On Intuitionistic Fuzzy Graph Structures

P.K. Sharma¹ and Vandana Bansal²

¹P.G. Department of Mathematics, D.A.V. College, Jalandhar City, Punjab, India. ²Research Scholar, IKGPT University, Jalandhar, Punjab, India.

Abstract: In this paper, we introduce the notion of intuitionistic fuzzy graph structure $\tilde{G} = (A, B_1, B_2,...,B_k)$ and discuss some analogs of fuzzy graph structure theoretical concepts. We also discuss some properties of intuitionistic fuzzy B_i - tree and intuitionistic fuzzy B_i -forests. **Keywords:** Intuitionistic fuzzy graph structure (IFGS), tree, forest, edge, path.

2010 Mathematics Subject Classification: 05C72, 05C05, 05C38, 03F55.

I. Introduction

In 1965, the concept of fuzzy sets was introduced by L.A. Zadeh [9]. A. Rosenfeld [7] gave the idea of fuzzy relation and fuzzy graph and developed the structure of fuzzy graphs, obtaining analogs of several graph theoretical concepts. E. Sampatkumar in [8] has generalized the notion of graph G = (V, E) to graph structure $G = (V, R_1, R_2, ..., R_k)$ and studied their properties. T. Dinesh and T. V. Ramakrishnan [2] gave the perception of fuzzy graph structure $G = (\mu, \rho_1, \rho_2, ..., \rho_k)$ and studied their properties.

One of the remarkable generalizations of fuzzy sets was intuitionistic fuzzy sets given by K.T. Atanassov's[1]. He gave the notion of intuitionistic fuzzy relation and discussed intuitionistic fuzzy graphs which were further studied in [6]. In this article, we introduce the notion of intuitionistic fuzzy graph structures and investigate some of their properties. We also discuss some properties of intuitionistic fuzzy B_i - trees and intuitionistic fuzzy B_i -forests.

II. Preliminaries

In this section, we review some definitions that are necessary in this paper which are mainly taken from [2], [5] and [8].

Definition (2.1) $G = (V, R_1, R_2,..., R_k)$ is a graph structure if V is a non empty set and $R_1, R_2,..., R_k$ are relations on V which are mutually disjoint such that each R_i , i=1,2,3,...,k, is symmetric and irreflexive.

Definition (2.2) A R_i-cycle is an alternating sequence v_0 , e_1 , v_1 , e_2 ,..., v_{n-1} , e_n , $v_n = v_0$ consisting of vertices and R_i –edges only.

Definition (2.3) A graph structure is a R_i -forest if the subgraph structure induced by R_i -edges is a forest, i.e., if it has no R_i -cycles.

Definition (2.4) An intuitionistic fuzzy graph is of the form G = (V, E) where

- (i) $V = \{v_1, v_2, ..., v_n\}$ such that $\mu_1 : V \rightarrow [0,1]$ and $\gamma_1 : V \rightarrow [0,1]$ denote the degree of
- membership and degree of non membership of the element $v_i \in V$, respectively such that $0 \le \mu_1(v_i) + \gamma_1(v_i) \le 1$, for every $v_i \in V$, (i = 1, 2, ..., n),
- (ii) $E \subseteq V \times V$ where $\mu_2: V \times V \rightarrow [0,1]$ and $\gamma_2: V \times V \rightarrow [0,1]$ are such that

 $\mu_2(v_i, v_j) \le \min\{\mu_1(v_i), \mu_1(v_j)\} \text{ and } \gamma_2(v_i, v_j) \le \max\{\gamma_1(v_i), \gamma_1(v_j)\} \text{ and } 0 \le \mu_2(v_i, v_j) + \gamma_2(v_i, v_j) \le 1,$ for every $(v_i, v_i) \in E$, (i, j = 1, 2, ..., n).

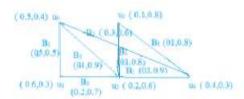
III. Intuitionistic Fuzzy Graph Structure

Definition (3.1): Let $G = (V, R_1, R_2, ..., R_k)$ be a graph structure and let A be an intuitionistic fuzzy subset (IFS) on V and $B_1, B_2, ..., B_k$ are intuitionistic fuzzy relations (IFR) on V which are mutually disjoint, symmetric and irreflexive such that

 $\mu_{B_i}(u,v) \le \mu_A(u) \land \mu_A(v)$ and $\nu_{B_i}(u,v) \le \nu_A(u) \lor \nu_A(v) \forall u, v \in V$ and i = 1, 2, ..., k. Then $\tilde{G} = (A, B_1, B_2, ..., B_k)$ is an intuitionistic fuzzy graph structure (IFGS) of G.

Note(3.2): Throughout this paper , unless otherwise specified $\tilde{G} = (A, B_1, B_2,...,B_k)$ will represent an intuitionistic fuzzy graph structure with respect to graph structure $G = (V, R_1, R_2, ..., R_k)$ and i = 1, 2, ..., k will refer to the number of intuitionistic fuzzy relations on V.

Example (3.3): Consider the graph structure $G = (V, R_1, R_2, R_3)$, where $V = \{u_0, u_1, u_2, u_3, u_4\}$ and $R_1 = \{(u_0, u_1, u_1, u_2, u_3, u_4)\}$, $R_2 = \{(u_1, u_2), (u_2, u_4)\}$, $R_3 = \{(u_2, u_3), (u_0, u_4)\}$ are the relations on V. Let $A = \{< u_0, 0.5, 0.4 >, < u_1, 0.6, 0.3 >, < u_2, 0.2, 0.6 >, < u_3, 0.1, 0.8 >, < u_4, 0.4, 0.3 > \}$ be an IFS on V and $B_1 = \{(u_0, u_1), 0.5, 0.5 >, < (u_0, u_2), 0.1, 0.9 >, < (u_3, u_4), 0.1, 0.8 >\}$, $B_2 = \{< (u_1, u_2), 0.2, 0.7 >, < (u_2, u_4), 0.1, 0.9 >\}$, $B_3 = \{<(u_2, u_3), 0.1, 0.8 >, <(u_0, u_4), 0.3, 0.6 >\}$ are IFRs on V.



It can be easily verified that $\mu_{B_i}(u,v) \le \mu_A(u) \land \mu_A(v)$ and $\nu_{B_i}(u,v) \le \nu_A(u) \lor \nu_A(v) \forall u, v \in V, i = 1, 2, 3$. Thus, $\tilde{G} = (A, B_1, B_2, B_3)$ is an IFGS of G.

Definition (3.4): Let $\tilde{G} = (A, B_1, B_2, ..., B_k)$ be an IFGS of a graph structure $G = (V, R_1, R_2, ..., R_k)$, then $\tilde{H} = (A, C_1, C_2, ..., C_k)$ is called a partial intuitionistic fuzzy spanning subgraph structure of \tilde{G} . if

 $\mu_{C_r}(u,v) \le \mu_{B_r}(u,v)$ and $\nu_{C_r}(u,v) \le \nu_{B_r}(u,v)$ for r = 1,2,...,k and $\forall u,v \in V, (u,v) \in B_i$ and i = 1,2,...,k.

Note (3.5): Supp(A) = { $u \in V$: μ_A (u) > 0, ν_A (u) < 1} and Supp(B_i) = {(u,v) $\in V \times V$: μ_{B_i} (u,v) > 0, ν_{B_i} (u,v) < 1}.

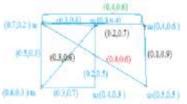
Definition (3.6): Let \tilde{G} be an IFGS of graph structure G, then (u,v) is called a B_i -edge of \tilde{G} if $(u,v) \in \text{supp}(B_i)$. **Definition (3.7):** A B_i path of an IFGS \tilde{G} is a sequence of vertices, $u_0, u_1, ..., u_n$ which are distinct (except possibly $u_0 = u_n$) such that (u_{i-1}, u_i) is a B_i -edge for all j = 1, 2, ..., n.

In example (3.3), u_1 , u_0 , u_2 is a B_1 -path, u_1 , u_2 , u_4 is a B_2 -path.

Definition (3.8): A path P in an IFGS \widetilde{G} is a sequence of vertices $v_1, v_2, \dots, v_n (\in V)$ which are distinct (except possibly $v_1 = v_n$) such that (v_i, v_{i+1}) is a B_p-edge for some $p \in \{1, 2, \dots, k\}$.

Definition (3.9): Two vertices of an IFGS \tilde{G} joined by a B_i-path are said to be B_i-connected. In example (3.3), u₁ and u₂ are B₁-connected and u₀ and u₅ are B₃-connected. **Definition (3.10):** A B_i-cycle is an alternating sequence of vertices and edges u₀,e₁,u₁,e₂,...,u_{n-1},e_n, u_n = u₀ consisting only of B_i-edges.

Example (3.11): Consider an IFGS $\widetilde{G} = (A, B_1, B_2, B_3, B_4)$ such that $V = \{u_0, u_1, u_2, u_3, u_4, u_5\}$. Let $R_1 = \{(u_0, u_1), (u_1, u_2), (u_2, u_3), (u_0, u_3)\}$, $R_2 = \{(u_0, u_5)\}$, $R_3 = \{(u_1, u_3), (u_3, u_4), (u_4, u_5)\}$, $R_4 = \{(u_0, u_4)\}$. $A = \{< u_0, 0.7, 0.2 >, < u_1, 0.6, 0.3 >, < u_2, 0.4, 0.3 >, < u_3, 0.3, 0.4 >, < u_4, 0.4, 0.6 >, < u_5, 0.5, 0.5 >\}$, $B_1 = \{(u_0, u_1), 0.5, 0.3 >, < (u_1, u_2), 0.3, 0.7 >, < (u_2, u_3), 0.2, 0.5 >, < (u_0, u_3), 0.3, 0.4 >\}$, $B_2 = \{< (u_0, u_5), 0.4, 0.6 >\}$, $B_3 = \{< (u_1, u_3), 0.3, 0.6 >, < (u_3, u_4), 0.2, 0.7 >, < (u_4, u_5), 0.1, 0.9 >, B_4 = \{< (u_0, u_4), 0.4, 0.6 >\}$ are terms as defined in definition (3.1).



Here, (u_0,u_1) , (u_1,u_2) , (u_2,u_3) , (u_3,u_0) is a B₁-cycle, but (u_1,u_3) , (u_3,u_4) , (u_4,u_5) is not a B₃-cycle.

Definition (3.12) : \widetilde{G} is an intuitionistic fuzzy B_i -cycle iff (supp (A), supp (B₁), supp (B₂), ..., supp (B_k)) is a R_i -cycle and there exists no unique (x,y) in supp(B_i) such that

 $\mu_{B_i}(\mathbf{x}, \mathbf{y}) = \Lambda \{ \mu_{B_i}(\mathbf{u}, \mathbf{v}) \mid (\mathbf{u}, \mathbf{v}) \in \text{supp}(\mathbf{B}_i) \} \text{ and } \nu_{B_i}(\mathbf{x}, \mathbf{y}) = \vee \{ \nu_{B_i}(\mathbf{u}, \mathbf{v}) \mid (\mathbf{u}, \mathbf{v}) \in \text{supp}(\mathbf{B}_i) \}.$

Definition (3.13): An IFGS \widetilde{G} is a B_i-forest if the subgraph structure induced by B_i -edges is a forest, i.e., if it has no B_i -cycles.

Definition (3.14): \widetilde{G} is a B_i-forest if its B_i-edges form a R_i-forest. In Example (3.11), In \widetilde{G} , there is no B_i-forest for i =1, 2, 3, 4.

Definition (3.15): \widetilde{G} is B_i-connected if any two vertices in V are joined by a B_i - path. In Example (3.11), \widetilde{G} is B₁-connected, B₂-connected, B₃-connected, B₄-connected.

Definition (3.16): An IFGS \widetilde{G} is connected if every two vertices are joined by a path. In Example (3.11), \widetilde{G} is connected IFGS.

Definition (3.17): The μ_{B_i} -strength of a B_i-path u₀,u₁,...,u_n of an IFGS \widetilde{G} is min{ $\mu_{B_i}(u_{j-1},u_j): j = 1,2,..,n$ }. It is denoted by S_{μ_n} .

In example (3.3), the μ_{B_1} -strength of a B₁-path u₁, u₀, u₂ is 0.1 and μ_{B_2} -strength of a B₂-path u₁, u₂ is 0.1.

Definition (3.18): The v_{B_i} -strength of a B_i-path u_0, u_1, \dots, u_n of an IFGS \widetilde{G} is max { $v_{B_i}(u_{j-1}, u_j) : j = 1, 2, \dots, n$ }. It is denoted by S_v .

In example (3.3) the v_{B_1} -strength of a B₁-path u₁,u₀,u₂ is 0.9 and v_{B_2} -strength of a B₂-path u₁,u₂, u₄ is 0.9

Definition (3.19): The strength of a B_i -path u_0 , u_1 ,..., u_n of an IFGS \widetilde{G} is

 $S_{B_i} = (S_{\mu_{B_i}}, S_{\nu_{B_i}}) = (\bigwedge_{j=1}^n \mu_{B_i} (\mathbf{u}_{j-1}, \mathbf{u}_j), \bigvee_{j=1}^n \nu_{B_i} (\mathbf{u}_{j-1}, \mathbf{u}_j)).$

In example (3.3), the strength of the B_1 -path u_1 , u_0 , u_2 is (0.1, 0.9) and strength of the B_2 -path u_1 , u_2 , u_4 is (0.1, 0.9).

Remark (3.20): The strength of a path in an IFGS \widetilde{G} is denoted by S, therefore $S = \begin{pmatrix} k & k \\ \bigwedge S_{\mu_{B_i}}, & \bigvee S_{\nu_{B_i}} \end{pmatrix}$.

Definition (3.21): In any IFGS \widetilde{G} , we define the following: $\mu_{B_i}^{2}(\mathbf{u},\mathbf{v}) = \mu_{B_i} \circ \mu_{B_i}(\mathbf{u},\mathbf{v}) = \operatorname{Max} \{ \mu_{B_i}(\mathbf{u},\mathbf{w}) \land \mu_{B_i}(\mathbf{w},\mathbf{v}) : \mathbf{w} \in \mathbf{V} \}$ and $\mu_{B_i}^{j}(\mathbf{u},\mathbf{v}) = (\mu_{B_i}^{j-1} \circ \mu_{B_i})(\mathbf{u},\mathbf{v}), \ j = 2,3,..., \text{ m for any } \mathbf{m} \ge 2.$

Also $\mu_{B_i}^{\infty}(\mathbf{u},\mathbf{v}) = \mathsf{V}\{ \mu_{B_i}^{j}(\mathbf{u},\mathbf{v}) : j = 1,2,...\}$ i.e., $\mu_{B_i}^{\infty}(\mathbf{u},\mathbf{v}) = \bigvee_{j=1}^{\infty} \mu_{B_i}^{j}(\mathbf{u},\mathbf{v}).$

Definition (3.22): In any IFGS \widetilde{G} , $v_{B_i}^2(u,v) = v_{B_i} \circ v_{B_i}(u,v) = \text{Min} \{ v_{B_i}(u,w) \lor v_{B_i}(w,v) \}$ and $v_{B_i}^{j}(u,v) = (v_{B_i}^{j-1} \circ v_{B_i})(u,v)$, j = 2, 3,...,m for any $m \ge 2$.

Also $v_{B_i}^{\infty}(\mathbf{u},\mathbf{v}) = \text{Min} \{ v_{B_i}^{j}(\mathbf{u},\mathbf{v}): j=1,2,... \}, \text{ i.e., } v_{B_i}^{\infty}(\mathbf{u},\mathbf{v}) = \bigwedge_{j=1}^{\infty} v_{B_i}^{j}(\mathbf{u},\mathbf{v}).$

Definition (3.23): \tilde{G} is a B_i-tree when it is B_i-connected and has no B_i-cycle.

In example (3.11), \tilde{G} is a B₃-tree. However \tilde{G} is neither B₁-tree nor B₂-tree nor B₄-tree.

Definition (3.24): \widetilde{G} is an intuitionistic fuzzy B_i -tree if it has a partial intuitionistic fuzzy spanning sub-graph structure $\widetilde{H}_i = (A, C_1, C_2, ..., C_k)$ which is a C_i -tree where for all B_i -edges not in \widetilde{H}_i , $\mu_{B_i}(u,v) < \mu_{C_i}^{\infty}(u,v)$ and $V_{B_i}(u,v) > V_{C_i}^{\infty}(u,v)$.

DOI: 10.9790/5728-1205012833

Definition (3.25): \widetilde{G} is an intuitionistic fuzzy B_i -forest if it has a partial intuitionistic fuzzy spanning sub-graph structure $\widetilde{H}_i = (A, C_1, C_2, ..., C_k)$ which is a C_i -forest where for all B_i -edges not in \widetilde{H}_i , $\mu_{B_i}(u,v) < \mu_{C_i}^{\infty}(u,v)$ and $\nu_{B_i}(u,v) > \nu_{C_i}^{\infty}(u,v)$.

IV. Intuitionistic fuzzy B_i-trees and intuitionistic fuzzy B_i-forests

In this section, we discuss some properties of intuitionistic fuzzy B_i -trees and intuitionistic fuzzy B_i -forests. **Theorem (4.1):** \widetilde{G} is an intuitionistic fuzzy B_i -forest if and only if in any B_i -cycle, there exists a B_i -edge (u,v) such that $\mu_{B_i}(u,v) < \mu'_{B_i}(u,v) > \nu'_{B_i}(u,v) > \nu'_{B_i}(u,v)$ where (A, B'₁, B'₂,...,B'_k) is the partial intuitionistic fuzzy spanning subgraph structure obtained by deleting (u, v) from \widetilde{G} and prime denotes the deletion of the edge (u,v).

Proof: Let (u,v) be an edge belonging to B_i -cycle such that $\mu_{B_i}(u,v) < \mu'_{B_i}(u,v)$ and $\nu_{B_i}(u,v) > \nu'_{B_i}(u,v)$ and for which $\mu_{B_i}(u,v)$ is the smallest and $\nu_{B_i}(u,v)$ is the largest.

If \widetilde{G} does not have any B_i-cycle, then it is an intuitionistic fuzzy B_i-forest, so the result is true.

Let \widetilde{G} has a B_i-cycle. Consider a B_i-edge (u,v) of that B_i-cycle such that $\mu_{B_i}(u,v)$ is the smallest among all B_i-edges of that B_i-cycle satisfying $\mu_{B_i}(u,v) < \mu'_{B_i}^{\infty}(u,v)$ and $\nu_{B_i}(u,v)$ is the largest among all B_i-edges of that B_i-cycle satisfying $\nu_{B_i}(u,v) > \nu'_{B_i}^{\infty}(u,v)$.

Now delete the B_i -edge (u,v). If (u,v) edge is deleted, the resulting partial intuitionistic fuzzy subgraph satisfies the path property of an intuitionistic fuzzy forest. If there are still B_i -cycles present, repeat the above process to remove them. Note that at this stage, no previously deleted edge is stronger than the edge being currently deleted. So the strength of deleted B_i -edges in a B_i -cycle increases in every step.

After removing all B_i-cycles, the resultant partial intuitionistic fuzzy spanning subgraph structure is a B_i-forest, say \widetilde{H}_i . Let (u,v) be not an edge of \widetilde{H}_i , so there exists a B_i-path from u to v stronger than (u,v). Even if some of its B_i-edges were deleted, there will be stronger B_i-paths for diverting around.

Repeating the process, we get a B_i-path consisting only of B_i-edges of \overline{H}_{i} .

 \therefore \tilde{G} is an intuitionistic fuzzy B_i-forest.

Conversely, let \widetilde{G} be an intuitionistic fuzzy B_i-forest.

Consider a B_i -cycle T_i of \widetilde{G} . Some B_i -edge (u,v) of T_i is not in the partial intuitionistic fuzzy spanning subgraph structure $\widetilde{H}_i = (A, C_1, C_2, ..., C_k)$ which is a C_i-forest and

$$\mu_{B_i}(\mathbf{u},\mathbf{v}) < \mu_{C_*}^{\infty}(\mathbf{u},\mathbf{v}) \text{ and } \nu_{B_i}(\mathbf{u},\mathbf{v}) > \nu_{C_*}^{\infty}(\mathbf{u},\mathbf{v}).$$

But $\mu_{C_r}^{\infty}(\mathbf{u},\mathbf{v}) < \mu_{B_i}^{\prime \infty}(\mathbf{u},\mathbf{v})$ and $\nu_{C_r}^{\infty}(\mathbf{u},\mathbf{v}) > \nu_{B_i}^{\prime \infty}(\mathbf{u},\mathbf{v})$ where $(\mathbf{A},\mathbf{B'}_1,\mathbf{B'}_2,...,\mathbf{B'}_k)$ is the partial intuitionistic fuzzy spanning sub-graph structure obtained by deleting (\mathbf{u},\mathbf{v}) from \widetilde{G} since (\mathbf{u},\mathbf{v}) is not in \widetilde{H}_i . $\therefore \mu_{B_i}(\mathbf{u},\mathbf{v}) < \mu_{B_i}^{\prime \infty}(\mathbf{u},\mathbf{v})$ and $\nu_{B_i}(\mathbf{u},\mathbf{v}) > \nu_{B_i}^{\prime \infty}(\mathbf{u},\mathbf{v})$.

Theorem (4.2): Let \widetilde{G} be an intuitionistic fuzzy B_i -tree and $\widetilde{G}^* = (\text{supp}(A), \text{supp}(B_1), \text{supp}(B_2), ..., \text{supp}(B_k))$ be not a R_i -tree. Then there exists atleast one R_i -edge (u,v) in supp(B_i) for which $\mu_{B_i}(u,v) < \mu_{B_i}^{\infty}(u,v)$ and $V_{B_i}(u,v) > V_{B_i}^{\infty}(u,v)$.

Proof: Let \widetilde{G} be an intuitionistic fuzzy B_i -tree, then there exists a partial intuitionistic fuzzy spanning subgraph structure $\widetilde{H}_i = (A, C_1, C_2, ..., C_k)$ which is a C_i -tree and $\mu_{B_i}(u, v) < \mu_{C_i}^{\infty}(u, v)$ and $v_{B_i}(u, v) > v_{C_i}^{\infty}(u, v)$ for all (u, v) not in \widetilde{H}_i . Clearly $\mu_{C_i}^{\infty}(u, v) \leq \mu_{B_i}^{\infty}(u, v)$ and $v_{C_i}^{\infty}(u, v) \geq v_{B_i}^{\infty}(u, v)$. $\therefore \mu_{B_i}(u, v) < \mu_{B_i}^{\infty}(u, v)$ and $v_{B_i}(u, v) > v_{B_i}^{\infty}(u, v) \forall (u, v)$ not in \widetilde{H}_i .

 \widetilde{G} be an intuitionistic fuzzy B_i -tree and \widetilde{G}^* is not a R_i -tree.

Hence there exists at least one B_i-edge (u, v) not in \widetilde{H}_i . i.e., there exists at least one R_i -edge (u,v) in supp(B_i) with $\mu_{B_i}(u,v) < \mu_{R_i}^{\infty}(u,v)$ and $\nu_{B_i}(u,v) > \nu_{R_i}^{\infty}(u,v)$.

Theorem (4.3): Let \tilde{G} be an IFGS. If there is atmost one strongest B_i-path between any two vertices, then \tilde{G} must be an intuitionistic fuzzy B_i-forest.

Proof: Suppose there exists at most one strongest B_i -path between any two vertices of \widetilde{G} .

If possible, let \widetilde{G} be not an intuitionistic fuzzy B_i -forest. Then there exists a B_i -cycle, say P_i in \widetilde{G} such that $\mu_{B_i}(u,v) \ge \mu'_{B_i}(u,v)$ and $\nu_{B_i}(u,v) \ge \nu'_{B_i}(u,v) \quad \forall u,v \text{ in } P_i$ where $(A, B'_1, B'_2, ..., B'_k)$ is the partial intuitionistic fuzzy spanning sub-graph structure obtained by the deletion of (u, v) by theorem 4.1. i.e., (u,v) is the strongest B_i -path from u to v.

The strength of a B_i -path is the strength of the weakest B_i -edge of that B_i -path.

 \therefore (u,v) cannot be a weakest B_i -edge of P_i since in that case the remaining B_i -edges of P_i form a strongest B_i -path which is a contradiction to our assumption.

 \therefore \tilde{G} is an intuitionistic fuzzy B_i -forest.

Theorem (4.4): If \widetilde{G}^* is a R_i-cycle. Then \widetilde{G} is an intuitionistic fuzzy B_i-cycle if and only if \widetilde{G} is not an intuitionistic fuzzy B_i-tree.

Proof: If possible, let \hat{G} be an intuitionistic fuzzy B_i -tree.

 \therefore \widetilde{G} has a partial intuitionistic fuzzy spanning subgraph structure $\widetilde{H}_i = (A, C_1, C_2, ..., C_k)$ which is a C_i -tree.

Since \widetilde{G}^* is a R_i -cycle, therefore, supp (B_i) -supp $(C_i) = \{(u,v), \text{ for some } u, v \in V\}$.

By definition of an intuitionistic fuzzy B_i -cycle, there does not exist unique B_i -edge (x,y) with

 $\mu_{B_i}(x,y) = \Lambda\{ \mu_{B_i}(u,v) \mid (u,v) \in \text{supp}(B_i) \}$ and $\nu_{B_i}(x,y) = \bigvee\{ \nu_{B_i}(u,v) \mid (u,v) \in \text{supp}(B_i) \}$. So there exists no C_i - path in \widetilde{H}_i from u to v having greater strength than $\mu_{B_i}(u,v)$ otherwise, \widetilde{G} will not be an intuitionistic fuzzy B_i -cycle.

 \therefore by the definition of an intuitionistic fuzzy B_i -tree, \widetilde{G} is not an intuitionistic fuzzy B_i -tree.

Conversely, let \widetilde{G} be not an intuitionistic fuzzy B_i -tree. Then it has no partial intuitionistic fuzzy spanning subgraph structure \widetilde{H}_i which is a C_i-tree.

Let us assume that \widetilde{G} is an intuitionistic fuzzy B_i-cycle. Let (A,C₁, C₂,...,C_k) be a partial intuitionistic fuzzy spanning subgraph structure of \widetilde{G} which is a C_i-tree. Then

 $\mu_{C_i}^{\infty}(\mathbf{u},\mathbf{v}) \leq \mu_{B_i}(\mathbf{u},\mathbf{v}) \text{ and } \nu_{C_i}^{\infty}(\mathbf{u},\mathbf{v}) \leq \nu_{B_i}(\mathbf{u},\mathbf{v}) \quad \forall (\mathbf{u},\mathbf{v}) \in \operatorname{supp}(\mathbf{B}_i) \text{ and } \mu_{C_i}(\mathbf{u},\mathbf{v}) = 0 \text{ and } \nu_{C_i}(\mathbf{u},\mathbf{v}) = 1.$ $\mu_{C_i}(\mathbf{x},\mathbf{y}) = \mu_{B_i}(\mathbf{x},\mathbf{y}) \text{ and } \nu_{C_i}(\mathbf{x},\mathbf{y}) = \nu_{B_i}(\mathbf{x},\mathbf{y}) \qquad \forall (\mathbf{x},\mathbf{y}) \in \operatorname{supp}(\mathbf{B}_i) - \{(\mathbf{u},\mathbf{v})\}.$ Thus \mathbf{B}_i does not attain $\land \{ \mu_{B_i}(\mathbf{x},\mathbf{y}) \mid (\mathbf{x},\mathbf{y}) \in \operatorname{supp}(\mathbf{B}_i) \}$ and $\lor \{ \nu_{B_i}(\mathbf{x},\mathbf{y}) \mid (\mathbf{x},\mathbf{y}) \in \operatorname{supp}(\mathbf{B}_i) \}$ uniquely.

Lemma (4.5): Let \widetilde{G} be an IFGS with $\mu_{B_i}(u,v) = \mu_A(u) \land \mu_A(v)$ and $\nu_{B_i}(u,v) = \nu_A(u) \lor \nu_A(v)$ for some i and $\forall (u,v) \in \text{supp}(B_i)$ where $\text{supp}(B_i) \neq \varphi$. Then $\mu_{B_i}^{\infty}(u,v) = \mu_{B_i}(u,v)$ and $\nu_{B_i}^{\infty}(u,v) = \nu_{B_i}(u,v)$ for that i. **Proof:** Let $\mu_{B_i}(u,v) = \mu_A(u) \land \mu_A(v)$ and $\nu_{B_i}(u,v) = \nu_A(u) \lor \nu_A(v)$ for some i and $\forall (u,v) \in \text{supp}(B_i)$

$$\mu_{B_i}^{\infty}(\mathbf{u},\mathbf{v}) = \bigvee_{j=1}^{\infty} \mu_{B_i}^{j}(\mathbf{u},\mathbf{v}) = \mu_{A}(\mathbf{u}) \wedge \mu_{A}(\mathbf{v}) = \mu_{B_i}(\mathbf{u},\mathbf{v}) \quad (\text{since } \mu_{B_i}^{j}(\mathbf{u},\mathbf{v}) \leq \mu_{A}(\mathbf{u}) \wedge \mu_{A}(\mathbf{v}) \quad \forall j)$$

and
$$V_{B_i}^{\infty}(\mathbf{u},\mathbf{v}) = \bigwedge_{j=1}^{\infty} V_{B_i}^{j}(\mathbf{u},\mathbf{v}) = v_A(\mathbf{u}) \lor v_A(\mathbf{v}) = V_{B_i}(\mathbf{u},\mathbf{v})$$
 (since $V_{B_i}^{j}(\mathbf{u},\mathbf{v}) \le v_A(\mathbf{u}) \lor v_A(\mathbf{v}) \forall j$)

Using the above result, we can prove the following property of intuitionistic fuzzy B_i-tree.

Theorem (4.6): Let \widetilde{G} be an intuitionistic fuzzy B_i -tree. Then $\mu_{B_i}(u,v) < \mu_A(u) \land \mu_A(v)$ and

 $v_{B_i}(u,v) < v_A(u) \lor v_A(v)$ for some (u,v) in supp (B_i) .

Proof: If possible, let $\mu_{B_i}(\mathbf{u},\mathbf{v}) = \mu_A(\mathbf{u}) \wedge \mu_A(\mathbf{v})$ and $\nu_{B_i}(\mathbf{u},\mathbf{v}) = \nu_A(\mathbf{u}) \vee \nu_A(\mathbf{v})$ for some i and $\forall (\mathbf{u},\mathbf{v}) \in \text{supp}(B_i)$, then by Lemma (4.5), $\mu_{B_i}^{\infty}(\mathbf{u},\mathbf{v}) = \mu_{B_i}(\mathbf{u},\mathbf{v})$ and $\nu_{B_i}^{\infty}(\mathbf{u},\mathbf{v}) = \nu_{B_i}(\mathbf{u},\mathbf{v})$ -----(1)

As \widetilde{G} be an intuitionistic fuzzy B_i -tree, $\therefore \widetilde{G}$ has a partial intuitionistic fuzzy spanning subgraph structure $\widetilde{H}_i = (A, C_1, C_2, ..., C_k)$ which is a C_i -tree and $\mu_{B_i}(u, v) < \mu_{C_i}^{\infty}(u, v)$ and $v_{B_i}(u, v) < v_{C_i}^{\infty}(u, v)$.

 $\therefore \quad \mu_{B_i}^{\infty}(\mathbf{u},\mathbf{v}) < \mu_{C_i}^{\infty}(\mathbf{u},\mathbf{v}) \text{ and } \quad v_{B_i}^{\infty}(\mathbf{u},\mathbf{v}) < v_{C_i}^{\infty}(\mathbf{u},\mathbf{v}) \text{ (using (1)) which is not possible.}$

Thus $\mu_{B_i}(u,v) < \mu_A(u) \land \mu_A(v)$ and $\nu_{B_i}(u,v) < \nu_A(u) \lor \nu_A(v)$ for some (u,v) in supp (B_i) .

 \therefore $\tilde{G} = (A, C_1, C_2, ..., C_k)$ is an intuitionistic fuzzy B_i -cycle.

Acknowledgement

The second author would like to thank IKG PT University, Jalandhar for providing the opportunity to do research work.

References

- Atanassov, K.T, Intuitionistic Fuzzy sets: Theory and applications, Studies in fuzziness and soft computing, Heidelberg, New York, Physica-Verlag, 1999.
- [2]. Dinesh T. and Ramakrishnan T. V., On Generalised Intuitionistic fuzzy Graph Structures, Applied Mathematical Sciences, Vol. 5, no. 4, 2011, 173 – 180.
- [3]. Mordeson John N., Nair Premchand S., Fuzzy Mathematics: An Introduction for Engineers and Scientists, Springer- Verlag Company, 2001.
- [4]. Mordeson, J.N. & Nair, P.S., Fuzzy Graphs and Fuzzy Hypergraphs, Physica-verlag, 2000.
- [5]. Parvathi R, Karunambigai M. G., Intuitionistic fuzzy Graphs, Journal of Computational Intelligence, Theory and Applications, 20, 2006, 139-150.
- [6]. Parvathi R. and M.G. Karunambigai and Atanassov, K.T. Operations on Intuitionistic Fuzzy Graphs, Fuzzy Systems, 2009, Proceedings of FUZZ-IEEE 2009, South Korea, 2009, 1396-1401.
- [7]. Rosenfeld A., Fuzzy Graphs, Fuzzy Sets and their Applications to Cognitive and Decision Process in: L.A. Zadeh, K.S. Fu. M. Shimura (Eds), Academic Press, New York, 1975, 77-95.
- [8]. Sampatkumar E., Generalized Graph Structures, Bulletin of Kerala Mathematics Association, Vol. 3, No.2, (2006, December), 67– 123.
- [9]. Zadeh L.A., Fuzzy Sets, Information and Control, 8, 1965, 338-353.