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Abstract: One of the most interesting themes of the mathematical ecology is the description of population 

biology and human epidemic models, which are almost nonlinear dynamic equations. In this communication we 

described the population biology by the logistic differential equation and applied an unconditionally stable 

nonstandard finite difference method through the methodology of Mickens. It has been proved that the Mickens 

scheme is dynamically consistent with the original differential equation regardless of the step sizes used in 

numerical simulations, in comparison with the standard finite difference methods. 
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I. Introduction 

The biological world is too complex and unpredictable. There are usually no laws associated with 

biological systems with a few exceptions such as for example the Hardy-Weinberg law in population genetics. 

In addition, it is very hard if not impossible to test for hypotheses by experiments. Nevertheless, it is very 

important to build relevant mathematical models so that some conclusions about the biology can be drawn. 

Mathematical models play a significant role in understanding the dynamics of biological systems. In 

most cases, these models are described by autonomous systems of nonlinear ordinary differential equations, 

very often, such systems are so complex that their exact solutions are not obtainable and hence the need for 

numerical methods arises. Numerical methods have gained more performance since the advent of computers. 

Soft wares have been developed to simulate numerical experiment with expected real life situations. 

Discrete time models become essential when one wants to describe experimental data that have been 

collected with certain interval of time. One of the critical aspects of the discretization methods is just the 

dependence from this interval, the time step. Since the time step should be selected only in relation to the 

characteristics of the problem under examination, it is necessary to choose a reliable discretization method that 

allows to make this transformation without any restriction on time step, as well as not to introduce artifacts, 

change the linear stability properties. 

Since in general, these requirements are not satisfied in the application of most standard finite 

difference schemes, the concept of non-standard finite difference schemes was proposed for the first time by 

Mickens in 1988 as a solution to the numerical instability. It is a known and documented fact that a differential 

equation is said to have numerical instabilities if there exist solutions to the finite-difference equations that do 

not correspond qualitatively to any of the possible solutions of the differential equation Mickens [1]. 

Non-standard numerical method was introduced by Mickens [1] as a viable tool that provides 

approximate solution to differential equations and retain the qualitative properties of the equation. In Mickens 

[1, 2], valuable reasons for numerical instabilities were given in some particular investigated cases. The 

preservation of the qualitative properties of the considered differential equation with respect to these schemes is 

of great interest in finite difference methods of solving differential equations. The major consequence of this 

result is that such scheme does not allow numerical instabilities to occur. 

Mickens proposed a new method of construction of discrete models whose solution have the same 

qualitative properties as that of the corresponding differential equations for all step-sizes and thus eliminate the 

elementary numerical instabilities that can arise. Numerical instabilities are indications that the discrete 

equations are not able to model the correct mathematical properties of the solutions to the differential equations 

of interest. In this work, the equation investigated is the autonomous first-order differential equation: 

Researchers have carried out several studies describing various finite difference methods for the 

solution of continuous dynamical systems given by systems of ordinary differential equation. This review 

pertains to the study of first order nonlinear dynamic equation using both the standard and nonstandard. Ronald 

E. Mickens [3] has given a brief history of nonstandard finite difference (NSFD) methods along with the 

clarification to the remarks related to the views of some others on these techniques. Nonstandard finite 

difference (NSFD) methods for the numerical integration of differential equations had their genesis in a paper 
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[4] published in 1989. The basic rules to construct such schemes [2] and their application to specific nonlinear 

equations appear in a variety of publications [5]. In recent years, NSFD discrete models have been constructed 

and tested for a wide range of nonlinear dynamical systems. An essentially complete listing and summary of 

publications using NSFD methods, up to 2004, is presented in the paper by Patidar [6]. This paper [6] and other 

published works [1, 5, 7, 8, 9, 10, and 11] provided ample evidence that NSFD schemes are enjoying a growing 

applicability as the practical users of numerical techniques for differential equations. Arenas et al. [12] 

developed a nonstandard numerical scheme for a SIR (where S, I and R stand for susceptible, infected and 

removed individuals, respectively) seasonal epidemiological model for Respiratory Syncytial Virus (RSV). 

Ronald E.Mickens and Talitam. Washington [13] constructed a nonstandard finite difference (NSFD) scheme 

for an SIRS mathematical model of respiratory virus transmission. This discretization is in full compliance with 

the NSFD methodology as formulated by R. E. Mickens [3]. Gumel et al. [14] investigated a class of NSFD 

methods for solving system of differential equations arising in mathematical biology. Villanueva et al. [15] 

developed (and analyzed numerically) nonstandard finite difference schemes which are free of numerical 

instabilities, to obtain the numerical solution of a mathematical model of infant obesity with constant population 

size.  

Some useful studies on dynamical systems are found in the work of Duleba [16],Rauh et al. [17], as 

well as Zhai and Michel [18]. Dimitrov and Kojouharov [19] formulated positive and elementary stable 

nonstandard finite-difference methods to solve a general class of Rosenzweig-MacArthur predator-prey systems 

which involve a logistic intrinsic growth of the prey population. Their methods preserve the positivity of 

solutions and the stability of the equilibria for arbitrary step-sizes. 

In this research it is intended to investigate a class of finite difference methods, designed via the non-

standard framework of Mickens, for solving systems of differential equations arising in population biology. It 

has been shown that this class of methods can often give numerical results that are asymptotically consistent 

with those of the corresponding continuous model. We tested their linear stability properties at different step-

lengths. This fact is illustrated using a number of case studies arising from population biology (human 

epidemiology and ecology). 

 

II. Logistic Differential Equation 
Many ecological and epidemic models have been constructed and analyzed by researchers in 

diversified disciplines to helpus understand and interpret biological problems in ecologyand epidemics. Among 

these is theMalthus equation, whichcan be viewed as the simplest way tomodel population growth, 
 𝑑𝑥

𝑑𝑇
=  𝜆𝑥                                                                                             (1) 

Where𝜆 > 0, independent of population size and time, is the growth rate of the population, and 𝑥(𝑇)is 

the populationdensity or size at time T. Under the simple assumption that population growth rate is a constant, 

the population will alwaysgrow to unboundedly large over time as long as the initialpopulation size is positive. 

Therefore the equation doesnot capture the long time realistic population growth phenomenon.One way to 

modify the above biological assumption is to incorporate density dependence into the growth parameter. The 

well-known continuous-time logistic equation based onthe assumption that the population evolves in an 

environmentwith limited resources with no immigration or emigration phenomena. Let 𝑥(𝑇) the population at 

instant T, the lawthat regulates can be expressed from the following first orderautonomous ODEby replacing the 

growth parameter 𝜆in eq(1) with 𝑟  1 −
𝑥

𝑘
 , which depends on both population density at time T and the carrying 

capacity k of the environment. 
𝑑𝑥

𝑑𝑇
= 𝑟𝑥(1 −

𝑥

𝑘
)                                                                     (2) 

Whereparameter𝑟 > 0 is the intrinsic growth rate of the population and  𝑘 > 0  is the carrying capacity 

of the environment. 

This equation possesses a very simple asymptoticdynamics: all solutions with positive initial 

conditionswill eventually approach the carrying capacity k. Therefore,population size will eventually be 

stabilized to k in the longrun even if population dynamics initially either overshoot orundershoot the carrying 

capacity. 

 

2.1Non-dimensionalization(scaling) 

We see that the model in equation (2) has four parameters. To make the analysis easy, we reduce the 

number of parameters by scaling as follows:  

Let 

𝑇 =  
𝑡

𝑟
and𝑥 = 𝑘𝑦 

Substituting these in (2), we get 
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𝑑(𝑘𝑦 )

𝑑(
𝑡

𝑟
)

= 𝑟𝑘𝑦(1 −
𝑘𝑦

𝑘
)(3) 

𝑑𝑦

𝑑𝑡
= 𝑦 1 − 𝑦 (4) 

The differential equation (4), solved by variable separation method, admits the following solution: 

𝑦 𝑡 =  
𝑦𝑜

𝑦𝑜+ (1−𝑦𝑜 )𝑒−𝑡  (5) 

where the initial condition is 

𝑦𝑜 = 𝑦 0                                                                                                                       (6) 

If  𝑦𝑜 > 0 , then all solution curves of our differential equation monotonically approach the stable equilibrium 

points. 

 

2.2Stability analysis 

Consider the differential equation 
𝑑𝑥

𝑑𝑇
= 𝑓(𝑥)                                                                                                                         (7) 

Let 𝑥∗be the equilibrium point .i.e, 

𝑓 𝑥∗ = 0(8) 

Now let us consider the stability analysis of the logistic differentialequation: 

𝑓 𝑦 =  𝑦 1 − 𝑦 = 0                                                                                                       (9) 

The equilibriumpoints are 

𝑦1
∗ = 0 , 𝑦2

∗ = 1                                                                                                           (10) 

Since 𝑓 ′ 0 = 1 > 0  and 𝑓 ′ 1 = −1 < 0 , the equilibrium point𝑦1
∗ = 0  is unstable and the equilibrium 

point𝑦2
∗ = 1  is stable. 

This can be deduced also by an alternativeway fromthe exact solution (5), by calculating its limit for 

𝑡 ⟶ ∞ the populationhas just 𝑦 = 1 as its asymptotic value. 

 

III. Finite Difference Approach 
To transform a continuous-time model into a discrete one,the continuous variable 𝑡 ∊ [0,∞) must be 

replaced by thediscrete variable 𝑘 ∊ 𝑁and the variable y must take discretevalues𝑦𝑘 . The result is a difference 

equation. In this studywe will consider both standard and nonstandard finite differenceschemes and finally their 

numerical solution will becompared at different time steps. 

 

3.1Numerical solution of logistic differential equation using Forward Euler Scheme 

This is one of the oldest way to derive a finite difference equationfrom a differential equation. Ifwe use 

a simple ForwardEuler scheme to approximate solutions of eq(4) by taking has the step size of the 

approximation and replace 
𝑑𝑦

𝑑𝑡
⟶

𝑦𝑘+1 − 𝑦𝑘
ℎ

 

 

We then have 
𝑦𝑘+1−𝑦𝑘

ℎ
=  𝑦𝑘(1 − 𝑦𝑘)                                                                                                     (11)   

Solving for 𝑦𝑘+1 gives 

𝑦𝑘+1 =  𝑦𝑘 + ℎ𝑦𝑘(1 − 𝑦𝑘)                                                                                           (12) 

 

The approximate solutions of (4) using Forward Euler at different step lengths with the exact solution has been 

shown graphically in the following figures. 

 

 
Figure: 1 Numerical solution of logistic differential equation using forward Euler scheme whenh = 0.1 
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Figure: 2 Numerical solution of logistic differential equation using forward Euler scheme 

whenh = 0.7 

 

 
Figure: 3 Numerical solution of logistic differential equation using forward Euler scheme whenh = 1.5 

 

 
 

Figure: 4Numerical solution of logistic differential equation using forward Euler schemewhen h = 2.5 
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3.2Numerical solution of logistic differential equation using central difference scheme 

Applying popular standard finite central difference scheme to approximate the solutionof (4) by taking 

h as the step size of the approximationand by replacing 

 
𝑑𝑦

𝑑𝑡
⟶

𝑦𝑘+1−𝑦𝑘−1

2ℎ
, wethen have 

 
𝑦𝑘+1−𝑦𝑘−1

2ℎ
=  𝑦𝑘(1 − 𝑦𝑘)                                                                                                  (13)   

Solving for 𝑦𝑘+1 gives 

 

𝑦𝑘+1 =  𝑦𝑘−1 + 2ℎ𝑦𝑘(1 − 𝑦𝑘)                                                                                         (14) 

𝑦𝑘+1 =  𝑦𝑘 − ℎ + 2ℎ𝑦𝑘(1 − 𝑦𝑘)                                                                                     (15) 

 

The approximate solution of (4) using central differencescheme at different step lengths and the exact 

solutionhas been shown graphically in the following figures. 

 

 
Figure: 5 Numerical solution of logistic differential equation using central difference scheme 

whenh = 0.1 

 

 
Figure: 6 Numerical solution of logistic differential equation using central difference scheme 

Whenh = 0.7 
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Figure: 7Numerical solution of logistic differential equation using central difference scheme 

whenh = 1.5 

 

IV. Nonstandard Finite Difference Method 
Detailed study of well-known exact finite difference schemesgivesthe foundation to the NSFD 

methods. The extension andgeneralization of these results to special groups of differentialequations, for which 

exact schemes are not available, has also provided additional insight into the required structuralproperties of 

NSFD methods. Nonstandard finite difference schemes have emerged asan alternative method for solving a 

wide range of problemswhose mathematical models involve algebraic, differentialand biological models as well 

aschaotic systems. Thesetechniques have many advantages over classical techniquesand provide an efficient 

numerical solution. 

 

4.1 Numerical solution of logistic differential equation using nonstandardfinite difference Scheme 

We apply the NSFD rules to transform the model into thediscrete scheme. 

 
𝛥𝑦 𝑡 

𝜙(𝛥𝑡)
=  𝑦 𝑡 − (𝑦 𝑡 )2                                                                                             (16) 

Where 

𝛥𝑦 𝑡 = 𝑦𝑘+1 − 𝑦𝑘  
 

and𝜙(𝛥𝑡) is a function of the time step 𝛥𝑡 = ℎ,  which is the denominator function.  

Now replacing the nonlinear term 𝑦2 by nonlocal representationwith𝑦𝑘𝑦𝑘+1in (16) we get 

 
𝑦𝑘+1−𝑦𝑘

𝜙(ℎ)
=  𝑦𝑘 − 𝑦𝑘𝑦𝑘+1                                                                                             (17) 

 

now we derive a suitable denominator function𝜙(ℎ)for the above equation. One of the method in searching the 

denominator function is given by: 

 

𝜙 ℎ,𝑅∗ =  
𝜑 ℎ ,𝑅∗ 

𝑅∗                                                                                                       (18) 

 

where𝜑is the denominator of the exact solution of the differentialequation under study . As mentioned earlier 

the exact solution of our model is solved by variable separationmethod and is given by 

𝑦 𝑡 =  
1

1−𝑒−𝑡                                                                                                                (19) 

Therefore, 

𝜑 𝑧 =  1 − 𝑒−𝑧                                                                                                            (20) 

and𝑅∗is calculated by the formula: 

𝑅∗ = 𝑀𝑎𝑥 𝑅𝑖  , 𝑖 = 1, 2 ,…𝑒𝑡𝑐.                                                                                      (21) 
where𝑅𝑖 is : 

𝑅𝑖 =  
𝑑𝑓 (𝑦∗)

𝑑𝑦
 , 𝑓 𝑦∗ = 0.                                                                                                (22) 

clearly𝑅∗ = 1 and this tells us that the suitable denominatorfunction 𝜙is given by 
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𝜙 ℎ, 1 =  
𝜙(ℎ)

1
 = 1 − 𝑒−ℎ =  𝜙 ℎ                                                                                (23) 

 

Substituting (23) into (17), we get 

 
𝑦𝑘+1−𝑦𝑘

1−𝑒−ℎ =  𝑦𝑘 − 𝑦𝑘𝑦𝑘+1                                                                                                 (24) 

 

Therefore 𝑦𝑘+1 can be so explicited  

𝑦𝑘+1 =  
(2−𝑒−ℎ )𝑦𝑘

1+(1−𝑒−ℎ )𝑦𝑘
                                                                                              (25) 

This equation can be transformed by letting 

𝑊𝑘 =  
1

𝑦𝑘
                                                                                                              (26) 

1

𝑊𝑘+1
=  

2−𝑒−ℎ

𝑊𝑘+1−𝑒−ℎ                                                                                                  (27) 

After simple algebraic arrangements we found 

𝑊𝑘+1 −  
1

2−𝑒−ℎ 𝑊𝑘 =  
1−𝑒−ℎ

2−𝑒−ℎ                                                                                 (28) 

 

The approximate solutions of (4) using nonstandard finitedifference scheme at different step lengths and the 

exactsolution has been shown graphically in the following figures. 

 

 
Figure 8: Numerical solution of logistic differential equation using nonstandard finite difference scheme when 

h = 0.1. 

 

 
Figure 9: Numerical solution of logistic differential equation using nonstandard finite 

difference scheme when h =  0.5. 
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Figure 10: Numerical solution of logistic differential equation using nonstandard finite difference scheme when 

h = 1.5. 

 

 
Figure 11: Numerical solution of logistic differential equation using nonstandard finitedifference scheme when 

h = 2.5 

 

V. Comparison between Euler Forward  and  NSFD Scheme for Logistic Equation at different 

step lengths 
Fromthe figures (1-7), we observed that the Euler Forwardscheme ismore stable than the Central 

difference schemewhenwe increase the step length. So in this section we aregiving the comparison between 

Euler Forward and the nonstandard finite difference scheme. 

 

 
Figure 12 : Comparison between the numerical solution of logistic differential equation using nonstandard  and 

Euler forward  finite difference scheme when h = 1.5 
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Figure 13: Comparison between the numerical solution of logistic differential equation using nonstandard  and 

Euler forward  finite difference scheme when h = 2.5 

 

VI. Conclusion 

We considered the logistic differential equation and found the numerical solution using NSFD scheme 

by applying Mickens rules. For the sake of comparison we have chosen the same problems and obtained the 

solution by using Euler Forward scheme and central difference scheme. From the figures (1-7) we observed that 

the Euler Forward method is relatively more stable than the central difference scheme, so we compared the 

solutions from NSFD scheme with the Euler Forward at different step lengths. Although for h < 1, both methods 

are in a good agreement, for h > 1, standard finite difference method exhibits the numerical instability but 

nonstandard discrete models do not exhibit numerical instabilities for all h. From all simulations we have been 

made, we conclude that the non-standard finite difference scheme is  dynamically consistent and  stable than the 

standard finite difference methods in solving the model in population Biology known as logistic differential 

equation. 

 

References 
[1]. L. Edelstein-Keshe .Mathematical Models in Biology.McGraw-Hill, 1988. 

[2]. L. J. S. Allen. Some discrete-time SI, SIR, and SIS epidemic models MathematicalBiosciences, 124: 83-105, 1994. 

[3]. Mickens R.E.2005, Advances in the applications of nonstandard finite difference schemes edited by Ronald E.Mickens.2005, 
pp.823-847. 

[4]. H. Al-Kahby, F. Dannan, and S. Elaydi. Non-standard discretization methods for somebiological models. In R. Mickens, editor, 

Applications of Nonstandard Finite Difference Schemes, chapter 4, pages 155-180. World Scientific, New Jersey, 2000. 
[5]. C.W. Chi, S.-B. Hsu, and L.-I. Wu. On the asymmetric May-Leonard model of threecompeting species. SIAM J. Appl.Math., 58(1): 

211-226, 1998. 

[6]. Patidar, K. (2005). On the use of nonstandard finite difference methods, Journal of   Difference Equations and Applications 11(8): 
735-758. 

[7]. H. Jiang and T. D. Rogers. The discrete dynamics of symmetric competition in the plane. J.Math. Biol., 25:573-596, 1987.  

[8]. J. Hale and H. KoCak, Dynamics and Bifurcations, Springer-Verlag, New York, 1991. 
[9]. J. Hofbauer, V. Hutson, andW. Jansen. Co-existence for systems governed by   difference equations of Lotka-Volterra type. J.Math. 

Biol., 25:553-570, 1987. 

[10]. M. J. Gander and R. Meyer-Spasche. An introduction to numerical integrators preserving physical properties. In R. Mickens, editor, 
Applications of Nonstandard Finite Difference Schemes, chapter 5, pages 181 - 243. World Scientific New Jersey, 2000. 

[11]. S. Jang and S. N. Elaydi. Difference equations from discretization of a continuousepidemic model with immigration of infectives. 

Canadian Applied MathematicsQuarterly, 11 (2), 2005. 
[12]. Arenas, A., No, J.M. and CortÃ©s, J. (2008). Nonstandard numerical method for mathematical model of RSV epidemiological 

transmission, Computers and   Mathematics with Applications 56(3): 670-678. 

[13]. Ronald E. Mickens and TalithaM.Washington, anoteonannsfd scheme for amathematical model of respiratory virus transmission, 
arxiv: 1008.2314v1 [q.bio.pe].13, aug, 2010. 

[14]. Gumel, A., Patidar, K. and Spiteri, R. (2005). Asymptotically consistent nonstandard finite difference methods for solving 

mathematical models arising in population biology, in R. Mickens (Ed.), Applications of Nonstandard Finite Difference Schemes, 
World Scientific, Singapore, pp. 385-421.      

[15]. Villanueva, R., Arenas, A. and Gonzalez-Parra, G. (2008). A nonstandard dynamically consistent numerical scheme applied to 

obesity dynamics, Journal of Applied Mathematics, Article ID 640154, DOI: 10.1155/2008/640154. 
[16]. Karcz-DulË›eba, I. (2004). Asymptotic behavior of a discrete dynamical system generated by a simple evolutionary process, 

International Journal of Applied Mathematics and Computer Science 14(1): 79-90. 

[17]. Rauh et al. (2009). Verification controllers for nonlinear dynamic systems with un certainties, International Journal of Applied 
Mathematics and Computer Science19 (3): 425-439, DOI: 10.2478/v10006/009/0035/1. 

[18]. Zhai, G. and Michel, A.M. (2004). Generalized practical stability analysis of discontinuous dynamical systems, International 

Journal of Applied Mathematics and Computer Science 14(1):5-12.  

[19]. Dimitrov,D. and Kojouharov, H. (2006). Positive and elementary stable nonstandardnumerical methods with applications to 
predator prey models, Journal of Computational and Applied Mathematics 189(1): 98-108. 


