# On Designs arising from Corona Product HoK3 

${ }^{1}$ Sumathi M. P and ${ }^{2}$ Anwar Alwardi and<br>${ }^{1}$ Department of Mathematics, Mahajana First Grade College, Mysore 570006, India<br>${ }^{2}$ University of Aden, Aden, Yemen


#### Abstract

In this paper, we determine the partially balanced incomplete block designs and association scheme which are formed by the minimum dominating sets of the graphs C3 $\circ \mathrm{K} 3$, we determine the number of minimum dominating sets of graph $G=C_{n} \circ K 3$ and prove that the set of all mini- mum dominating sets of $G=C_{n}{ }^{\circ} K_{3}$ forms a partially balanced incomplete block design with two association scheme. Finally we generalize the results for the graph $H \circ K 3$.


Key Words: Minimum dominating sets, association schemes, PBIB designs.
2010 Mathematics subject classification: 05C50.

## I. Introduction

By a graph, we mean a finite undirected graph without loops or multiple lines. For a graph $G=$ $(V, E)$, let $V$ and $E$ respectively denote the vertex set and the edge set of graph $G$. For any vertex $u$ $\in \mathrm{V}, \mathrm{N}(\mathrm{u})=\{\mathrm{v} \in \mathrm{V}: \mathrm{u} v \in \mathrm{E}\}$ is called the open neighbourhood of u in V , and the closed neighbourhood of $u$ in $G$ is $N[u]=N(v) \cup\{u\}$. The degree of $u$ in $G, \operatorname{deg}(u)=|N(u)|$. The open Neighborhood of a set of vertices $S$ in $G$ is
$\mathrm{N}(\mathrm{S})=\mathrm{U}_{\mathrm{v} \varepsilon \mathrm{S}} \mathrm{N}(\mathrm{v})$ and the closed neighbourhood of the set S is
$N[S]=N(S) \cup S$. A subset $D \subseteq V$ is called dominating set of $G=(V, E)$ if
$\mathrm{N}[\mathrm{D}]=\mathrm{V}$. The domination number $\gamma(\mathrm{G})$ of G is the minimum cardinality of a dominating set.
A dominating set D is called minimal dominating set if no proper subset $\mathrm{S} \subset \mathrm{D}$
is a dominating set.
The PBIBD with $m$-association scheme which are arising from dominating sets has been studied extensively by many for example see [8],[1]. In this paper, We study the PBIBD and the association scheme which can be obtained from the minimum dominating sets in $\left(C_{n} \circ K_{3}\right)$ graph. Finally we generalize the results for the graph $\mathrm{H} \circ \mathrm{K}_{3}$.

## II. PBIBD arising fromminimumdominating sets of ( $\mathbf{C}_{\mathbf{n}} \circ \mathrm{K}_{3}$ )

Definition1. Given v objects a relation satisfying the following conditions is said to be an association scheme with $m$ classes:
(i) Any two objects are either first associates, or second associates...., or mth associates, the relation of association being symmetric.
(ii) Each object $\alpha$ has $n_{i}$ ith associates, the number $n_{i}$ being independent of $\alpha$.
(iii) If two objects $\alpha$ and $\beta$ are ith associates, then the number of objects which are jth associates of $\alpha$ and k th associates of $\beta$ is $\mathrm{p}_{\mathrm{jk}}^{\mathrm{i}}$
and is independent of the
pair of ith associates $\alpha$ and $\beta$. Also $\mathrm{p}^{\mathrm{i}} \quad \mathrm{i} \cdot{ }_{\mathrm{jk}}=\mathrm{p}_{\mathrm{kj}}$
If we have association scheme for the v objects we can define a PBIBD as the following definition.
Definition2. The PBIBD design is arrangement of v objects into b sets (called blocks) of size k where k < v such that
(i) Every object is contained in exactly $\mathbf{r}$ blocks.
(ii) Each block contains k distinct objects.
(iii) Any two objects which are ith associates occur together in exactly $\lambda_{\mathbf{i}}$ blocks.

Theorem3. From ( $C_{3} \circ \mathrm{~K}_{3}$ ) we can get PBIBD with parameters
( $\left.v=12, k=3, r=16, b=64, \lambda_{1}=0, \lambda_{2}=4\right)$ and association scheme of 2-classes
With $\boldsymbol{P}_{I}=\left[\begin{array}{ll}p_{11}^{1} & p_{12}^{1} \\ p_{21}^{1} & p_{22}^{1}\end{array}\right]=\left[\begin{array}{ll}2 & \mathbf{0} \\ 0 & 8\end{array}\right]$ and $\boldsymbol{P}_{2}=\left[\begin{array}{ll}p_{11}^{2} & p_{12}^{2} \\ p_{21}^{2} & p_{22}^{2}\end{array}\right]=\left[\begin{array}{ll}\mathbf{0} & 3 \\ 3 & 4\end{array}\right]$.

Proof. let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a corona graph $\mathrm{C} 3{ }^{\circ} \mathrm{K} 3$.
By labelling $\left\{v_{1}, v_{2}, v_{3}, v_{1}, v_{2}, v_{3}, " v_{1}, \cdots, v_{2}, v_{3}, v_{1}, v_{2}, v_{3} F\right.$ as in Figure.1, we can Define PBIBD as follows:

The point set is the vertices and the block set is the minimum dominating

$\left\{v_{1}, v_{2}, v_{3}^{\text {ma }}\right\},\left\{v_{1}^{n}, v_{2}, v_{3}\right\},\left\{v_{1}^{m}, v_{2}, v_{3}\right\},\left\{v_{1}^{\text {man }}, v_{2}, v_{3}\right\},\left\{v_{1}^{n}, v_{2}, v_{3}^{\text {man }}\right\},\left\{v_{1}^{\text {man }}, v_{2}^{n}, v_{3}\right\}$,
$\left\{v_{1}, v_{2}^{\text {man }}, v_{3}^{n}\right\},\left\{v_{1}, v_{2}^{*}, v_{3}\right\},\left\{v_{1}, v_{2}^{\text {ma }}, v_{3}\right\},\left\{v_{1}, v_{2}^{\text {man }}, v_{3}\right\},\left\{v_{1}^{n}, v_{2}^{*}, v_{3}\right\},\left\{v_{1}{ }^{n}, v_{2}^{*}, v_{3}^{m}\right\}$,


Figure 1: $\mathrm{C}_{3} \circ \mathrm{~K}_{3}$

$$
\begin{aligned}
& \left\{\mathrm{v}_{1}^{*}, \mathrm{v}_{2}^{*}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}^{*}, \mathrm{v}_{3}^{*}\right\},\left\{\mathrm{v}_{1}^{m}, \mathrm{v}_{2}^{*}, \mathrm{v}_{3}^{*}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}^{*}, \mathrm{v}_{3}^{*}\right\},\left\{\mathrm{v}_{1}^{*}, \mathrm{v}_{2}, \mathrm{v}_{3}^{*}\right\},\left\{\mathrm{v}_{1}^{*}, \mathrm{v}_{2}^{\prime \infty}, \mathrm{v}_{3}^{*}\right\} \text {, } \\
& \left\{v_{1}^{\prime}, v_{2}^{m}, v_{3}^{\prime}\right\},\left\{v_{1}^{m}, v_{2}^{\prime \prime}, v_{3}\right\},\left\{v_{1}^{m}, v_{2}^{\prime \prime}, v_{3}^{\prime}\right\},\left\{v_{1}^{m}, v_{2}^{m}, v_{3}^{m m}\right\},\left\{v_{1}, v_{2}^{m}, v_{3}^{\prime \prime}\right\},\left\{v_{1}^{\prime}, v_{2}^{m}, v_{3}^{m}\right\}, \\
& \left\{\mathrm{v}_{1}^{m}, \mathrm{v}_{2}^{m}, \mathrm{v}_{3}^{m}\right\},\left\{\mathrm{v}_{1}^{m}, \mathrm{v}_{2}, \mathrm{v}_{3}^{m}\right\}^{m},\left\{\mathrm{v}_{1}^{m}, \mathrm{v}_{2}, \mathrm{v}_{3}^{m}\right\},\left\{\mathrm{v}_{1}^{m}, \mathrm{v}_{2}^{m}, \mathrm{v}_{3}^{m}\right\},\left\{\mathrm{v}_{1}^{m}, \mathrm{v}_{2}^{m}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}^{m}, \mathrm{v}_{2}^{m}, \mathrm{v}_{3}^{n}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\mathbf{v}_{1}, \mathbf{v}_{2}^{n}, \mathrm{v}_{3}^{m}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}^{m}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}^{m}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}^{m}\right\},\left\{\mathrm{v}_{1}^{m}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}^{m}, \mathrm{v}_{2}, \mathrm{v}_{3}^{m}\right\}, \\
& \left\{\mathrm{v}_{1}^{m}, \mathrm{v}_{2}^{m}, \mathrm{v}_{3}^{m}\right\},\left\{\mathrm{v}_{1}^{m}, \mathrm{v}_{2}, \mathrm{v}_{3}^{n}\right\},\left\{\mathrm{v}_{1}^{m}, \mathrm{v}_{2}, \mathrm{v}_{3}^{\prime}\right\},\left\{\mathrm{v}_{1}^{m}, \mathrm{v}_{2}^{n}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}^{m}, \mathrm{v}_{2}^{n}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}^{n}, \mathrm{v}_{2}^{m}, \mathrm{v}_{3}\right\}, \\
& \left\{\mathrm{v}_{1}^{m}, \mathrm{v}_{2}^{m}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}^{m}, \mathrm{v}_{2}^{m}, \mathrm{v}_{3}^{m}\right\},\left\{\mathrm{v}_{1}^{n}, \mathrm{v}_{2}^{m}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}^{n}, \mathrm{v}_{2}^{m}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}^{m}, \mathrm{v}_{3}^{n}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}^{m}, \mathrm{v}_{3}^{\prime}\right\} \text {, } \\
& \left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}^{m}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}^{m}, \mathrm{v}_{3}^{m}\right\} \text { and }\left\{\mathrm{v}_{1}^{m}, \mathrm{v}_{2}^{m e}, \mathrm{v}_{3}^{m}\right\} \text {. }
\end{aligned}
$$

We define the association scheme as follows, for any $\alpha, \beta \in V(G), \alpha$ is first associate of $\beta$ if $\alpha$ and $\beta$ appear in zero or three minimum dominating sets and $\alpha$ is second associate of $\beta$ otherwise, see Table 1.

| Elements | First Associates | Second Associates |
| :---: | :---: | :---: |
| $\mathrm{V}_{1}$ | $\mathrm{v}_{1}{ }^{1}, \mathrm{v}_{1}{ }^{11}, \mathrm{v}_{1}{ }^{111}$ | $\mathrm{v}_{2}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{2}{ }^{11}, \mathrm{v}_{2}{ }^{111}, \mathrm{v}_{3}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{3}{ }^{11}, \mathrm{v}_{3}{ }^{111}$ |
| $\mathrm{v}_{1}{ }^{1}$ | $\mathrm{v}_{1}, \mathrm{v}_{1}{ }^{11}, \mathrm{v}_{1}{ }^{111}$ | $\mathrm{v}_{2}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{2}{ }^{11}, \mathrm{v}_{2}{ }^{111}, \mathrm{v}_{3}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{3}{ }^{11}, \mathrm{v}_{3}{ }^{111}$ |
| $\mathrm{v}_{1}{ }^{11}$ | $\mathrm{v}_{1}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{1}{ }^{111}$ | $\mathrm{v}_{2}, \mathrm{v}^{1}{ }^{1}, \mathrm{v}_{2}{ }^{11}, \mathrm{v}_{2}{ }^{111}, \mathrm{v}_{3}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{3}{ }^{11}, \mathrm{v}_{3}{ }^{111}$ |
| $\mathrm{v}_{1}{ }^{111}$ | $\mathrm{v}_{1}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{1}{ }^{11}$ | $\mathrm{v}_{2}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{2}{ }^{11}, \mathrm{v}_{2}{ }^{111}, \mathrm{v}_{3}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{3}{ }^{11}, \mathrm{v}_{3}{ }^{111}$ |
| $\mathrm{V}_{2}$ | $\mathrm{v}_{2}{ }^{1}, \mathrm{v}_{2}{ }^{11}, \mathrm{v}_{2}{ }^{111}$ | $\mathrm{v}_{1,} \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{1}{ }^{11}, \mathrm{v}_{1}{ }^{111}, \mathrm{v}_{3}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{3}{ }^{11}, \mathrm{v}_{3}{ }^{111}$ |
| $\mathrm{v}_{2}{ }^{1}$ | $\mathrm{v}_{2}, \mathrm{v}_{2}^{11}, \mathrm{v}_{2}{ }^{111}$ | $\mathrm{v}_{1}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{1}{ }^{11}, \mathrm{v}_{1}{ }^{111}, \mathrm{v}_{3}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{3}{ }^{11}, \mathrm{v}_{3}{ }^{111}$ |
| $\mathrm{v}_{2}{ }^{11}$ | $\mathrm{v}_{2}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{2}{ }^{111}$ | $\mathrm{v}_{1}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{1}{ }^{11}, \mathrm{v}_{1}{ }^{111}, \mathrm{v}_{3}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{3}{ }^{11}, \mathrm{v}_{3}{ }^{111}$ |
| $\mathrm{v}_{2}{ }^{111}$ | $\mathrm{v}_{2}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{2}{ }^{11}$ | $\mathrm{v}_{1,} \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{1}{ }^{11}, \mathrm{v}_{1}{ }^{111}, \mathrm{v}_{3}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{3}{ }^{11}, \mathrm{v}_{3}{ }^{\text {III }}$ |
| $\mathrm{V}_{3}$ | $\mathrm{v}_{3}{ }^{1}, \mathrm{v}_{3}{ }^{11}, \mathrm{v}_{3}{ }^{111}$ | $\mathrm{v}_{1,} \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{1}{ }^{11}, \mathrm{v}_{1}{ }^{111}, \mathrm{v}_{2}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{2}{ }^{11}, \mathrm{v}_{2}^{111}$ |
| $\mathrm{v}_{3}{ }^{1}$ | $\mathrm{v}_{3}, \mathrm{v}_{3}{ }^{11}, \mathrm{v}_{3}{ }^{111}$ | $\mathrm{v}_{1}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{1}{ }^{11}, \mathrm{v}_{1}{ }^{111}, \mathrm{v}_{2}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{2}{ }^{11}, \mathrm{v}_{2}{ }^{111}$ |
| $\mathrm{v}_{3}{ }^{11}$ | $\mathrm{v}_{3}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{3}{ }^{111}$ | $\mathrm{v}_{1}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{1}{ }^{11}, \mathrm{v}_{1}{ }^{111}, \mathrm{v}_{2}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{2}{ }^{11}, \mathrm{v}_{2}{ }^{111}$ |
| $\mathrm{v}_{3}{ }^{111}$ | $\mathrm{v}_{3}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{3}{ }^{11}$ | $\mathrm{v}_{1}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{1}{ }^{11}, \mathrm{v}_{1}{ }^{111}, \mathrm{v}_{2}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{2}{ }^{11}, \mathrm{v}_{2}{ }^{111}$ |

## Table 1:

## Theorem 4. Let $G \sim=(C n \square K 3)$. Then the number of minimum dominating sets of $G$ is $\mathbf{4}$.

Proof. Let $\mathrm{G} \sim=(\mathrm{Cn} \circ \mathrm{K} 3)$. Then $\gamma(\mathrm{G})=\mathrm{n}$. We need to find out all the sets of size n . For this, we have many possibilities :
case1. All the vertices of the minimum dominating set are from inside that is from Cn . Then there is only one minimum dominating set.
case2. The vertices of minimum dominating set i.e, not from the vertices of Cn .
The number of ways to select minimum dominating sets of size n from outside is 3 n .
case3. We select some vertices of minimum dominating sets from inside and some from outside. So we start by selecting one vertex from inside and ( $n-1$ )
vertices from outside. There are $\binom{n}{1}_{3^{n-1}}$ ways. Similarly 2 vertex from inside

```
(n - 2) vertices from outside. There are (\begin{array}{c}{n}\\{2}\end{array}\mp@subsup{)}{3n-1}{n}\mathrm{ ways. By continuing}\\mp@code{m}
in same way till (n - 1) vertices from inside and one from outside, there are
(\begin{array}{c}{n-1}\end{array})3\mathrm{ ways.}
```

Hence the total number of minimum dominating sets is

$$
\begin{aligned}
& 3^{n}+\binom{n}{1}_{3^{n-1}+\binom{n}{2}_{3 n-2}+\ldots \ldots+\binom{n}{n-1}_{3+1}}^{=\sum_{i=0}^{n}\binom{n}{1} 3^{n-i}} \\
& =4^{n} .
\end{aligned}
$$

Theorem 5. Let $G \cong\left(C_{n} \circ K_{3}\right)$. Any two vertices in $G$ either belong to zero minimum dominating set or $4^{n-2}$ minimum dominating sets.
Proof. By labeling the vertices of the graph $G$ as $\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{1}^{n}, v_{1}^{m}, v_{1}^{m o n}, v_{2}, v_{2}^{m}, v_{2}^{m \infty}, \ldots v_{n}^{n}, v_{n}^{m}, v_{n}^{m m}\right\}$
Where $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ are the vertices of $\mathrm{c}_{\mathrm{n}}$ and $\left\{\hat{\mathrm{v}}_{1}, \mathrm{v}_{1}, \mathrm{v}_{1}, \stackrel{\rightharpoonup}{v}_{2},{ }^{\prime \prime}, \mathrm{v}_{2}, \mathrm{v}_{2} \ldots \dot{v}_{\mathrm{n}}, \mathrm{v}_{\mathrm{n}},{ }^{m}, \mathrm{v}_{\mathrm{n}}\right\}$
are the vertices of the copies $\mathrm{k}_{3}$.

Let $\mathrm{u}, \mathrm{v}$ be any two vertices, we have the following cases:
Case1. $u$ and $v$ belong to $A$ then there are $4^{n-2}$ minimum dominating sets containing $u$ and $v$.
Case2. $u$ and $v$ belong to $B$ then there are $4^{n-2}$ ways to select minimum dominating sets containing $u$ and $v$.
Case3. Let $\mathrm{u} \in \mathrm{A}$ and $\mathrm{v} \in \mathrm{B}$ we have two subcases:
Case(i). Let $u$ and $v$ in the same triangle then there does not exists any Minimum dominating sets containing $u$ and $v$.
Case(ii). If $u$ and $v$ are from the different triangle then there are $4^{\mathrm{n}-2}$ ways to select minimum dominating sets.

Theoremb. Let $G \cong\left(C_{n}{ }^{\circ} K_{3}\right)$. Then every vertex $v \in V(G)$ contained in $4^{n-1}$ Minimum dominating sets.
Proof. Let $G \cong\left(C_{n} \circ K_{3}\right)$. The vertices of $G$ can be partitioned into $n$ sets, each set containing 3 vertex as the triangles $\Delta_{1}, \Delta_{2} \ldots \Delta_{\mathrm{n}}$. Let $\mathrm{v} \in \mathrm{V}(\mathrm{G})$ be any vertex such that $\mathrm{v} \in \Delta_{\mathrm{i}}$ for some $1 \leq \mathrm{i} \leq \mathrm{n}$. Any minimum dominating set containing v will contain $(\mathrm{n}-1)$ vertices from the other triangle $\Delta_{\mathbf{j}}$ where $\mathrm{i}=$ j. But it is not allowed to take two vertex from the same triangle so we need to take one vertex from each triangle.
Hence the ways to select $\mathrm{n}-1$ vertices from the $\Delta_{\mathrm{j}}$ triangles $\mathrm{i}=\mathrm{j}$ is $4^{\mathrm{n}-1}$.

Finally, we can generalize Theorem 6 as following.

Theorem7. For any graph $G \cong\left(H \circ K_{3}\right)$, there is PBIBD and association scheme associate with $G$ as the following parameters,

$$
\left(v=4 n, k=n, r=4^{n-1}, b=4^{n}, \lambda 1=0, \lambda 2=4^{n-2}\right) \text { and }
$$

$\boldsymbol{P}_{1}=\left[\begin{array}{ll}p_{11}^{1} & p_{12}^{1} \\ p_{21}^{1} & p_{22}^{1}\end{array}\right]=\left[\begin{array}{cc}2 & \mathbf{0} \\ 0 & 4(\boldsymbol{n}-1)\end{array}\right]$ and $\boldsymbol{P}_{2}=\left[\begin{array}{ll}p_{11}^{2} & p_{12}^{2} \\ p_{21}^{2} & p_{22}^{2}\end{array}\right]=\left[\begin{array}{cc}0 & 3 \\ 3 & 4(\boldsymbol{n}-2)\end{array}\right]$.

## Acknowledgment

Sumathi M. P. thank the Mahajana First Grade College and UGC for support-ing this minor project $\operatorname{MRP}(S)-0154 / 12-13 / K A M Y 008 / U G C-S W R O$ by UGC grants.. All authors thank the referees for helpful comments.

## References

[1]. Anwar Alwardi and N. D. Soner, Partial balanced incomplete block designs arising from some minimal dominating sets of SRNT graphs, International Journal of Mathematical Archive 2(2) (2011), 233-235.
[2]. P. J . Cameron and J . H. Van Lint, Designs, graphs, Codes and their links, vol. 22 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 1991.
[3]. F. Harary, Graph theory, Addison-Wesley, Reading Mass (1969).
[4]. V. R. Kulli and S. C. Sigarkanti, Further results on the neighborhood number of a graph. Indian J. Pure and Appl. Math. 23 (8) (1992) 575-577.
[5]. E. Sampathkumar and P. S. Neeralagi, The neighborhood number of a graph, Indian J. Pure and Appl. Math. 16 (2) (1985) 126-132.
[6]. Sharada.B and Soner Nandappa.D, Partially balanced incomplete block de- signs arising from minimum efficient dominating sets of graph, Bull.Pure Appl.Math Vol.2, No. 1 (2008), 47-56.
[7]. Sumathi. M.P and N. D. Soner Association scheme on some cycles related with minimum neighbourhood sets. My Science Vol V(1-2), Jan-Jul (2011), 23-27.
[8]. H. B. Walikar, H. S. Ramane, B. D. Acharya, H. S. Shekhareppa and, S. Arumugum, Partially balanced incomplete block design arising from mini- mum dominating sets of paths and cycles. AKCE J. Graphs Combin. 4(2) (2007), 223232.

