Solution of aVariational inequality Problem for Accretive Operators in Banach Spaces

Renu Chugh and Rekha Rani*

1Department of Mathematics, Maharshi Dayanand University, Rohtak (INDIA).
2Department of Mathematics, A. I. J. H. M. College, Rohtak (INDIA)

*rekhadalal93@gmail.com

Abstract: This paper introduces a two-step iterative process for finding a solution of a variational inequality problem for accretive operators in Banach spaces. The result obtained in this paper is motivated by the result given by Koji Aoyama et al [3]. Further, we consider the problem of finding a fixed point of a strictly pseudocontractive mapping in a Banach space.

Keywords: Accretive operators, sunny non-expansive retractions, Banach spaces, variational inequality problem.

I. Introduction

Let E be any smooth Banach space with || ||. Let E* denote the dual of E and < x, f > denote the value of f E at x E. Let C be a nonempty closed convex subset of E and let A be an accretive operator of C into E. The generalized variational inequality problem in Banach space is to find an element u E C such that < Au, J(v - u)> ≥ 0 ∀ v E C, where J is the duality mapping of E into E*.

Definition 1.1 A Banach space E is called uniformly convex iff for any ε, 0 < ε ≤ 2, the inequalities || x || ≤ 1, || y || ≤ 1 and || x - y || ≥ ε imply there exists a δ > 0 such that || x + y ||/2 ≤ 1 - δ.

Definition 1.2 Let E be any smooth Banach space. Then a function ρ_E: R+ → R+ is said to be modulus of smoothness of E if ρ_E(t) = sup \{|| x + y || + || x - y || - 1; || x || = 1, || y || = t \}.

Definition 1.3 A Banach space E is said to be uniformly smooth if

\[\lim_{t \to 0} \rho_E(t) = 0 \]

Remark 1.4 Let q > 1. A Banach space E is said to be q-uniformly smooth if there exists a fixed constant c > 0 such that ρ_E(t) = ct^q for all t > 0. For more details, see [4, 11]. It is obvious that if E is q-uniformly smooth, then q ≤ 2 and E is uniformly smooth.

Definition 1.5 Let E be any mapping from E into E* satisfying J(x) = { f E* : < x, f > = || x ||^2 and || f || = || x || }. Then J is called the normalized duality mapping of E.

Definition 1.6 Let C be a non-empty subset of a Banach space E. A mapping T : C → C is called nonexpansive [10] if || Tx - Ty || ≤ || x - y || ∀ x, y E C. T is called η-strictly pseudo-contractive if there exists a constant η E (0, 1) such that

\[< Tx - Ty, j(x - y) > \geq || x - y ||^2 - η || (1 - T)x - (1 - T)y ||^2 \] (1.1)

for every x, y E C and for some j(x - y) E J(x - y).

It is obvious that (1.1) is equivalent to

\[< (1 - T)x - (1 - T)y, j(x - y) > \geq η || (1 - T)x - (1 - T)y ||^2 \] (1.2)

Definition 1.7 A Banach space E is said to be smooth if the limit

\[\lim_{t \to 0} \frac{|| x + ty || - || x ||}{t} \]

exists for all x, y E U, where U = \{ x E E : || x || = 1 \}.

DOI: 10.9790/5728-120405131135 www.iosrjournals.org
Remark 1.8 It is known that \(J_q(x) = \|x\|^{q-2} J(x) \) for all \(x \in E \). If \(E \) is a Hilbert space, then \(J = I \). The normalized duality mapping \(J \) has the following properties:

1. If \(E \) is smooth, then \(J \) is single valued.
2. If \(E \) is strictly convex, then \(J \) is one-one and

\[< x - y, x' - y' > > 0 \] for all \((x, x'), (y, y') \in J \) with \(x \neq y \).
3. If \(E \) is reflexive, then \(J \) is surjective.
4. If \(E \) is uniformly smooth, then \(J \) is uniformly norm to norm continuous on each bounded subset of \(E \).
5. It is also known that \(q < y - x, j(x) \leq \|y\|^q - \|x\|^q \) for all \(x, y \in E \) and \(j \in J(x) \).

Theorem 1.9 [3] Let \(E \) be a uniformly convex and \(2 \)-uniformly smooth Banach space with best smooth constant \(K \) and \(C \) be a nonempty closed convex subset of \(E \). Let \(Q \) be a sunny nonexpansive retraction from \(E \) onto \(C \), \(\alpha > 0 \) and \(A \) be \(\alpha \)-inverse strongly accretive operator of \(C \) into \(E \). Let \(S(C, A) \neq \emptyset \) and the sequence \(\{x_n\} \) be generated by

\[x_{n+1} = \alpha_n x_n + (1 - \alpha_n) Q_C(x_n - \lambda_n A x_n), \quad x_1 \in C, \quad n = 1, 2, 3, \ldots \]

where \(\{\alpha_n\} \) is a sequence of positive real numbers and \(\{\lambda_n\} \) is a sequence in \([0, 1]\) and \(\lambda_n \in [a, \alpha/K^2] \) for some \(a > 0 \) and let \(\alpha_n \in [b, c] \), where \(0 < b < c < 1 \), then \(\{x_n\} \) converges weakly to some element \(z \in S(C, A) \).

After that for finding a common element of \(F(S) \cap VI(C, A) \), Nadezhkina and Takahashi [5] gave another result. They obtained the following weak convergence theorem:

Theorem 1.2 [5] Let \(C \) be a closed convex subset of a real Hilbert space \(H \). Let \(A \) be a monotone and \(k \)-Lipschitz continuous mapping from \(C \) to \(H \) and let \(S \) be a nonexpansive mapping of \(C \) into itself such that \(F(S) \cap VI(C, A) \neq \emptyset \). Let \(\{x_n\}, \{y_n\} \) be sequences generated by

\[y_n = P_C(x_n - \lambda_n A y_n), \quad n \geq 0, \]

\[x_{n+1} = \alpha_n x_n + (1 - \alpha_n) S_C(x_n - \lambda_n A x_n), \quad x_0 \in C \]

where \(\{\alpha_n\} \subset [a, b] \) for some \(a, b \in (0, 1/k) \) and \(\{\lambda_n\} \subset [c, d] \) for some \(c, d \in (0, 1) \). Then the sequences \(\{x_n\}, \{y_n\} \) generated by (1.3) converge weakly to some \(z \in F(S) \cap VI(C, A) \).

Motivated by above results, we provide the following iterative process for an accretive operator \(A \) in a Banach space \(E \),

\[x_1 = x \in C, \]

\[y_n = Q_C(x_n - \lambda_n A x_n), \quad n = 1, 2, 3, \ldots \]

where \(Q_C \) is a sunny nonexpansive retraction from \(E \) onto \(C \). Using this iterative process, we shall obtain a weak convergence theorem.

II. Preliminaries

Let \(D \) be a subset of \(C \) and \(Q \) be a mapping from \(C \) to \(D \). Then \(Q \) is said to be sunny if \(Q(Qx + t(x - Qx)) = Qx \), whenever \(Qx + t(x - Qx) \in C \) for \(x \in C \) and \(t \geq 0 \). A mapping \(Q : C \to C \) is called retraction if \(Q^2 = Q \). If \(Q \) is any retraction, then \(Qz = z \) for every \(z \in R(Q) \), where \(R(Q) \) is the range set of \(Q \). A subset \(D \) of \(C \) is called a sunny nonexpansive retraction of \(C \) if it exists a sunny nonexpansive retraction from \(C \) onto \(D \).

Now we collect some results.

Lemma 2.1 [7] Let \(C \) be a nonempty closed convex subset of a uniformly convex and uniformly smooth Banach space \(E \) and \(T \) be a nonexpansive mapping of \(C \) into itself with \(F(T) \neq \emptyset \). Then the set \(F(T) \) is a sunny nonexpansive retraction of \(C \).

Lemma 2.2 [6, 8] Let \(C \) be a nonempty closed convex subset of a smooth Banach space \(E \) and let \(Q_C \) be a retraction of \(E \) onto \(C \). Then the following are equivalent

(i) \(Q_C \) is both sunny and nonexpansive.
(ii) \(< x - x_0, J(y - Q_C x) > \leq 0 \) for all \(x \in E, y \in C \).

Also it is well known that if \(E \) is a Hilbert space, then sunny nonexpansive retraction is coincident with metric projection.

Also \(Q_C \) satisfies

\[x_0 = Q_C x \text{ iff } < x - x_0, J(y - x_0) > \leq 0 \text{ for all } y \in C. \]

Let \(E \) be a Banach space and let \(C \) be a nonempty closed convex subset of \(E \). An operator \(A \) of \(C \) into \(E \) is said to be accretive if there exists \(j(x - y) \in J(x - y) \) such that

\[< Ax - Ay, j(x - y) > \geq 0 \text{ for all } x, y \in C. \]
Solution of a Variational Inequality Problem for Accretive Operators in Banach Spaces

Lemma 2.3 [3] Let C be a nonempty closed convex subset of a smooth Banach space E. Let Qc be a sunny nonexpansive retraction from E onto C and let A be an accretive operator of C into E. Then for all \(\lambda > 0 \),
\[
S(C, A) = \{ u \in C : J(\lambda u - \lambda A u) = u \}
\]
where
\[
S(C, A) = \{ u \in C : J(\lambda u - \lambda A u) = u \}
\]
An operator \(A : C \rightarrow E \) is said to be \(\alpha \)-inverse strongly accretive if
\[
\langle Ax - Ay, J(x - y) \rangle \geq \alpha \| Ax - Ay \|^2
\]
for all \(x, y \in C \).

It is obvious from above equation that
\[
\| Ax - Ay \| \leq \frac{1}{\alpha} \| x - y \|.
\]

Lemma 2.4 [3] Let C be a nonempty closed convex subset of a 2-uniformly smooth Banach space E. Let \(\alpha > 0 \) and let \(A : C \rightarrow E \) be an \(\alpha \)-inverse strongly accretive operator. If \(0 < \lambda \leq \frac{\alpha}{K^2} \), then \(I - \lambda A \) is a nonexpansive mapping of C into E, where K is the 2-uniformly smoothness constant of E.

Lemma 2.5 [9] Let C be a nonempty closed convex subset of a uniformly convex Banach space with a Frechet differentiable norm. Let \(\{ T_1, T_2, \ldots \} \) be a sequence of nonexpansive mappings of C into itself with
\[
\bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset
\]
for all \(n \geq 1 \). Then the set
\[
\bigcap_{n=1}^{\infty} \bigcap_{m=n}^{\infty} F(T_m)
\]
consists of almost one point, where \(\overline{cD} \) D is the closure of the convex hull of D.

Lemma 2.6 [2] Let q be a given real number with \(1 < q \leq 2 \) and let E be a q-uniformly smooth Banach space. Then,
\[
\| x + y \|^q \leq \| x \|^q + q \langle x, y \rangle + 2 \| Kx \|^2,
\]
for all \(x, y \in E \), where \(J_q \) is the generalized duality mapping of E and K is the q-uniformly smoothness constant of E.

Theorem 2.7 [1] Let D be a nonempty bounded closed convex subset of a uniformly convex Banach space E and let T be a nonexpansive mapping of D into itself. If \(\{ u_n \} \) is a sequence of D such that \(u_n \rightarrow u_0 \) and let
\[
\lim_{n \to \infty} \| u_n - T u_n \| = 0,
\]
then \(u_0 \) is a fixed point of T.

III. Main Result

In this section, we shall prove our main result.

Theorem 3.1 Let E be a uniformly convex and 2-uniformly smooth Banach space with best smooth constant K and C be a nonempty closed convex subset of E. Let Qc be a sunny nonexpansive retraction from E onto C, \(\alpha > 0 \) and let \(A : C \rightarrow E \) be an \(\alpha \)-inverse strongly accretive operator of C into E. Let \(S(C, A) \neq \emptyset \) and the sequence \(\{ x_n \} \) be generated by
\[
y_n = Qc(y_n - \lambda_n A x_n),
\]
\[
x_{n+1} = \alpha_n x_n + (1 - \alpha_n) Qc(y_n - \lambda_n A y_n), \quad x_n \in C, \quad n = 1, 2, 3, \ldots
\]
where \(\{ \alpha_n \} \) is a sequence of positive real numbers satisfying \(\lambda_n \leq \alpha \) and \(\lambda_n \in [a, \alpha/K^2] \) for some \(a > 0 \) and let \(\alpha_n \in [b, c] \), where \(0 < b < c < 1 \), then \(\{ x_n \} \) converges weakly to some element z of \(S(C, A) \).

Proof. Let \(z_n = Qc(y_n - \lambda_n A y_n) \) for \(n = 1, 2, \ldots \). Let \(u \in S(C, A) \). Now,
\[
\| y_n - u \| \leq \| Qc(x_n - \lambda_n A x_n) - Qc(u - \lambda_n A u) \| (3.2)
\]
Also,
\[
\| z_n - u \| \leq \| Qc(y_n - \lambda_n A y_n) - Qc(u - \lambda_n A u) \| (3.3)
\]
Now, for every \(n = 1, 2, \ldots \),
\[
\| x_n - u \| \leq \| x_n - u \| + (1 - \alpha_n) \| z_n - u \|
\]
\[
\leq \alpha_n \| x_n - u \| + (1 - \alpha_n) \| z_n - u \|
\]
DOI: 10.9790/5728-120405131135 www.iosrjournals.org 133 | Page
Solution of a Variational Inequality Problem for Accretive Operators in Banach Spaces

Using (3.2) and (3.3), \(\|x_{n+1} - u\| \leq \|x_n - u\| \) (3.4)

(3.4) shows that \{ \|x_n - u\| \} is non-increasing sequence.

So, there exists \(\lim_{n \to \infty} \|x_n - u\| \) and hence \{ \(x_n \) \} is a bounded sequence. (3.2) and (3.3) shows that \{ \(y_n \), \(\{ Ax_n \} \) and \{ \(x_n \) \} are also bounded.

Next, we shall show that \(\lim_{n \to \infty} \|x_n - y_n\| = 0 \). Conversely, let \(\lim_{n \to \infty} \|x_n - y_n\| \neq 0 \). Then there exists \(\epsilon > 0 \) and a subsequence \{ \(x_{n_i} - y_{n_i} \) \} of \{ \(x_n - y_n \) \} such that \(\|x_{n_i} - y_{n_i}\| \geq \epsilon \) for each \(i = 1, 2, \ldots \). Since \(E \) is uniformly convex, so the function \(\| \cdot \| \) is uniformly convex on bounded convex subset \(B(0, \|x_1 - u\|) \), where \(B(0, \|x_1 - u\|) = \{ x \in E : \|x\| \leq \|x_1 - u\| \} \).

So, for any \(\epsilon \), there exists \(\delta > 0 \) such that \(\|x - y\| \geq \epsilon \) implies
\[
\|x + (1- \lambda)y\|^2 \\
\leq \lambda \|x\|^2 + (1- \lambda)\|y\|^2 - \lambda(1- \lambda)\delta,
\]

where \(x, y \in B(0, \|x_1 - u\|), \lambda \in (0, 1) \). So for \(i = 1, 2, \ldots \),
\[
\|x_{n_{i+1}} - u\|^2 = \|\alpha_{n_i}(x_{n_i} - u) + (1 - \alpha_{n_i})(z_{n_i} - u)\|^2 \\
\leq \alpha_{n_i}\|x_{n_i} - u\|^2 + (1 - \alpha_{n_i})\| y_{n_i} - u\|^2 - \alpha_{n_i}(1 - \alpha_{n_i})\delta \\
\leq \alpha_{n_i}\|x_{n_i} - u\|^2 + (1 - \alpha_{n_i})\| x_{n_i} - u\|^2 - \alpha_{n_i}(1 - \alpha_{n_i})\delta \\
\leq \| x_{n_i} - u\|^2 - \alpha_{n_i}(1 - \alpha_{n_i})\delta
\]

Therefore,
\[
0 < (1 - c)\delta \leq \alpha_{n_i}(1 - \alpha_{n_i})\delta \leq \|x_{n_i} - u\|^2 - \|x_{n_{i+1}} - u\|^2
\]

Since right hand side of inequality (3.5) converges to 0, so we get a contradiction.

Hence, \(\lim_{n \to \infty} \|x_n - y_n\| = 0 \) (3.6)

Now, since \(\{x_n\} \) is bounded, so there exists a subsequence \{ \(x_{n_j} \) \} of \(\{x_n\} \) that weakly converges to \(z \). Also \(\lambda_{n_i} \in [a, a/K^2] \), so \(\{ \lambda_{n_i} \} \) is bounded. Hence, there exists a subsequence \{ \(\lambda_{n_{i_j}} \) \} of \{ \(\lambda_{n_i} \) \} that weakly converges to \(\lambda_0 \in [a, a/K^2] \). Without loss of generality assume that \(\lambda_{n_i} \to \lambda_0 \). Since \(Q_c \) is nonexpansive, so
\[
y_{n_i} = Q_c(x_{n_i} - \lambda_{n_i}Ax_{n_i}) \text{ implies that}
\]
\[
\|Q_c(x_{n_i} - \lambda_{n_i}Ax_{n_i}) - x_n\| \\
\leq \|Q_c(x_{n_i} - \lambda_{n_i}Ax_{n_i}) - y_{n_i}\| + \|y_{n_i} - x_n\| \\
= \|Q_c(x_{n_i} - \lambda_{n_i}Ax_{n_i}) - Q_c(x_{n_i} - \lambda_{n_i}Ax_{n_i})\| + \|y_{n_i} - x_n\| \\
\leq |\lambda_0 - \lambda_{n_i}| \|Ax_{n_i}\| + \|y_{n_i} - x_n\| \\
\leq M |\lambda_0 - \lambda_{n_i}| + \|y_{n_i} - x_n\|
\]

where \(M = \sup \{ \|Ax_{n_i}\| : n = 1, 2, 3, \ldots \} \). Equation (3.6), (3.7) and convergence of \{ \(\lambda_{n_i} \) \} implies that
\[
\lim_{n \to \infty} \| Q_c(I - \lambda_{n_0}A)x_{n_i} - x_n \| = 0
\]

Also, \(Q_c(I - \lambda_{0}A) \) is nonexpansive, so (3.8), lemma 2.3 and theorem 2.7 implies \(z \in F(Q_c(I - \lambda_{0}A)) = S(C, A) \).

Lastly, we shall prove that \(\{x_n\} \) is convergent to some element of \(S(C, A) \). Let \(T_n = \alpha_{n_1}I + (1 - \alpha_{n_1})Q_c(I - \lambda_{n_0}A) \), for \(n = 1, 2, \ldots \) (3.9)

Then, \(x_{n+1} = T_nx_{n+1} \ldots \ldots \ldots \ldots T_1x \) and \(z \in \bigcap_{n=1}^{\infty} \text{co} \{x_m : m \geq n\} \). Also from lemma 2.4, \(T_n \) is nonexpansive mapping of \(C \) into itself. And from lemma 2.3, we have,
Solution of a Variational Inequality Problem for Accretive Operators in Banach Spaces

\[\bigcap_{n=1}^{\infty} F(T_n) = \bigcap_{n=1}^{\infty} F(Q_c(I - \lambda_n A)) = S(C, A). \]

Using theorem (2.5), we obtain

\[\bigcap_{n=1}^{\infty} \{x_m : m \geq n\} \bigcap S(C, A) = \{z\} \quad (3.10) \]

Hence, the sequence \(\{x_n\} \) is weakly convergent to some element of \(S(C, A) \).

IV. Application

Using our main result, we shall prove a result for strongly accretive operator.

Let \(C \) be a subset of a smooth Banach space \(E \). Let \(\alpha > 0 \). An operator \(A \) of \(C \) into \(E \) is said to be \(\alpha \)-strongly accretive if

\[< Ax - Ay, J(x - y) > \geq \alpha \| x - y \|^2 \quad \text{for all } x, y \in C. \]

Let \(\beta > 0 \). An operator \(A \) of \(C \) into \(E \) is said to be \(\beta \)-Lipschitz continuous if

\[\| Ax - Ay \| \leq \beta \| x - y \|, \quad \text{for all } x, y \in C. \]

Theorem 4.1 Let \(E \) be a uniformly convex and 2-uniformly smooth Banach space with best smooth constant \(K \) and \(C \) be a nonempty closed convex subset of \(E \). Let \(Q_C \) be a sunny nonexpansive retraction from \(E \) onto \(C \), \(\alpha > 0 \), \(\beta > 0 \) and \(A \) be \(\alpha \)-strongly accretive operator and \(\beta \)-Lipschitz continuous operator of \(C \) into \(E \). Let \(S(C, A) \neq \emptyset \) and the sequence \(\{x_n\} \) be generated by

\[x_{n+1} = \alpha_n x_n + (1 - \alpha_n) Q_C(y_n - \lambda_n A y_n), \quad x_n \in C, \quad n = 1, 2, 3, \ldots \]

where \(\{\lambda_n\} \) is a sequence of positive real numbers satisfying \(0 \leq \lambda_n \leq 1 \) and \(\lambda_n \in [a, \alpha/K^2] \) for some \(a > 0 \) and let \(\alpha_n \in [b, c] \), where \(0 < b < c < 1 \), then \(\{x_n\} \) converges weakly to a unique element \(z \) of \(S(C, A) \).

Proof. Since \(A \) is an \(\alpha \)-strongly accretive and \(\beta \)-Lipschitz continuous operator of \(C \) into \(E \), we have

\[< Ax - Ay, J(x - y) > \geq \alpha \| x - y \|^2 \geq \frac{\alpha}{\beta^2} \| Ax - Ay \|^2, \quad \text{for all } x, y \in C. \]

So \(A \) is \(\frac{\alpha}{\beta^2} \)-inverse strongly accretive. Since \(A \) is strongly accretive and \(S(C, A) \neq \emptyset \), so the set \(S(C, A) \) consists of one point \(z \). Using theorem 3.1, \(\{x_n\} \) converges weakly to a unique element \(z \) of \(S(C, A) \).

References

