On Pseudo m – power Commutative near – rings

G.GopalaKrishnamoorthy1, R.Veega2 and S.Geetha3

1Principal,Sri. Krishnasamy Arts And Science College Sattur-626203 Tamil nadu
2Dr.G.R.D College of Education, Coimbatore Tamilnadu
3Pannai College Of Engg. And Tech Sivagangai Tamilnudu

Abstract: A near ring N is called weak commutative if \(xyz = zyx \) for every \(x,y,z \in N \). N is called pseudo commutative if \(xyz = zyx \) for every \(x,y \in N \). N is called quasi weak commutative if \(xyz = yxz \) for every \(x,y,z \in N \). N is called pseudo m – power commutative if \(x^m yz = zy^m x \) for every \(x,y,z \in N \). We obtain more results, generalising the results of [15].

I. Introduction

S.Uma, R.Balakrishnan and T.Tammizhchelvan[15] called a near ring N to be pseudo commutative if \(xyz = zyx \) for every \(x,y,z \in N \). G.GopalaKrishnamoorthy and S.Geetha[8] called a ring R to be \(m \)-power commutative if \(x^m y = y^m x \) for all \(x,y \in R \), where \(m \geq 1 \) is a fixed integer . They also called a ring R to be \((m,n) \)-power commutative if \(x^m y^n = y^n x^m \) for all \(x,y \in R \), where \(m \geq 1 \) and \(n \geq 1 \) are fixed integers. We have defined a near ring to be pseudo \(m \)-power commutative if \(x^m yz = zy^m x \) for all \(x,y,z \in N \), where \(m \geq 1 \) is a fixed integer. In this paper we prove more general results on pseudo \(m \) – power commutative near rings, this generalising the results of [15].

II. Preliminaries

Throughout this paper, \(N \) denotes a right near ring with atleast two elements. For any non – empty subset \(A \) of \(N \), we denote \(A^{-\{0\}} \) as \(A^* \). The following definitions and results are needed for the development of this paper.

2.1 Definition
Let \(N \) be a near ring. An element \(a \in N \) is said to be idempotent if \(a^2 = a \). Nilpotent if there exists a positive integer \(k \) such that \(a^k = 0 \)

2.2 Lemma (Pilz [14])
Each near ring \(N \) is isomorphic to a sub direct product of subdirectly irreducible near rings

2.3 Definition
A near ring \(N \) is said to be zero symmetric if \(ab = 0 \) implies \(ba = 0 \), where \(a,b \in N \).

2.4 Lemma
If \(N \) is zero symmetric, then every left ideal \(A \) of \(N \) is a \(N \)-subgroup of \(N \)

2.5 Lemma
Let \(N \) be a regular near ring, \(a \in N \) and \(a = axa \), then
(i) \(ax \) and \(xa \) are idempotents and so the set of idempotent elements of \(N \) is non – empty.
(ii) \(axN = aN \) and \(Nxa = Na \)

2.6 Lemma
Let \(N \) be a regular near ring, \(a \in N \) and \(a = axa \), then
(i) \(ax \) and \(xa \) are idempotents and so the set of idempotent elements of \(N \) is non – empty.
(ii) \(axN = aN \) and \(Nxa = Na \)

2.7 Definition
A near ring \(N \) is said to be reduced if \(N \) has no non – zero nilpotent elements

2.8 Lemma [3]
Let \(N \) be a zero – symmetric reduced near – ring. For any \(a,b \in N \) and for any idempotent element \(e \in N \), \(abe = aeb \)
2.9 Lemma [5, 6]
A near ring N is sub–directly irreducible if and only if the intersection of all non–zero ideals of N is not zero.

2.10 Lemma [6]
Each simple near–ring is sub–directly irreducible.

2.11 Lemma [13]
An N–subgroup A of N is essential if $A \cap B = \{0\}$ where B is any N subgroup of N implies $B = \{0\}$.

2.12 Definition
A near–ring N is said to be an integral near–ring if N has no non–zero divisors.

2.13 Lemma
Let N be a near–ring such that for all $a \in N$, $a^2 = 0$ implies $a = 0$. Then N has no non–zero nilpotent elements. That is, N is reduced.

2.14 Definition
A near ring N is said to satisfy intersection of factors property (I F P) if $ab = 0$ implies $anb = 0$ for all $n \in N$, where $a, b \in N$.

2.15 Lemma [14]
A non–zero symmetric near–ring has intersection of factors property if and only if $(O:S)$ is an ideal for any subset S of N.

2.16 Definition
(i) Let N be a near–ring. An ideal I of N is called a prime ideal if for all ideals A, B of N, $AB \subseteq I A \subseteq I$ or $B \subseteq I$.
(ii) I is called a semi–prime ideal if for all ideals A of N, $A^2 \subseteq I$ implies $A \subseteq I$.
(iii) I is called a completely semi–prime ideal if for any $x \in N$, $x^2 \in I$ implies $x \in I$.
(iv) I is called a completely prime ideal if for any $x, y \in N$, $xy \in I$ implies $x \in I$ or $y \in I$.
(v) N is said to have strong intersection of factors property if for all ideals I of N, $ab \in I$ implies $anb \in I$ for all $n \in N$.

2.17 Lemma
Let N be a Pseudo Commutative near–ring. Then every idempotent element is central.

III. Main results

3.1 Lemma
Every pseudo m–power commutative (right) near–ring is zero symmetric.

Proof
Let N be a pseudo m–power commutative near–ring. Then $x^{m}yz = zy^{m}x$ for all $x, y, z \in N$.

Now for all $a \in N$,
\[
a.0 = a.0^{m+1} = a.0^{m}.0 = 0^{m}.0a = 0a = 0
\]
This proves N is zero symmetric.

3.2 Lemma
Every idempotent element in a pseudo m–power commutative near–ring is central.

Proof
Let N be a pseudo m–power commutative near–ring and $e \in N$ be an idempotent element. Then it follows that $e^{k} = e$ for all $k \geq 2$.

Now for any $a \in N$,
\[
e a = e^{m+1}a = e^{m}.e.a
\]
\[
= a e^{m} e = ae^{m+1} = ae
\]
This proves e is central.

3.3 Lemma
Homomorphic image of a pseudo m–power commutative near–ring is also a pseudo m–power commutative near–ring.

Proof
Let N be a pseudo m–power commutative near–ring. Let $f : N \rightarrow M$ be an endomorphism of near–rings. For all $x, y, z \in N$,
\[
f(x)^{m}f(y)f(z) = f(x^{m}yz)
\]
On Pseudo m – power Commutative Near – rings

This proves M is pseudo m – power commutative.

3.4 Corollary
Let N be a pseudo m – power commutative near – ring. If I is an ideal of N, then N / I is also pseudo m – power commutative.

Proof
Since the canonical map \(\eta : N \rightarrow N/I \) is an endomorphism of near – rings, the corollary follows from the Lemma.

3.5 Theorem
Every pseudo m – power commutative near – ring N is isomorphic to a sub – directly product of sub – directly irreducible pseudo m – power commutative rings

Proof
By Lemma2.2, N is isomorphic to a subdirect product of subdirectly irreducible near – rings \(N_k \) and each \(N_k \) is a homomorphic image of N under the projection map \(\pi_k : N \rightarrow N_k \). The result follows from Lemma 3.4

3.6 Definition
Let N be a near – ring. N is said to be weak m – power commutative if \(ab^m c = ac^m b \) for all \(a, b, c \in N \)

3.7 Lemma
Any pseudo – m – power commutative near – ring with right identity is weak m – power commutative

Proof
Let N be a pseudo m – power commutative near – ring. Let \(a, b, c \in N \)
Now, \(ab^m c = (ab^m)c \)
\(= (a(b^m)c) \) (N is pseudo m – power commutative)
\(= (ac)(b^m) \)
\(ab^m c = ac^m b \)
This proves N is weak m – power commutative

3.8 Definition
Let N be a near – ring. N is said to be quasi – weak m – power commutative if \(x^m yz = y^m xz \) for all \(x, y, z \in N \)

3.9 Lemma
Any weak m – power commutative near – ring with left identity is quasi – weak m – power commutative

Proof
Let N be a weak m – power commutative near – ring. Let \(a, b, c \in N \)
Now \(a^m bc = e(a^m bc) \)
\(= (ea^m b)c \)
\(= (eb^m a)c \)
\(= b^m ac \)
This proves N is quasi weak m – power commutative.

3.9 Definition
A near – ring N is said to be m – regular near – ring if for each \(a \in N \), where exists an element \(b \in N \) such that \(a = ab^m a \) where \(m \geq 1 \) is a fixed integer.

3.10 Lemma
Let N be a m – regular near – ring, \(a \in N \) and \(a = ab^m a \).
Then (i) \(ab^m, b^m a \) are idempotents
(ii) \(ab^m N = aN \) and \(Nb^m a = Na \)

Proof
(i) Let \(a \in N \). Since N is m – regular, there exists \(b \in N \) such that
\(a = ab^m a \)(1)
Now \((ab^m)^2 = (ab^m)(ab^m) \)
\(= (ab^m)a b^m \)
\(= ab^m \)
Similarly, \((b^m a)^2 = (b^m a)(b^m a) = b^m (ab^m a) \)
\(= b^m a \)
Hence \(ab^m \) and \(b^m a \) are idempotents.
(ii) Let \(y \in ab^m N \)
\(\Rightarrow y = ab^m x \) for some \(x \in N \)
\[\begin{align*}
\in aN \\
\Rightarrow ab^nN \subseteq aN \\
\text{Let } y \in aN \\
y = az \text{ for some } z \in N \\
= (ab^m a)z \\
= ab^m (az) \\
\in ab^nN \\
\text{That is, } aN \subseteq ab^nN \\
\text{Hence } ab^nN = aN \\
\text{Similarly it can be proved } N b^n a = N a
\end{align*} \]

3.11 Definition

Let \(N \) be a near-ring \(A \subseteq N \) then \(\sqrt{A} = \{ x \in N / x^k \in A \text{ for some } k \geq 1 \} \)

3.12 Theorem

Let \(N \) be a \(m \)-regular pseudo \(m \) power commutative near-ring.

\[\text{Then } A = \sqrt{A} \text{ for every } N \text{-subgroup } A \text{ of } N. \]

Proof

Let \(A \) be an \(N \)-subgroup of \(N \).

Since \(N \) is \(m \)-regular for every \(a \in N \), there exists \(b \in N \) such that \(a = ab^m a \).

By Lemma 3.10(i), \(ab^m, b^m a \) are idempotents.

Since \(N \) is pseudo \(m \)-power commutative by Lemma 3.2, \(ab^m, b^m a \) are central.

Let \(a \in \sqrt{A} \). Then \(a^k \in A \) for some positive integer \(k \).

Now \(a = a b^m a = a (b^m a) \)
\[a = b^m a = b^m (b^m a^2) a \]
\[= b^{2m} a^3 \]
\[= b^{3m} a^4 \]
\[= b^{4m} a^5 \]
\[\ldots \]

\[\therefore a = b^{(k-1)m} a^k \in NA \subseteq A \text{ for all } k \geq 1 \]

Hence \(\sqrt{A} \subseteq A \)

Obviously \(A \subseteq \sqrt{A} \)

Hence \(A = \sqrt{A} \)

3.13 Theorem

Let \(N \) be a \(m \)-regular pseudo \(m \)-power commutative near-ring. Then

(i) \(N \) is reduced

(ii) \(N \) has IFP (A \(m \)-regular near-ring is said to have IFP if \(ab = 0 \) implies there exists \(n \in N \) such that \(an^m b = 0 \))

Proof

Let \(a \in N \) be such that \(a^2 = 0 \). By (i) of Theorem 3.12, \(a = b^m a^2 = b^m \cdot 0 = 0 \)

Hence \(N \) is reduced.

Let \(x, y \in N \) such that \(xy = 0 \)

Now \((yx)^2 = (yx) (yx) = y (xy) x \)
\[= y \cdot 0 \cdot x \]
\[= y \cdot 0 \]
\[= (yx)^2 = 0 \]

By (i) \(yx = 0 \)

That is, \(N \) is zero commutative.

Now for any \(n \in N \), \((xn^m y)^2 = xn^m y \cdot xn^m y \)
\[= xn^m (y x) n^m y \]
By (i) \(x^n y = 0 \)

Theorem 3.14

Let \(N \) be a \(m \)-regular pseudo \(m \)-power commutative near-ring. Then every \(N \) subgroup is an ideal.

Proof

Let \(a \in N \). Since \(N \) is \(m \)-regular, there exists \(b \in N \) such that \(a = ab^m a \).

By Lemma 3.10(i) \(bma \) is idempotent

Let \(b^m a = e \)

Then \(Ne = Nb^m a = Na \) (by Lemma 3.10 (ii))

Let \(S = \{ n-ne \in N / n \in N \} \)

Claim: \((O : S) = \{ y \in N / sy = 0 \} \forall s \in S = Ne \)

Now \(n-ne = ne-ne^2 = ne-ne = 0 \) \(\forall neN \)

Since \(N \) has IFP, we have

\((n-ne)Ne = 0 \)

Hence \(Ne \subseteq (O : S) \)(1)

Let \(y \in (O : S) \). Then \(sy = 0 \) \(\forall s \in S \)(2)

Now \(N \) is \(m \)-regular. \(y = x^n y \) for some \(x \in N \)

Since \(xy^n - (yx^n)e \) is an ideal, by (2) we get

\((xy^n - (yx^n)e) y = 0 \)

That is, \(xy^n y - x^n ey = 0 \)

\(y - y(x^n ey) = 0 \)(3)

Since \(N \) is zero symmetric reduced ring by Lemma 2.8, \(x^n ey = x^n ye \)

So, (3) becomes \(y - y(x^n ye) = 0 \)

\(y = y(\text{ye}) = 0 \)

Hence \(y = ye \) is an ideal of \(N \).

Thus \(M \) becomes an ideal of \(N \).

Theorem 3.15

Let \(N \) be a \(m \)-regular pseudo \(m \)-power commutative near-ring. Then (i) \(N = Na = Na^2 = aN = aNa \) for all \(a \in N \)

(ii) Any ideal of \(N \) is completely semi prime

Proof

Since \(N \) is \(m \)-regular, for every \(a \in N \), there exists \(b \in N \) such that \(a = ab^m a \)

Then \(a = ab^m a = (ab)^m a = abm(a) = b^m a \) (by Lemma 3.10 (i))

Also \(a = ab^m a = (b^m a) a = b^m a^2 \in Na^2 \)

Hence \(N \subseteq Na^2 \)(1)

Now \(Na \subseteq N \subseteq Na^2 = (Na)a \subseteq Na \subseteq N \)

So, \(Na = Na^2 = N \)(2)

We shall now prove that \(Na^2 = aN \)

Let \(x \in Na^2 \).

Then \(x = na^2 \) for some \(n \in N \)

\[= n(a^m a^2) a \]

\[= nb^m a^2 \]

\[= (a^m bn) a^2 \text{ (pseudo } m \text{- power commutative)} \]

\[= a(a^m bna) aN \]
That is, \(N\alpha^2 \subseteq a\mathbb{N} \)(3)

Let \(y \in a\mathbb{N} \).
Then \(y = an \) for some \(n \in \mathbb{N} \)
\(= b^m\alpha(a^n\beta)^m \)
\(= b^m\alpha(a^n\beta)^m \)
\(= b^m(a^n\beta^m) \) (pseudo \(m \)-power commutative)
\(= (b^m\alpha)b^m \alpha^2 \in Na^2 \)

So \(a\mathbb{N} \subseteq Na^2 \)(4)

(3) and (4) gives \(Na^2 = a\mathbb{N} \)(5)

Next we shall prove that \(a\mathbb{N} = aN \mathbb{A} \)
Let \(x \in a\mathbb{N} \).
Then \(x = an \) for some \(n \in \mathbb{N} \)
\(= (ab)^m(a^n) \)
\(= a(b^m(a^n) \alpha a(\alpha N)) \subseteq a\mathbb{N} \)

So, \(a\mathbb{N} \subseteq a\mathbb{N} \)(6)

Obviously \(a\mathbb{N} \subseteq a\mathbb{N} \)(6)

Hence \(a\mathbb{N} = Na \)(7)

From (2), (5) and (7) we get
\(N = Na = Na^2 = a\mathbb{N} = a\mathbb{N} \)

Let \(I \) be any ideal of \(N \) and \(a^2 \in I \)
Now \(a = a^2 b^m \in I \)
That is, \(a^2 \in I \) implies \(a \in I \)
Hence \(I \) is Completely semi – prime.

3.16 Definition
A near – ring \(N \) is said to have the property \(P_4 \) if for all ideals \(I \) of \(N \),
\(xy \in I \) implies \(yx \in I \), where \(x,y \in N \)

3.17 Theorem
Every \(m \)-regular pseudo \(m \)-power Commutative near – ring satisfies the property \(P_4 \)

Proof
Let \(N \) be a \(m \)-regular pseudo \(m \)-power Commutative near – ring and \(I \) be an ideal of \(N \). Let \(a,b \in N \) such that \(ab \in I \)
Then \((ba)^2 = (ba)(ba) \)
\(= b(ab)a \)
\(\in N I N \subseteq I \)

That is, \((ba)^2 \in I \)
By Theorem 3.15 (ii), \(ba \in I \)
Thus \(N \) satisfies the property \(P_4 \)

3.18 Theorem
Let \(N \) be a \(m \)-regular pseudo \(m \)-power Commutative near – ring. Then (i) For every ideal \(I \) of \(N \), \((I:S) \) is an ideal of \(N \), where \(S \) is any subset of \(N \)
(ii) For every ideal \(I \) of \(N \), \(x_1,x_2,x_3,...,x_n \in I \) if \(x_1,x_2,x_3,...,x_n \in I \), then \(<x_1>, <x_2>, <x_3>,..., <x_n> \subseteq I \).

Proof
Let \(I \) be an ideal of \(N \) and \(S \) be any subset of \(N \).
By Lemma 2.5, \((I:S) = \{ n \in N/ ns \subseteq I \} \) is a left ideal of \(N \).
If \(a \in I \), then \(aS \subseteq I \). So, as \(I \) is any ideal of \(S \).
Then by Theorem 3.16, \(aS \subseteq I \). Then for any \(n \in N \), \((sa)n \in I \).
That is, \(s(an) \in I \). By Theorem 3.17, \((an)s \in I \). So an \(\in I \) for any \(n \in I \).
Hence \((I:S) \) is a right ideal. Consequently \((I:S) \) is an ideal. This completes the proof 3.17 (i).

Let \(x_1,x_2,x_3,...,x_n \in I \)
\(\Rightarrow x_1 \in (I : x_2,x_3,...,x_n) \)
\(\Rightarrow <x_1> \subseteq (I : x_2,x_3,...,x_n) \)
\(\Rightarrow <x_1> \subseteq (I : x_3,...,x_n) \subseteq I \)
3.19 Theorem
Let N be a m – regular pseudo m – power Commutative near – ring.

Then (i) N has strong IFP
(ii) N is a semi – prime near –ring

Proof
Let I be an ideal of N such that ab ∈ I, where a,b ∈ N. By Lemma 3.1, N is zero symmetric NI ⊆ I.

By Theorem 3.15 aN = Na.

Hence an = ma^n for some m,n ∈ N
Then any n ∈ N, anb = ma^n b

That is, N has strong IFP

Let M be an N – subgroup of N. Then by Theorem 3.14, M is an ideal of such that I^2 ⊆ M.

Since N is zero symmetric, NI ⊆ I.

If a ∈ I, then a = ab^ma ∈ I(NI) ⊆ I^2 ⊆ M.

So, any N – subgroup M of N is a semi – prime ideal. In particular {0} is semi – prime ideal and hence N is a semi – prime near – ring.

3.20 Note
When m = 1, all the results of [15] are obtained.

References
[6]. Gratzer, George, Universal Algebra, Van Nostrad, 1968
[7]. G.Gopalakrishnamoorthy and R.Veega, On Quasi – Periodic , Generalised Quasi – Periodic Algebras, Jour.of Inst.of Mathematics
[8]. G. Gopalakrishnamoorthy and S.Geetha , On (m,n) – Power Commutativity of rings and Scalar (m, n) – Power Commutativity of
Algebras, Jour.of Mathematical Sciences
[9]. G. Gopalakrishnamoorthy and R.Veega, On Scalar Power Central Elements in an Algebra over a Principal ideal domain, Jour.of Mathematical Sciences

DOI: 10.9790/5728-1204028086 www.iosrjournals.org 86 | Page