lemmas.

- **Lemma 1.8.**([15]) Let (X,d) be a complex valued *b*-metric space and let $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ converges to x if and only if $|d(x_n, x)| \to 0$ as $n \to \infty$.
- **Lemma 1.9.**([15]) Let (X,d) be a complex valued b-metric space and let $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ is a Cauchy sequence if and only if $|d(x_n, x_{n+m})| \to 0$ as $n, m \to \infty$. One can easily prove the following lemma
- **Lemma 1.10.** Let (X, d) be a complex valued b -metric space and let $\{x_n\}$ and $\{y_n\}$ be sequences in X converging to x and y respectively. Then
- (i) $\frac{1}{s} |d(x,z)| \le \lim_{n \to \infty} |d(x_n,z)| \le s |d(x,z)|$ for all $z \in X$,
- (ii) $\frac{1}{s^2} |d(x, y)| \le \lim_{n \to \infty} |d(x_n, y_n)| \le s^2 |d(x, y)|.$

Before proving our main theorem we give the following new definition.

Definition 1.11. Let X be a nonempty set, k a positive integer and $S,T: X^{2k} \to X$ and $f,g: X \to X$. The pairs (f,S) and (g,T) are said to be jointly 2k-weakly compatible if f(S(x,x,...,x)) = S(fx, fx,...,fx) and g(T(x,x,...,x)) = T(gx, gx,...,gx) whenever there exists $x \in X$ such that fx = S(x, x,...,x) and gx = T(x, x,...,x). Now we give our main theorem.

II. Main Result

Theorem 2.1. Let (X,d) be a complete complex valued b-metric space with $s \ge 1$ and k be any positive integer. Let $S,T: X^{2k} \to X$ and $f,g: X \to X$ be mappings satisfying (2.1.1) $S(X^{2k}) \subseteq g(X), T(X^{2k}) \subseteq f(X)$,

$$(2.1.2) \ d(S(x_1, x_2, ..., x_{2k}), T(y_1, y_2, ..., y_{2k})) \ \lesssim \ \lambda \max \begin{cases} d(gx_1, fy_1), d(fx_2, gy_2), \\ d(gx_3, fy_3), d(fx_4, gy_4), \\ ..., \\ d(gx_{2k-1}, fy_{2k-1}), d(fx_{2k}, gy_{2k}) \end{cases}$$

$$\forall x_1, x_2, ..., x_{2k}, y_1, y_2, ..., y_{2k} \in X, where \ \lambda \in (0, \frac{1}{s^{2k}}).$$

(2.1.3) (f, S) and (g, T) are jointly 2k-weakly compatible pairs,

(2.1.4) Suppose z = fu = gu for some $u \in X$ whenever there exists a sequence $\{y_{2k+n}\}_{n=1}^{\infty}$ in X such that $\lim_{n \to \infty} y_{2k+n} = z \in X$.

Then z is the unique point in X such that z = fz = gz = S(z, z, ..., z, z) = T(z, z, ..., z, z).

Proof. Suppose $x_1, x_2, ..., x_{2k}$ are arbitrary points in X , From (2.1.1), define

$$y_{2k+2n-1} = S(x_{2n-1}, x_{2n}, ..., x_{2k+2n-2}) = gx_{2k+2n-1},$$

$$y_{2k+2n} = T(x_{2n}, x_{2n+1}, ..., x_{2k+2n-1}) = fx_{2k+2n}, \text{ for } n = 1, 2, ...$$

Let $\alpha_{2n} = d(fx_{2n}, gx_{2n+1})$ and $\alpha_{2n-1} = d(gx_{2n-1}, fx_{2n}), \text{ for } n = 1, 2, ...$
Write $\theta = \lambda^{\frac{1}{2k}}$ and $\mu = \max\{\frac{|\alpha_1|}{\theta}, \frac{|\alpha_2|}{(\theta)^2}, ..., \frac{|\alpha_{2k}|}{(\theta)^{2k}}\}.$

Then $0 < \theta < 1$ and by the selection of μ , we have

$$\left|\alpha_{n}\right| \leq \mu\left(\theta\right)^{n}$$
 for $n = 1, 2, ..., 2k$ (1)

Consider

$$\alpha_{2k+1} = d(gx_{2k+1}, fx_{2k+2})$$

= $d(S(x_1, x_2, ..., x_{2k-1}, x_{2k}), T(x_2, x_3, ..., x_{2k}, x_{2k+1}))$

$$\approx \lambda \max \begin{cases} d(gx_1, fx_2), d(fx_2, gx_3), \\ d(gx_3, fx_4), d(fx_4, gx_5), \\ \dots \\ d(gx_{2k-1}, fx_{2k}), d(fx_{2k}, gx_{2k+1}) \end{cases} \\ = \lambda \max \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \dots, \alpha_{2k-1}, \alpha_{2k}\}. \end{cases}$$

$$|\alpha_{2k+1}| \le \lambda \max\{\mu\theta, \mu(\theta)^2, ..., \mu(\theta)^{2k}\}, from(1)$$
$$= \lambda \mu \theta = \mu \theta(\theta)^{2k} = \mu(\theta)^{2k+1}$$
(2)

Also

$$\begin{aligned} \alpha_{2k+2} &= d(fx_{2k+2}, gx_{2k+3}) \\ &= d(T(x_2, x_3, \dots, x_{2k}, x_{2k+1}), S(x_3, x_4, \dots, x_{2k+1}, x_{2k+2})) \\ &= d(S(x_3, x_4, \dots, x_{2k+1}, x_{2k+2}), T(x_2, x_3, \dots, x_{2k}, x_{2k+1})) \\ &\leq \lambda \max \begin{cases} d(gx_3, fx_2), d(fx_4, gx_3), \\ d(gx_5, fx_4), d(fx_6, gx_5), \\ \dots \\ d(gx_{2k+1}, fx_{2k}), d(fx_{2k+2}, gx_{2k+1}) \end{cases} \\ &= \lambda \max \{\alpha_2, \alpha_3, \alpha_4, \alpha_5, \dots, \alpha_{2k}, \alpha_{2k+1}\}. \\ &|\alpha_{2k+2}| \leq \lambda \max \{\mu(\theta)^2, \mu(\theta)^3, \dots, \mu(\theta)^{2k+1}\}, from(1) \\ &= \lambda \mu(\theta)^2 = \mu(\theta)^2(\theta)^{2k} = \mu(\theta)^{2k+2} \end{aligned}$$
(3)

Continuing in this way, we get $|\alpha_n| \le \mu(\theta)^n$, for n = 1, 2, ...(4) Consider $d(y_{2k+2n-1}, y_{2k+2n})$ $= d(S(x_{2n-1}, x_{2n}, \dots, x_{2k+2n-2}), T(x_{2n}, x_{2n+1}, \dots, x_{2k+2n-1}))$ $d(gx_{2n-1}, fx_{2n}), d(fx_{2n}, gx_{2n+1}),$ $\lesssim \lambda \max \begin{cases} d(gx_{2n+1}, fx_{2n+2}), d(fx_{2n+2}, gx_{2n+3}), \\ \dots \\ d(gx_{2k+2n-3}, fx_{2k+2n-2}), d(fx_{2k+2n-2}, gx_{2k+2n-1}) \end{cases}$ $= \lambda \max\{\alpha_{2n-1}, \alpha_{2n}, \dots, \alpha_{2k+2n-3}, \alpha_{2k+2n-2}\}.$ $d(y_{2k+2n-1}, y_{2k+2n})$ $\leq \lambda \max{\{\mu(\theta)^{2n-1}, \mu(\theta)^{2n}, ..., \mu(\theta)^{2k+2n-3}, \mu(\theta)^{2k+2n-2}\}}$ $=\lambda\mu(\theta)^{2n-1}=\mu(\theta)^{2k}(\theta)^{2n-1}=\mu(\theta)^{2k+2n-1}$ (5) Also $d(y_{2k+2n}, y_{2k+2n+1})$ $= d(T(x_{2n}, x_{2n+1}, \dots, x_{2k+2n-1}), S(x_{2n+1}, x_{2n+2}, \dots, x_{2k+2n}))$ $= d(S(x_{2n+1}, x_{2n+2}, \dots, x_{2k+2n}), T(x_{2n}, x_{2n+1}, \dots, x_{2k+2n-1}))$ $d(gx_{2n+1}, fx_{2n}), d(fx_{2n+2}, gx_{2n+1}),$ $\leq \lambda \max \begin{cases} d(gx_{2n+3}, fx_{2n+2}), d(fx_{2n+4}, gx_{2n+3}), \\ \dots \\ d(gx_{2k+2n-1}, fx_{2k+2n-2}), d(fx_{2k+2n}, gx_{2k+2n-1}) \end{cases}$ $= \lambda \max\{\alpha_{2n}, \alpha_{2n+1}, \alpha_{2n+2}, \alpha_{2n+3}, \dots, \alpha_{2k+2n-1}\}.$ $d(y_{2k+2n}, y_{2k+2n})$ $\leq \lambda \max{\{\mu(\theta)^{2n}, \mu(\theta)^{2n+1}, ..., \mu(\theta)^{2k+2n-2}, \mu(\theta)^{2k+2n-1}\}}$ $=\lambda\mu(\theta)^{2n}=\mu(\theta)^{2k}(\theta)^{2n}=\mu(\theta)^{2k+2n}$ (6)From (5),(6), we have $|d(y_{2k+n}, y_{2k+n+1})| \le \mu(\theta)^{2k+n}$, for n = 1, 2, 3, ... (7) Now, using(7), for m > n consider $|d(y_{2k+n}, y_{2k+m})| \le \begin{pmatrix} s | d(y_{2k+n}, y_{2k+n+1})| + s^2 | d(y_{2k+n+1}, y_{2k+n+2})| \\ + s^3 | d(y_{2k+n+2}, y_{2k+n+3})| + \dots + \\ s^{m-n-1} | d(y_{2k+m-1}, y_{2k+m})| \end{pmatrix}$ $\leq \left(s \ \mu(\theta)^{2k+n} + s^2 \ \mu(\theta)^{2k+n+1} + s^3 \ \mu(\theta)^{2k+n+2} \\ + \dots + s^{m-n-1} \mu(\theta)^{2k+m-1} \right)$

$$\leq \mu(s\theta)^{2k} \left[\frac{(s\theta)^n}{1-s\theta} \right] since \ s\theta = s\lambda^{\frac{1}{2k}} < s \cdot \frac{1}{s} = 1$$

 $\rightarrow 0 as n \rightarrow \infty, m \rightarrow \infty$.

Hence $\{y_{2k+n}\}$ is a Cauchy sequence in (X, d). Since X is complete, there exists $z \in X$ such that $y_{2k+n} \to z$ as $n \to \infty$. From(2.1.4), there exists $u \in X$ such that z = fu = gu. (8) Now consider $d(S(u, u, ..., u), y_{2k+2n})$. $= |d(S(u, u, ..., u), T(x_{2n}, x_{2n+1}, ..., x_{2n+2k-1}))|$ $\leq \lambda \max \begin{cases} |d(gu, fx_{2n})|, |d(fu, gx_{2n+1})|, \\ \dots, \\ |d(gu, fx_{2k+2n-2})|, |d(fu, gx_{2k+2n-1})| \end{cases}$ Letting $n \rightarrow \infty$ and using (8), Lemma 1.10(i), we get $\frac{1}{s} |d(S(u, u, ..., u), fu)| \le 0$ so that S(u, u, ..., u) = fu(9) Similarly we have T(u, u, ..., u) = gu(10) Since (f, S) and (g, T) are jointly 2k -weakly compatible pairs and from (9),(10), we have fz = f(fu) = f(S(u, u, ..., u)) = S(fu, fu, ..., fu) = S(z, z, ..., z)....(11) $gz = T(z, z, \dots, z, z)$ and(12) Now using (10), (11), we get d(fz, z) = d(fz, gu)= d(S(z, z, ..., z, z), T(u, u, ..., u, u))[d(gz, fu), d(fz, gu),] $\lesssim \lambda \max \begin{cases} d(gz, fu), d(fz, gu), \\ \dots \end{pmatrix}$ d(gz, fu), d(fz, gu) $= \lambda \max\{d(gz, z), d(fz, z)\}.$ Thus $d(fz, z) \preceq \lambda \max\{d(gz, z), d(fz, z)\}$ (13)Similarly, we have $d(gz, z) \preceq \lambda \max\{d(gz, z), d(fz, z)\}$ (14)From (13)and (14), we have $\max\{|d(gz, z)|, |d(fz, z)|\} \le \lambda \max\{|d(gz, z)|, |d(fz, z)|\}$ which in turn yields that fz = z = gz(15)From (11),(12)and (15), we have fz = z = gz = S(z, z, ..., z, z) = T(z, z, ..., z, z)(16)Suppose that there exists $z' \in X$ such that z' = fz' = gz' = S(z', z', ..., z', z') = T(z', z', ..., z', z')Then from (2.1.2), we have |d(z,z')| = |d(S(z,z,...,z,z),T(z',z',...,z',z'))|

$$\leq \lambda \max \begin{cases} |d(gz, fz')|, |d(fz, gz')|, \\ \dots \\ |d(gz, fz')|, |d(fz, gz')| \end{cases}$$
$$= \lambda |d(z, z')|.$$

This implies that z' = z.

Thus z is the unique point in X satisfying (16).

Now we give an example to illustrate our main Theorem 2.1.

Example 2.2. Let X = [0,1] and $d(x, y) = i |x-y|^2$ and k = 1.

Define
$$S(x, y) = \frac{3x^2 + 2y}{\sqrt{4608}}$$
, $T(x, y) = \frac{2x + 3y^2}{\sqrt{4608}}$, $fx = \frac{x}{6}$ and $gx = \frac{x^2}{4}$

for all $x, y \in X$. Then clearly s = 2. Then for all $x_1, x_2, y_1, y_2 \in X$, we have

$$d(S(x_1, x_2), T(y_1, y_2)) = i \left| \frac{3x_1^2 + 2x_2}{\sqrt{4608}} - \frac{2y_1 + 3y_2^2}{\sqrt{4608}} \right|^2$$

$$= i \frac{1}{4608} \left| (3x_1^2 - 2y_1) + (2x_2 - 3y_2^2) \right|^2$$

$$\lesssim i \frac{1}{4608} (|3x_1^2 - 2y_1| + |2x_2 - 3y_2^2|)^2$$

$$\lesssim i \frac{1}{2304} (|3x_1^2 - 2y_1|^2 + |2x_2 - 3y_2^2|^2)$$

$$= i \frac{1}{16} (|\frac{x_1^2}{4} - \frac{y_1}{6}|^2 + |\frac{x_2}{6} - \frac{y_2^2}{4}|^2)$$

$$\lesssim i \frac{1}{8} \max\{|\frac{x_1^2}{4} - \frac{y_1}{6}|^2, |\frac{x_2}{6} - \frac{y_2^2}{4}|^2\}$$

$$= \frac{1}{8} \max\{d(gx_1, fy_1), d(fx_2, gy_2)\}.$$

Here $\lambda = \frac{1}{8} \in (0, \frac{1}{4}) = (0, \frac{1}{2^2}) = (0, \frac{1}{s^{2k}}).$

Thus (2.1.2) is satisfied.

One can easily verify the remaining conditions of Theorem 2.1.

Clearly 0 is the unique point in X such that f 0 = 0 = g0 = S(0, 0, ..., 0, 0) = T(0, 0, ..., 0, 0).

Corollary 2.3. Let (X, d) be a complex valued b -metric space with $s \ge 1$ and k be any positive integer. Let

$$\begin{split} S,T: X^{2k} \to X \text{ and } f: X \to X \text{ be mappings satisfying} \\ (2.3.1) \ S(X^{2k}) &\subseteq f(X), T(X^{2k}) \subseteq f(X), \\ (2.3.2) \ d(S(x_1, x_2, ..., x_{2k}), T(y_1, y_2, ..., y_{2k})) \leq \lambda \max\{d(fx_i, fy_i): 1 \leq i \leq 2k\} \\ \forall x_1, x_2, ..., x_{2k}, y_1, y_2, ..., y_{2k} \in X, where \ \lambda \in (0, \frac{1}{s^{2k}}), \end{split}$$

(2.3.3) f(X) is a complete sub space of X,

(2.3.4) (f, S) or (f, T) is a 2k-weakly compatible pair.

Then there exists a unique point $u \in X$ such that u = fu = S(u, u, ..., u, u) = T(u, u, ..., u, u).

Corollary 2.4. Let (X, d) be a complex valued b-metric space with $s \ge 1$ and k be any positive integer.

Let $S: X^k \to X$ and $f: X \to X$ be mappings satisfying

 $(2.4.1) \ S(X^{k}) \subseteq f(X),$ $(2.4.2) \ d(S(x_{1}, x_{2}, ..., x_{k}), S(y_{1}, y_{2}, ..., y_{k})) \leq \lambda \max\{d(fx_{i}, fy_{i}) : 1 \leq i \leq k\}$ $\forall x_{1}, x_{2}, ..., x_{k}, y_{1}, y_{2}, ..., y_{k} \in X, where \ \lambda \in (0, \frac{1}{s^{k}}),$

(2.4.3) f(X) is a complete sub space of X,

(2.4.4) (f, S) is a k-weakly compatible pair.

Then there exists a unique point $u \in X$ such that u = fu = S(u, u, ..., u, u).

Corollary 2.5. Let (X,d) be a complete complex valued b-metric space with $s \ge 1$ and k be any positive integer. Let $S,T: X^{2k} \to X$ be mappings satisfying

 $(2.5.1) \ d(S(x_1, x_2, ..., x_{2k}), T(y_1, y_2, ..., y_{2k})) \le \lambda \max\{d(x_i, y_i) : 1 \le i \le 2k\}$

$$\forall x_1, x_2, ..., x_{2k}, y_1, y_2, ..., y_{2k} \in X, where \ \lambda \in (0, \frac{1}{s^{2k}}).$$

Then there exists a unique point $u \in X$ such that u = S(u, u, ..., u, u) = T(u, u, ..., u, u).

References

- [1]. S.B.Presic, Sur une classe d' inequations aux differences finite et sur la convergence de certaines suites, Pub de l^1 inst. Math. Belgrade, 5(19), (1965), 75-78.
- [2]. Lj.B.Ciric and S.B. Presic, On Presic type generalization of Banach contraction mapping principle, Acta. Math. Univ. Comenianae, LXXVI (2), (2007), 143-147.
- [3]. K.P.R.Rao, G.N.V.Kishore and Md.Mustaq Ali, Generalization of Banach contraction principle of Presic type for three maps, Math.Sci. 3(3), (2009), 273 - 280.
- K.P.R.Rao, Md.Mustaq Ali and B.Fisher, Some Presic type generalization of Banach contraction principle, Math.Moravica 15(2011), 41 - 47.
- [5]. A.Azam, B.Fisher and M.Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim. 32(3),(2011),243-253.
- [6]. Č.Klin-eam and C.Suanoom, Some common fixed point theorems for generalized contractive type mappings on complex valued metric spaces, Abstr.Appl.Anal.,2013,6 pages, Article ID 604215, doi.10.1155/2013/604215.
- [7]. F. Rouzkard and M. Imdad, Some common fixed point theorems on complex valued metric spaces, Comp. Math.Appls., 64,(2012), 1866-1874.
- [8]. H. K. Nashine, M. Imdad and M. Hasan, Common fixed point theorems under rational contractions in complex valued metric spaces, J. Nonlinear Sci. Appl., 7, (2014), 42-50.
- K.Sitthikul and S.Saejung, Some fixed points in complex valued metric spaces, Fixed point theory Appl.,2012,11 pages, Article ID 189.
- [10]. M.A.Kutbi, A.Azam, J.Ahmad, and C.Di Bari, Some common fixed point results for generalized contraction in complex valued metric spaces, J.Appl.Math., 2013, 10 pages, ArticleID 35297.
- [11]. M.Kumar, P. Kumar and S. Kumar, Common fixed point theorems in complex valued metric spaces, J. Ana. Num. Theor. 2(2),(2014), 103-109.
- [12]. N.Singh, D.Singh, A.Badal and V.Joshi, Fixed point theorems in complex valued metric spaces, Journal of the Egyptian Mathematical Society, (2015), 1-8.
- [13]. R.K.Verma and H.K.Pathak, Common fixed point theorems for a pair of mappings in complex valued metric spaces, Journal of mathematics and computer Science, 6 (2013), 18-26.
- [14]. W.Sintunavarat and P.Kumam, Generalized common fixed point theorems in complex valued metric spaces and applications, J.Inequal.appl.,2012, 11 pages, Article ID 84.
- [15]. K.P.R.Rao, P.Ranga Swamy and J.Rajendra Prasad, A common fixed point theorem in complex valued b-metric spaces, Bulletin of Mathematics and Statistics Research,1(1),(2013),1-8.