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Abstract: Credit quality changes need to be analysed from time to time. A good model for analysis needs to 

determine the Capital and reserves needed to support Credit Instruments portfolios as well as individual 

Credits. Conditions under which the Series method of finding Markov chains generators of Empirical Transition 

Matrices in Credit Ratings applications are identified in this article. Searching for valid Generators especially 

when a true generator does not exist and the properties of the series method is shown. Credit exposures 

Transition from one rating to another as well as Historical information are used to model estimation that pro- 

vide a description of Credit quality evolution probability. Time Homogeneous Markov Model specification is 

popularly used but it is only good in providing a description of portfolio risk changes in the short run hence 

restrictive in long run Credit processes. I propose a test which is simple and is of time homogeneity null 

hypothesis performed on all types of data reported often. The data used in the test is Sovereign debt, Municipal 

Bonds and Commercial paper. I find that transitions on municipal Bond ratings are described adequately for a 

period of up to five years. The Commercial paper assumes Markovian characteristics for a period of up to Six 

Months on a scale of 30 days transitions and the Sovereign debt transitions are described adequately by the 

Markov model using small data sample sizes.  
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I. Introduction 
Transition Matrix rating has been receiving increased attention in the financial industry. Publications of 

annual updates in transition matrices history is published annually in the US by Moody’s and Standard and 

Poor’s. In Kenya, there are two major Credit Rating agencies i. e Metropol and Credit Africa who provide the 

historical ratings of individual borrowers. Models have been proposed that analyse Credit Risk changes and 

their aim is to determine the Capital and reserves needed to support the Credit instruments portfolios and 

individual credits. The quality of a Credit is denoted by summarization of ratings in probability of default and 

default rate loss. Basel ii agreement (2004) made it a requirement for Institutions to provide an asset rating that 

covers default probability of one Year and the loss expected given the default. Banks and other financial 

Institutions rely entirely on these models and systems in order to produce stable and accurate risk 

representations of credit loss for Credit exposures of similar nature for both Current and future populations. In 

portfolio selection. most financial Institutions use this information as well as historical information on Credit 

exposures transitions from one rating to another and the information is used for estimation of various models 

that provide a description of the credit quality evolution. the specification which is popular is the time 

homogeneous model deemed to be simple. In transition probability terms, this information provides a 

specification of stochastic process but however it does not address the issue of transitional matrix generators 

especially in cases where the transitional matrix is unbounded.  

 

II. Methodology 
3.1 Seeking a Candidate Generator 

A Markov transition matrix P i. e P is an N × N real Matrix with row sums 1 and non- negative entries 

is non homogeneous. The main interest here is in finding a generator Q which is also an N × N matrix with row 

sums 0 and non-negative off diagonal entries such that throughout; 

𝑒𝑥𝑝 (𝑄)  =  𝑃 
𝑒𝑥𝑝  𝑡𝑄 =  𝐼 + 𝑡𝑄 + (𝑡𝑄)2 = 2! + (𝑡𝑄)3 = 3!+. . . 

 

3. 2 Identifying a Matrix Generator 
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Let P be a time homogeneous Markov Transition matrix i. e an N × N real Matrix with non-negative 

entries and with row sums 1. The main interest is in finding a generator Q i. e an N × N real matrix having non-

negative off diagonal entries with row-sums 0 and 𝑒𝑥𝑝 (𝑄)  =  𝑃.  

Throughout hence,  

𝑒𝑥𝑝 (𝑡𝑄)  =  𝐼 +  𝑡𝑄 + (𝑡𝑄)2 =  2!  + (𝑡𝑄)3 =  3! +. . . 
I is the N × N identity Matrix 

P is for one year i.e  𝑡 =  1.  
The starting point of our computation is given by; 

 

   baPbiabaS ,, of eeigen valuan  is;1max 22

 
S is computed by examining all eigen values of P, of the form 𝑎 +  𝑏𝑖 where a and b are real, computing the 

absolute square of eigen value minus 1 i. e (a − 1) + b2 and the maximum taken of these absolute squares.  

 

Property 1 

Let P be an N × N Markov Transition matrix and suppose S < 1, then series 

 
        ...4131211

~ 432
 PPPPQ

 (3.1) 

quickly converges geometrically and gives rise to an N × N Matrix Q˜ with row sums 0 such that 

 
  PQ 
~

exp
 

The proof of this property can be found in Zahl (1955, P 96) following Wedderburn (1934, P 122) 

result. This theorem is a simple method in terms of matrices summing for obtaining Matrix Q having all 

Generator properties.  

 

Property 2 

What if we have all diagonal entries of Transition Matrix P greater than 
1

2
(𝑃𝑖𝑖 > 0.5) for all i ?  

𝑆 <  1 hence convergence of series in Property 1 is guaranteed. Matrix P is strictly 

dominant (Horn and Johnson (1985), pg 302). This condition is also proved by Cuthbert (1972, 1973), that with 

this condition, P can have only one generator at most and if the generator exists, then is is a unique generator. 

The series will converge if 𝑆 <  1 even if some of the diagonal entries of P are less than 0. 5.  

Condition in Property 2 above denotes that Transition Matrix P is strictly diagonally dominant (Horn 

and Johnson (1985) pg 302). P can have one Generator at most (Cuthbert (1972, 1973)) and if the generator 

exists, then it is unique. The condition is a sufficient one in that Series 3.1 may converge and have 𝑠 <  1 even 

when some of the diagonal entries of P are less than 0.5.  

 

3.3  The condition of Non Negativity  

Matrix 𝑄  in Property 1 is not always guaranteed to have non-negative off diagonal entries, leads to a 

Transition Matrix being Unbounded. This is a major setback since if 𝑄  has a negative off diagonal entry, then 

 QtPt

~
exp  for sufficient small 𝑡 >  0. This implies that 𝑃𝑡  will not be a proper Markov Transitional Matrix 

which is unacceptable. Usually the negative off-diagonal entries of 𝑄 ˜ are usually small. This problem can be 

corrected by replacing the negative entries with 0, then add the appropriate value back to the corresponding 

diagonal entry in order to preserve the property of having row sum 0. This means that once we have 
Q
~

 a new 

matrix Q can be obtained by; 

  ijqq ijij  ,0,~max
 

                                                                                                      (3.2) 

 



ij

ijiiii qqq 0,~min~

 
3.2 was used by Zahl, 1955. The new matrix Q will have the row sums 0 and non-negative off diagonal entries 

but will not satisfy 𝑒𝑥𝑝 (𝑄)  =  𝑃 exactly.  

Another method of obtaining Q can be done by adding the negative values to all entries of the same row and not 

only on the diagonal entry having the correct sign, proportional to their absolute values. Let; 

 



ij

ijiii qMaxqG 0,~~

 

 



ij

iji qMaxB 0,~
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be the “good” and “bad” totals for each row i. Set 

 iijiijijij GqBqoqjioq ~~~ and , 
 

otherwise if Gi > 0 

𝑞𝑖𝑗 , otherwise if 𝐺𝑖=0                                                    (3.3) 

Since  
j ijq 0~

, we will have Gi ≥ Bi hence (3. 3) guarantees that 𝑞𝑖𝑗 ≥ 0 for i.  

If 𝑄  has slightly negative off diagonal elements and values −𝑞𝑖𝑖  are sufficiently large, (3. 3) and (3. 2) 

will be fairly similar. The choice of where to add the extra back in the modification of Q can be done by 

optimising the choice as a Multivariate functions. However, the improvement rarely makes any substantial 

difference to the distance of 𝑒𝑥𝑝 (𝑄) to P.  

If 𝑄 ˜ computed in Theorem 1 is not valid, a valid generator still exists and there may exist more than 

one such valid generators for a given Matrix of P. Certain conditions may also lead to conclusion of non-

existence of a generator for a given transition matrix P as illustrated in the Property 3 below.  

 

Property 3 

Let P be a Transition Matrix. Suppose that either; 

(a) 𝑑𝑒𝑡 (𝑃)  ≤  0; or 

(b) 𝑑𝑒𝑡 (𝑃)  >  𝜋𝑖𝑝𝑖𝑖  ; or 

(c) There are states i and j such that j is accessible from i but 𝑝𝑖𝑗 = 0 

Then exact generator of P does not exist.  

 

Property 4 

Given P to be a transition Matrix; 

(a) P will have one generator at most if 𝑑𝑒𝑡 (𝑃)  >  ½ 
(b) 𝑙𝑜𝑔 (𝑃) is the only generator possible for P if 

2

1
1 and 

2

1
)det(  PP  

 (c) 𝑙𝑜𝑔 (𝑃) is the only generator possible for P if P has eigen values which are distinct and 

𝑑𝑒𝑡 (𝑃)  > 𝑒−Π  
The property below is also observed. The property was also got by Singer and Spiler-man (1976, pp 29-30).  

 

Property 5 

If P is a Transition Matrix having eigen values which are real and distinct; 

(a) If P has eigen value which are all positive, then log (P) has the only real Matrix Q such that exp (Q) = P 
(b) If P has any eigen values which are negative, then there is no real matrix Q such that 𝑒𝑥𝑝 (𝑄)  =  𝑃. 

Property 4 and 5 further validate the matrix Q
~

 from property 1 which results into the sub property below; 

 

Corollary 

If P is a Transition Matrix, then at least one of the three conditions below hold; 

(i)  
2

1
det P and   𝑃 − 1  <

1

2
  or 

(ii) P has eigen values which are distinct and 𝑑𝑒𝑡 (𝑃)  >  𝑒 − 𝜋 
(iii) P has real eigen values which are distinct 

If Series in Property 1 converges to a matrix Q which has negative off-diagonal entries, then a valid generator 

for P does not exist.  

Other eigen values of P conditions are known which may make it possible to have valid generator Q. A 

proof by Elving (1937) shows that if P has a complex eigen value other than 1 or P has a real eigen value which 

is negative, then there does not exist a valid generator for P. Runnenberg (1962) further proves that matrix P of 

N nature is having a valid generator, then each complex eigen value of P must be within the complex plane 

region bearing the boundary curve; 

        
 









Nπ

π
soNπsNπssNπss

2sin
 ;2sinsin2cosexp ,2cosexp(  

In order for P to have a valid generator, each condition above is necessary as shown in property 3 or property 5 

(b).  

A more quantitative version of property 3 (c) can be shown finally in property 6 below; 
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Property 6 

If the generator of P is valid, then the entries of P must satisfy that; 

     


j

rjkmpijrjkmij

rmrm

ik bpbbpbprmrmp ,,1  

m and r are positive integers.  

 

 


 

 
1 0

!1!
m

m
λλ

m λeλeb
 

   

which is equated to probability M
I
 > m, N

I
 has mean λ = max (−Qii) and is a Poisson random variable. 1B is an 

indicator function from boolean event B.  

Note 

If generator for P is non existent, still it is possible to have matrix P½ such that   PP 
2

21 . Kingman(1962) 

showed that whether P is non singular and all positive integers n have matrix 

P1/n such that   PP
n

n 1 , then the generator for P exists. 

 

Searching for a Valid Generator 

Suppose Series 3. 1 does not converge or converges to matrix having terms which are negative off-

diagonal, still it is possible to have a generator. Theoretically finding this generator is possible by having to 

check the logarithm function and computing log (P) for every branch of the logarithm function and checking 

time to time that the non negativity condition is satisfied. If the eigen values of P are distinct, then it leads to 

property 7 below.  

 

Property 7 

If eigen values of P are distinct and Q a generator of P, then each eigen value denoted as λ of Q 

satisfies that |τmλ| ≤ |ln(det(P))|. A finite number in particular of log (P) branch values could be the possible 

generators of P. It is important to note that from property 3 (a), no generator will exist if det (P) ≤ 0. This 

Theorem makes it possible to have a finite logarithm or construct the same finite logarithm whenever P has 

eigen values which are distinct and all possible generators of P can be searched. Lagrange interpolation can be 

used; if P is n × n with eigen values which are distinct r1, r2, r3,..., rn and f is any function analytic in the 

neighbourhood of each eigen value, then f (P) = g (P), g is the polynomial degree n - 1 such that g (rj) = f (rj) for 

each j.  

According to Sylvester’s formula E. F Singer and Spiderman (1976), the Lagrange interpolation formula says 

that; 

    



 

j

j

j

k
jk rf

rkr

rx
xg Π ... (3.4) 

From equation 3.4 above, the sum is on all eigen values rj and product is on all eigen values 

rk with the exception of rj.  

For one to look or search for generators values f (rj), each of them should be equal to logarithm 

of rj. rj can be a complex number and f (rj) values satisfy; 

 

    
jjjj kπrArgirLogrf 2  

Integers kj are subject to property 7 condition. Using Lagrange interpolation, f (P) can be computed for each k1, 

k2, · · ·, kn and monitoring the non-negative off diagonal condition for f (P) which may arise. 

Property 7 can be summarised in the following steps,  

 

Step 1 Compute and verify that the eigen values r1, r2, · · ·, rn of P are all distinct.  

Step 2 For each eigen value rj, integer k is chosen such that; 

  
jjj kπrArgirλ 2log   

satisfies restriction of Property 7 such that; 

|τmλ| = |Arg(rj + 2πkj |≤| ln(det (P))| 

 

Step 3 For integers k1, k2, · · ·, kn,  
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f (rj) = log |rj | + i (Arg (rj) + 2πkj) 

is set and g (x) is the function from 3.4 

 

Step 4 Matrix Q = g (P) is computed for the function g (x) to verify whether it is a valid generator.  

Step 5 Step 2 is repeated by modifying one or more kj until all k1, k2, · · ·, kn have been taken into consideration.  

The above procedure is sufficient since in practise, the Credit rating Transition Matrices will most likely have 

distinct eigen values. The search will be more intense in rare cases where there are repeated eigen values.  

 

3. 4 Markov Chain Model 

The Markov chain model due to its relative simplicity is used increasingly by financial In- stitutions 

and practitioners. In the Markov chain model which is simple and discrete, the stochastic state process Xt at 

discrete time t forms a finite or countable set. The convenient way is to provide a label of the positive integers 

states. The unique number of finite states is the Markov chain denoted by the integer k and Pij (t) denotes the one 

step transition probability xi+1 = j given xt = i. The Transitional probabilities function of initial and final states is 

emphasized by the above representation as well as the transitional time. Transitional probabilities which are 

stationery in Markov process are mostly independent of the time variable. Hence in such cases, it can be denoted 

Pij (t = Pij). Organization of all transitional probabilities is of the form,  























kkkk

k

k

PPP

PPP

PPP

P

...

............

...

...

21

22221

11211

 

The transitional probabilities for each row is equal to one i. e 





k

j

ijP
1

1  

The state may move to any one of the alternative states or with probability Pii remain unchanged. Markov 

process evolution probability across the states in all sets possible can be represented as; 

Xt+1 = XtP 

The above equation is simple thus making the Markov Chain Model to be attractive to those researching on 

Credit transition behaviour. Identifying single asset risk category Xt e. g 

Xt = (0, 0, 1. 0, ..., 0) 

indicates the asset being in the third risk group. then; 

Xt+1 = (p31, p32, ..., p3k) 

at time t, is the asset probability distribution in risk state 3. Alternatively, in time t + 1, xt+1 is the corresponding 

distribution of the distribution xt of assets across time t risk categories and across the whole portfolio, the 

framework probability applies. The transition equation; 

xt+1 = xtpt 

is for the non-homogeneous case and t, Pt is the index for the probability transition matrix. This is 

Markovian model since next period distribution states depend on the current period distribution and not on the 

previous period distribution. The current state is mostly relied irrespective of the history. This means that the 

likelihood of a credit moving to another level of rating depends on the current rating of the Credit and not the 

past ratings history. Obtaining in period t + 2 distribution states given t period distribution,  

Xt+2 = Xt+1P = XtP
2
 

In case of time homogeneous and generally,  

Xt+m = XtP
m
. 

In non-homogeneous cases,  

Xt+2 = Xt+1 Pt+1 = XtPtPt+1 

and 

Xt+m = XtPtPt+1, ..., Pt+m−1 

 

3. 5 Parameters of Markov Chain Transition Estimation 

Transition probabilities estimation in a Markov chain which is simple in a manner which is 

straightforward is done by counting from one state to another the changes that occur in a sample period. early 

papers by Anderson and Goodman (1957), Chatfield(1973) and Good- man(1957) investigated the problem of 

estimation and inference. Single period transition matrix is given by; 
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













2222

1111

1

1

Pp

pP
p  

the number of times is given by nij and in N sample size n, there is migration from state i 

to state j. Markov process of likelihood function is given by; 

ln L(P|1 − period data) = n11ln p11 + n12 ln (1 − p11) + n21 ln (1 − p22) + n22ln p22 

The maximum likelihood estimators with respect to parameters p11 and p22 which are un- known are given by; 

   2122222212111111
~ ~ nnnpnnnp   

Observing one step transitions, these estimators are appropriate for k-state cases. In two period transition data, 

estimating p11 and p22 in time homogeneous Markov chain is given by; 

 
   
   

 
  
































2211

2

22

11

2

11

2222

1111

11...1

...11

221

212
2

ppp

pp

pp

pp
p  

Letting state 1 observations to be denoted by n11 (2) and moving from 1 to 2 be n12 (2), two period transition 

loglikelihood estimation p11 and p22 data is 

                 2222222111121111 ln221ln22(1ln22ln22ln pnpnpnpndataperiodPL 

 

III. Results 

Financial institutions estimate Markov transitional models basing on historical data. How- ever, one 

can obtain alternative sources for credit rating transition matrices. major rating agencies like Moody’s and 

Standard and Poor’s publish regularly transition matrices. Other vendors who also make use of transition 

matrices include KMV, Risk Metrics and Kamakura Inc. unfortunately, there is a laxity in reporting standards 

and often reporting is done with no underlying size of the data indicated or risk categories asset distribution. For 

accurate estimation, large data samples are vital since most credit transitions are events of low probability. 

Secondary data sets assembled to demonstrate the usefulness of the technique above include; 

 

4. 1 Sovereign debt 

The Secondary data obtained from Standard and Poor’s (2003) where there is adequate detail provided. 

Transition Matrices are calculated from overlapping Cohorts e. g from the 15 year sample, the cohorts are 1 15 

year, 2 14 year, 3 15 year etc and the eight transition categories of default included recorded. There is careful 

definition of default in sovereign debt since some of the debt to the Creditors are serviced often after default. 

The transition rates for one year, three year and seven year are tabulated as below; 

 

Sovereign Debt 1995-2012 
Transitions Chi Square DF P-value 

1, 3 18. 33 50 1. 000 

1, 3, 5 45. 32 89 1. 000 
1, 2, 5, 7 86. 14 148 1. 000 

 

No rejection of specification from time homogeneous Markov. The sample sizes here are below 100 hence the 

result.  

4. 2 Municipal Bonds 

The Secondary data is from Standard and Poor’s 2011 and consists of information from 1996 to 2010 

from eight categories of rating municipal bonds. The reporting is done on average 1 year, 2 year and 15 year 

transitional matrices. The run tests are based on data from 1 year and 2 years, 1, 2, 3 years, etc up to the full data 

set i. e 1, 2, 3 up to 15 year transitions and tabulated as below; 

 

Municipal Bonds 1996-2010 
Transitions LR Statistic DF Pr(X2 > LR) 

1, 2 43. 96 50 0. 815 
1, 2, 3 93. 33 99 0. 742 
1 to 4 155. 2 148 0. 427 
1 to 5 238. 6 197 0. 122 
1 to 6 374. 9 246 0 
1 to 7 527. 8 295 0 
1 to 8 715. 7 344 0 
1 to 9 973. 6 393 0 
1 to 10 1108 442 0 
1 to 11 

2057 

1568 

540 

491 

0 

0 1 to 12 

1 to 13 2491 589 0 
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1 to 14 2867 638 0 
1 to 15 3178 687 0 

 

Up to a period of 5 Years, the Markov chain is adequate in transition ratings specification. The model is 

reliable for one year, two year, three year and sufficiently 4 year transitions and from 5 years, it begins to fail. 

This implies that in practise, rating transitions for municipal bond is described for periods reasonable by time-

homogeneous models which are simple but should be updated after every four years.  

 

4. 3 Commercial Paper 

The secondary data was obtained from a study done by Moody in 2010. Defaults in commercial paper 

are rare although some migration or transition rating categories may be seen in P-1, P-2, P-3 and NP where P 

denotes Prime. No prime rating should ever default according to Moody. Commercial papers are usually short 

term assets unlike Municipal Bonds and are examined in 30, 60, 90, 120, 180, 270 1nd 365 days. There is no 

problem experienced in the 150, 210, 240, 300 and 330 days powers of P missing since expected patterns are 

experienced are experienced up to 180 days data transitions and with a time span increase, transitions also move 

from initial state and probably to default. However, Commercial paper is seldom extended for long periods since 

for 270 days and 365 days, the migration from NP to Default is zero. The category WR(Withdrawn) is 

experienced in Commercial paper since the Commercial Paper is not rolled over hence resulting in the size of 

the asset becoming negligible or loss of interest in the Market offering. However, this is not a symbol of 

Creditworthiness decline or default and normally it is treated as censored. Illustrating the method, calculation is 

done basing on the increase in period number and results tabulated as below.  

 

Commercial Paper 1982-2009 
Transition Chi Square DF P-Value 

1, 2 15. 95 16 0. 535 
1, 2, 3 19. 83 32 0. 979 
1, 2, 3, 4 24. 78 48 0. 999 
1 to 4, 6  —  

 

Calculations based on Moody’s (2010). The time scale is 30 days and the Model works for a six-

months period relevant for applications. No evidence against the specification of Markov has been noted and the 

sample size here is big hence the results.  

 

IV. Conclusion 

In most areas of portfolio management in bank risk management and supervision, Markov model which 

is time homogeneous is widely used. This model can describe simply the stochastic process of asset risk. for 

time homogeneity hypothesis, I propose a likelihood ratio test. Due to convenience of re-parameterization, to 

compute the test is simple and just requires restricted model numerical estimation (K − 1)
2
 -a parameter problem 

where risk categories number is denoted as K. The test can be applied on the data collected by Banks or rating 

agencies. I recommend that the test be used as an interpretation to determine whether or not particular period 

transitions are Markov chains model. I do not recommend putting the test into use to determine the underlying 

process whether is Markovian since the prediction would lead to defaults in everything. I believe that most 

transitions can be Markovian model for several years. For example on an annual scale of up to 5 years, 

Municipal Bond ratings description can be time homogeneous Markov model. I recommend that a different 

model be used for larger transition period. I conclude that for practical use, the transition Matrix estimated 

should be regularly updated and then the forecast used for up to 5 years. For commercial paper, the Markov 

model which is time homogeneous can be described adequately on a time scale which is 30 days for six periods 

at least. Since the data is large, the result is fair although 30 day transitions period are not common. In Sovereign 

debt application, the specification of Markov on an annual scale transitions cannot be rejected since the sizes of 

the sample are small. This is because there is no indication that there will be an improvement of the Markov 

Model and also on the other hand, there is no indication that the Model works well because simply in these 

transitions which are rare, the information is very limited.  
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