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Abstract: A class of approximate solutions of stationary exterior fields of Einstein-Maxwell (EM) equations
are obtained by expanding the metric in powers of a certain parameter and solving explicitly the first few orders
in terms of four harmonic functions. Previously these approximate solutions in closed form were found upto
third order. In the present paper we obtain new fourth order equations and find their approximate solutions for
the particular choice of the harmonic functions. The harmonic functions are so chosen that all the approximate
solutions obtained are asymptotically flat. Here some relations obtained are claimed to be a ‘laboratory’ with
which future attempts at exact solutions in terms of harmonic functions may be tested.
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. Introduction

Earlier, we obtained the third order approximate solutions of stationary (rotating) exterior (vacuum)
fields of Einstein-Maxwell (EM) equations in terms of four harmonic functions with brief discussions about
asymptotic properties [1 — 6]. Following similar procedures in this paper (hereinafter referred to as “Paper V),
we shall find a class of fourth order approximate solutions of stationary exterior EM equations in terms of
explicit forms of four harmonic functions. Here we also briefly discuss some asymptotic properties [7,8].

Papapetrou [9] and Majumdar [10] independently in 1947, discovered electrostatic (non-rotating) solutions
of the EM equations which are given in terms of a single harmonic function, have no spatial symmetry (i.e., they
are non- axisymmetric), and are produced by sources with m = lel, mand e being the mass and charge
respectively in suitable units. We call these the PM solutions which are different from the Papapetrou [9]
rotating solutions of the exterior field of Einstein’s equations considered earlier. Weyl’s [11] electrostatic (non-
rotating) solutions of the EM equations have axial symmetry and the sources satisfy m = S e, where S is a
constant and is the same for all masses. These Weyl solutions are given in terms of a single axisymmetric
harmonic function. Perjes [12] and independently Israel and Wilson [13] generalized the PM solutions to a class
of stationary (rotating) solutions of the EM equations with no spatial symmetry which arise from sources
satisfying

m=lel,h=%u, 1)
where h and g are respectively the angular momentum and magnetic moment vectors of the source. These are
called PIW solutions and are expressed in terms of two harmonic functions. Bonnor [14] attempted to find a
class of axially symmetric stationary solutions depending on two harmonic functions that is related to PIW
solutions in the same way as the Weyl class is related to the PM solutions. This new class would be associated
with source satisfying the relations :

m=pe h=pu, )
where S " is another constant. It was an unsuccessful attempt but Bonnor found a class of axisymmetric rotating

solutions of the EM equations that is expressible in terms of a single harmonic function. This class is unphysical
in a similar sense to that in which the Papapetrou rotating solutions of the exterior Einstein equations are
unphysical [6,9], namely asymptotically flat solution can be got only by making the mass of the source zero.

Considering a power series expansion of the metric in terms of a certain parameter, we can construct a
class of axisymmetric stationary solutions explicitly to the first few orders in terms of four harmonic functions.
With suitable choice of the harmonic functions this class yields to the order considered, the Weyl solutions, the
Bonnor solutions and the axisymmetric form of the PIW solutions respectively [3,5,6]. A class of approximate
solutions of stationary exterior EM equations in terms of four harmonic functions has been studied by Islam
[5,6], Salam [2,3], upto the second order. Explicit solutions in closed form in terms of particular choice of
harmonic functions upto the third order has been studied by Salam [1,3]. Following the procedure of Salam [1]
in this paper we solve the one more higher order, i.e., fourth order EM equations explicitly for particular choice
of the harmonic functions [7].

In section 11, we write down the field equations with some known solutions. In section I11, we derive
the fourth order EM equations and some approximate solutions. The physical interpretation is considered in
section 1V, and higher order EM equations and their approximate solutions obtained in section V.
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Il. The Field Equations and Some Known Solutions
The Einstein- Maxwell (EM) exterior equations, in suitable units are given by

a 1 (o4
R, =8rE, =-2FF, +§gWFaﬁF 7, (33)
F/lv;0'+ FVO';/I+ Foy;v:O’ (3b)
F,”V;V = —472-\]// = 0, Fyv = A/t,v - Av,,u y (3C)

where Eyv is the electromagnetic energy-momentum tensor, and J* the four- current which we put equal to
zero, since we consider the exterior field only ; F, is the electromagnetic field tensor, defined in terms of the

four-vector potential Aﬂ by (3c). A semicolon denotes covariant differentiation and a comma partial

differentiation. Greek indices take the values 0,1,2,3 and the repeated Greek indices are to be summed over
these values. The tensor FW satisfies (3b) identically with its definition in terms of Aﬂ. Equation (3a) follows

from the Einstein’s equations
1
R,uv_Eg,uvRZBﬂ-Tyv ! (4)

where R is the Ricci tensor, g

v is the metric tensor. If we interpret TW as E,, , then the Ricci scalar R

uv uv?

vanishes identically since Eﬂ” =0. By using standard procedure of Maxwell theory, it can also be shown that

E ., has zero divergence:

E#V;V = 0 ] (5)
which represents the conservation of energy and momentum of the electromagnetic field [3,5,6,7]. The

foregoing equations have been written down explicitly by Bonnor [14] for the standard form of a stationary
axisymmetric metric, namely,

ds® = f (dt —wd @) — p*f 'dg® —e*(dp® +dz?), (6)
where f, w and £ are all functions of p and z [3,6]. Writing

(X%, x5 x%,x¥) = (t, p,2,¢), c=1,
the vector potential (A,, A, A,, A;) can be written in terms of two scalar fields © and @' and the metric
functions f and w as follows [15]:

0 gy
A0=CD’A1=A2=O,£=WCDp+pf ‘o

%=W(Dz—pf’l(l)'

. 7
0z r @

oo
where d)p = 8_ etc. The consistency of the two relations in (7) is guaranteed by the following equation (8d).
0

The field equations (3a) and (3c) in the metric (6) and for Aﬂ given by (7) yield the following four equations
[1,3,5,6]:

FVAE =12 —f2 4 p 20wl +w2 )=2f(®2 +07 +2 +07), (8a)
fAW+2f W +2f,w, = 4pf HDL D -0 ®,), (8b)
fVO=f 0 +f0,+p" 2 (WD, -wd)), (8c)
VO =f @ +f,0,+p {2 (W0, WD), (8d)

where the operators VZ,A are respectively defined by
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2 2 2 2
V?= a—2+a—2+p"li and A = a—2+a—2—p"1i 9)
op° oz op op° oz op

(Salam, 2010, Eqgs (1.21a), 1.26a)respectively) [7].
When @ =@’ =0, equations (8a,b) reduce to
FV2E—f2 —f2 2 p 24 W2 +w? )=0
and
fAW+2f w, +2f,w, =0 respectively [2,3].

The field equations yield the following two more equations for f :

3 1 .. 3 , . 1
==, 42 P2 (1] — 13 e 2pf (o2 @2 1 —@? )+§plf2(wzz —w?),
(92)
g, =—F 7, +pf 2f f, —4pf O @, + @ @, )-p 2w w,. (9b)
The consistency of (9a,b) is guaranteed by (8a —d). When @ =®" =0, (9a), (9b) reduce to
i, =—f‘1fp+%pf‘2(f§ —f2 )+%p‘1f2(w2 —w; )

z

and
p, =—F 2, 4pf 21 f,—p 2w w,,
respectively. The equations (8a — d) are therefore the basic equations, since 4 can be obtained by a trivial
integration once f,w, ® and @' have been solved from (8a — d).
The Weyl solutions are given by
f=h'=(®+a)’*+b’>, d=-a+btanir, ® =0,w=0, (10)
where a,b are arbitrary constants and 7 is a harmonic function. For convenience the constants are written in
such a way that f is a positive definite quadratic in @ . For this case there is no essential loss of generality. Here

a constant parameter A is introduced and in the other solutions for reasons that will emerge later.
The Bonnor solutions are given by

f=h"=al+u’)'[(u-B)’+A7, (112)

@ =pA+u?)u+ D, @’=—%,B(1+u2)"1(1—u2)+®[) : (11b)

w —(ﬂj o, W ——(ﬁj o’ (11c)
P aA IO z) z aA IO p !

where «, 3, A, B, ®,,®), are arbitrary constants and ° = a (1+ A® + B?). The function u is given in

terms of the harmonic function ¢’ by

u=Atanlo’+B [1,3]. (11d)

The foregoing Bonnor’s solution is slightly different from that given in Bonnor (1973) [14]. We have considered
the case where his constants a and b satisfy a’+b%< 4, the opposite case being essentially the same. When

a’+b? = 4, Bonnor’s solution becomes a special case of the PIW solutions ; this fact is not apparent from
(11a — d) but is not important for the present. To facilitate comparison with the approximate solution, we have

written A o' for o', where A is a constant parameter.
The non-axisymmetric PIW solutions are given by

) 2
ds? =U[” (dt + QW dx + QP dy + Q¥dz)? — U (dx? + dy? +dz?) , (12)
where U is any complex solution of Laplace’s equation in the cartesian coordinates X, Y, Z (i.e., U is the form
U,+iU, where U, and U, are real non-axisymmetric harmonic functions), and the vector

Q= (Q(l) Q4 00 ) is found by solving the equation
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VAQ=ilUW*U*VU), (13)
where U™ is the complex conjugate of U. The electromagnetic field can be described is terms of non-

axisymmetric potentials ®, D" by

O+id'=1/U =U™/UF . (14)
To obtain the axisymmetric form of the solution, let
QP =0, p?QY = yw, p’Q® = —xw, x = pcosg, y = psin @, (15)

and taking U =7 +1&, where 7 and & are axisymmetric harmonic functions. With the foregoing condition
(13), the metric (12) reduces to (6) and we get the axisymmetric form of the PIW solutions as follows :

f=®°+D*=(n*+EH)T, (16a)
Q= +&) 7, O =—(n*+&)7E, (16b)
(16c)

w,=2p(¢n, —n&,), W,==2p(n,-ns,),

0 _
where in (16c), we have used a—n =p 1X77p, etc. The desired form of the PIW solutions are respectively
X

obtained from (16a — c) by setting 7 =A&" +1 and & = An’, which is permissible since A" +1 and An'

are harmonic, assuming that &’,7" are harmonic functions.

fon?t :(772 +§2)—1

f Pt =h=(A& +17 + A%"?, (172)
§ AE +1
(1) — 2 + 2\-1 —
(77 5 ) 77 (15'4‘1)2 +2277!2
"= ] A1 (17b)

TP+ GED) A
Wp = 2P(§77z _7752)

=2p[An'2&, — (A" +D)An,1==2p[An, (AL +1) - Xn'E]]
w, ==2p(Sn,-ns,) >

=2p[An, (A& +) - 2n'&l]. (17¢)

[1,3,6,7].

I11. Derivation of Einstein- Maxwell Equations upto Fourth Order and Some Approximate

Solutions
To derive the EM equations upto fourth order and the solutions of aforesaid orders ; we substitute

f =h"andallits partial derivatives with respectto o and Z into (8a — d), we obtain [1,3,6] :
hw2h-h2 —h? —p2W +w3 )=—2n°(@2% +®% +d'2 +a'3 ) (182)

3 ' '
hAw—-2h w, —2hw, =4ph*(D,0 - D,), (18b)
2 1/ ’ ’ -1
hV?®' =—h @ —hd, + p 7 (W,®, —wW,d ), (18c)
(18d)

2 -1 '
hv'®=-h ® —h o, +p~(W,® —w, D).
Again we substitute f = h™* and all its partial derivatives with respectto o and Z into (9a —b) and then after

some manipulations we have [3] :
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hu, =hh, +%p(hf, —1% h2ph3(@% —@2 +@% —0% )+%p_1(W§ —w2 ), (19)
h?s, =hh, + ph h, —4ph*(@ @, + @ @, )- pw w, . (19b)
We suppose that there is a solution of the field equations (18a — d) which depends smoothly on the parameter 4 and a

certain number of harmonic functions. The possible expansion of the functions h, w,®, D’ in a power series in A
are as follows [7] :

h= Z/»th(n)’wz Zlnw(n)’q) _ zﬂnq)(n) D = zﬂ’nq)'(n) (20)
n=o n=o n=o n=o

We further suppose that the electromagnetic field vanishes and space- time becomes flat when A =0, so that
h© w® ®@ @"® gre constants, with h® =1, w® =0

Making use of eq. (20) with their required partial derivatives into egs. (18a — d) and by some manipulation we
get equations up to A% which respectively as follows [7]:

AV2h® +12[V2h(2) 1+ hOv2HO® _(h(%)Z +h(?2 )_p—Z(Wﬁ()l)Z +W§1)2 )] +/13[V2h(3) +h®v2h?
+h®v2p® —Z(h%) h(/2)) +h(? h(?) )_Zp—Z(W(;) W(i) +W(? W(f) )]
+A4[V2h(4)+h(1)v2h(3)+h(2)v2h(2)+h(3)v2h(l)
—{(h?? +h®2 )1 2(h® h® +h® K® )}
—p W2 +w@? )+ 2w W+ W WD )+
=2 [2H{00? +@? +0'Q? + 0%}
+232(@9 d? +d? 0P + @D PP + P P'?)
+3nO(dD? +dP? L' D? P2 )}
+A{1+3(h? +h®)HoW? 1 pP? +'®?2 L 'P? )}
+(1+3nN{2@Y 2 +0P P +' P P + P '@ )}]]]*

(21a)
AAWY +22{AWP + hOAW® — 2(h;1) Wf)” +hOw?)}

+ A AW® £ hOAW? + hOAWD —2{(hOW? + hOw®)
P P P P

+ (hOW? + AW+ A TAW® + hOAW® + hD AW + h®AW®

Dy (3 (2hp[(2) (©NY ) (ONYE)] (2D [(2) ChafD
—2{(hOW + hOWE + hOWE) + (WO + hPW + hOWD )+
=4p [[/12 (@0 - P0L) + P[P DD + P DD)
—(@'VDP + 0 P0P) + 30 (D VDY — PP
+A' [(@P0P + P + O PDN) - (@' VDP) + PP + D PIDD)

() 1)1 (2) 1(2) D) 1D 3 (2) 1(2) @)
+3h{(@ PP + P DY) — (@Y DP + P DY)}

(2) D2 PN {OP N
+(3™” +3n77) (@7 D) — D TDT )]+ ... ]] (21b)

AVZO'Y 4+ 1%(V2O'D + hOV2R' D) +213(V2D'® + hOV2'? + h@v2ip'®)
+A4 (VD' + hOV2D'® + WOV L OV W)+ ...,
=2H{(0FDP + hODD) — o (W DP WD)}

3 Dery(2) (2) 1y D r(2) (2) (D
+A{(h7 D7 + h D7 + h @) + h,“ D7)
P WODP + wIDY —WODD — WD)}
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+/14{(h/‘j)q>;§3) + hf)q)f) + hff)CI)’Ff” +hPD® + hPP + hPp')

—p (WO + WA + wPpY —wPO® —wWAD® —wWEDD) N+ (21c)
AVZOW 1 2(V2DP + hOV2DD) + 13(V2D® + hOV2p® + h@v2p®)

+ A4 (V2OY + V2B L V2P L hAVZe®) 4 ...

=AM DY + hPDP) — p* (WP — WD)}

+i3{(hf)1)CDS) + hfoz)CD(:) + hz(l)q)(ZZ) + hz(2)q)(zl)) _ pfl(Wil)cD;SZ) + Vv§2)®;§1) _ WS)CDIz(Z) _ W/()Z)CI)'Z(”)}
+A{ (VYD + hPPD + hODD + hPDP + KPP + hP)

— P WODD w4+ WIDO WD - WA —WID O +........ (214)
Equating the co-efficients of A, that is first order from (21a — d), we get respectively :

vh® =0, Aw® =0, V2d'® =0,v2p® =0. (22)

The solution of first and last two equations of (22) are respectively

h® =7, @V = §,d)’(1) =1, (23)

where 7, & n are independent harmonic functions [1,3,5]. The proof is obvious.
The second equation of (22) can be solved as follows :

WS) =po, W = -po, (24)

where o is a harmonic function.
If £'is harmonic, then (24) is equivalent to the solution

n_
w = p (25)
which is used in (1.11a) (Salam, 2010) [7], but (25) preferable for the present. In fact
o= _é/z

In the second order, that is equating the co-efficients of A% from both sides of (21a—d) and using (22),
we get respectively

V2h® — (W92 4 h®2) - p2(WD2 +Wh2) = 2(D®? + DY + /D 1 02}, (262)
AW —2(hOWD + hOWD) = 4 p(@ VD — D VD®) (26b)
V@ = (WD +hPD®) - o (WP DY —w )] (260)
V@ = (WY + h9®) - p (W'D —wWOp)]. (264)
Substituting the values of (23) and (24) into (26a — d) yields respectively the following equations [7] :
VhD =2 422+ ol + o —2AEE+E+ 1+ 17, (27a)
MW =2p(z, 0, ~7,0,) +4p(1,8, —1,5,), (27b)
V'@ = -t ,n, -t 1, +&,0,+&,0,, (27¢)
Vo = —rpép —7,&, — n,0,—m,0, . (27d)
The solutions of (27a — d) can be taken as follows :

h(Z)Z%z_z_'_%az_éz_nz, (28a)
W = p(zo, —ot,) +2p(En, —1E,)

W? =—p(tc, —o1,)-2p(En, —nE,) | (28b)
®'? :—%n]+%§a, (28¢c)
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1 1
oA = . 28d
2 U9 5 no (28d)

The consistency of (28b) is guaranteed by the fact that 7, o, & # are harmonic functions. We have ignored
arbitrary harmonic functions that could be added to (28a,c,d) and an arbitrary solution of AW® =0 that could
be added to W? . Equations (27a,c,d) can be solved by repeated application of the identity.

2 2 2
V?(GH)=GV’H + HV°G +2(G H , +G,H,). (29)
where G, H are any two functions of p ,z. The equation (27b) has been solved in a similar way to which

1
AW? =20~ %) p(0,$,, = 0,¢,,).- (30)
was solved [7].
Equating the co-efficients of 22 i.e, the third order from (21a—d), we get, using (22),
NG Oy2K(3) (OING) (OING) 2 (\W D2 D\w(@y — OPp@
V2h® + hOV?h® —2(h®h@ + h®h®) -2 2 (WOW? +wOw?) = -2 [2(DdYV D!

n (D(Zl)q)(zz) + (D;(l)q)rp(z) + (sz(l)q)fz(Z)) +3h® (CD(;)Z + (D(Zl)z + q);)(l)?-’ + q)'z(l)Z)] ’ (31a)

AW + hOAWD — 2(hPWP + hPwW®D) + (hOW? + hPwWD)}=4p[(DPD? + DD DY)
— (@0 + @ P0P) 430 (@Y -~ PP, (31b)

2p'® Ov2p' (@ — Op'@ @@ Ogp'@ @@ “LwWOp@ Ap®
V'O +hOV2'® = {(hPD"? + hP'V + hPP P + hP D) — p (WD + WP

1 2 2 1
—WODD —WADO)] (310

V2p® + hOVv2p®@ — —[(hs)q)f) + h/()z)q);l) + hz(l)q)(zz) + h§2)®§1)) _ p—l(W§1)®;§2) + Wgz)q);(l)
_ Wl(Jl)q)rZ(Z) _ W,(JZ)(D'Z(D )] (31d)

Using equations (23), (24), (28a — d) in the aforesaid equations (31a — d) and then by some
manipulations, we obtain

VD =2(z) +27) + (0, +07) = 20(&] + &)+, +1,) = 28(2 &, +7,8,)

- 277(%’7,; + 2-2772) + 2§(O'p77p + Gznz) - 277(O'p§p + O-zéz) , (323)

MW =2p[22(E 17, —Em,) + (2,0, —7,0,) + 7, (En, —Em) —7,(En, — &)
- 0,8, +nn,)+0o (&8, +1n,)], (32b)

@ 1 1 3
VZ(D @) _ 577(2-; + 2_22) + ET(TPU,J + z-2772) - g(z—pdp + z-zaz) - EG(Tpgp + z-z‘/;:z)
3 1
- EO'(O'pUp + O-znz) + 277(77; + 7722) + 4§(§p77p + gz’]z) - 277(9:/3 + ézz) - ET(Gpép + ngz)

- %77(0'[2, +o?’), (32c)

V2o® :%§(r§ +rf)+%r(rp§p +rz§z)+77(rp0'p +TZO'Z)+gG(Tp77p +17,1,)
3 1
- EO-(O-pgp + O-zgz) + 25(&,5 + 522) + 477(§p77p + gznz) - 25(77;2; + 7722) + 57(77,00}) + 7720-2)

& +at). (32d)
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So far we have not succeeded in finding closed form solutions of any of (32a—d) in terms of the harmonic
functions 7,0, &, 77 . It is possible that such solutions do not exist. At each state of this approximation scheme
one gets a Poisson equation for h®@etc. , in which the right-hand side is given in terms of the lower-order

functions, which are known in principle [2,3,6]. The equations for the W™ can be converted into Poisson’s
equations as follows: Let the equation at the nth stage be

AW =F(p,z), (33)

where F is known in terms of lower-order functions. Define W™ by w™ = pN;j“); it is then easy to verify

the identity given by the first of the forthcoming equations :
n 2., 24,000 pl i ’
A= p(VPW ™) VI >:j ;F(p,z)dp , (34)

the second equation being the resulting Poisson’s equation. These equations can be solved at each stage in terms
of integral representations by the standard methods (Islam (1985), Chapter 1) [6], but such a procedure is not
very useful.

Equations (32a—d) can be considered as a “laboratory” because with these equations we can test the
possibility of exact solutions in terms of harmonic functions. The following identity is useful for these purpose
[1,3,6] :

V*(FGH) = FGV?H + FHV’G + GHV*F +2F(H,G, +H,G,)+2H(F,G, +F,G,)
+2G(H F, +H,F,), (39)
for any three functions F,G and H .

IV. Physical Interpretation
When A =0, the space-time becomes flat and the fields vanish [1,3,6]. Thus the approximate solution
represents a weak field in some sense. The constant A can be taken to be proportional to the gravitational

constant and charge of the sources. If A4 is zero the gravitational constant vanishes so that the space is flat and
the charges giving rise to the electromagnetic field vanish so that the fields are zero. For convenience we

consider the functions upto A2 terms only. To examine the possible sources for these solutions, we choose the
harmonic functions such a way that the space-time is asymptotically flat to this order (Islam (1985), Chapter 1)
[6]. To thisend let

r=7"+k<&+Kk,m, (36)
where K,, K, are constants (which are different from earlier constants), 7’is a harmonic function and
r’,a,ﬁ,n have the following forms at infinity :
= At AT+ Lo= AT+ A(r®=32°r°) +.........
E=Br*+Bzr>+...... =B r t+Blzr 4 , (37)
where 1’ = (,o2 + ZZ) , and the dots represent terms which vanish at infinity faster than the preceding terms.
The reason for choosing the leading term for o as in (37) is that this leads to the correct asymptotic behaviour
for w, which must tend to zero at infinity like pzr"3 (Misner et al (1973), Chapter 19) [16]. The behaviour of

the functions upto A% termsand 12 terms is then as follows [1,3,6]:

h=1+A[(A +Kk,B, +k,B)r" +(A +k,B;, +k,B})zr>]

+/12[%(A1+lel+szz)2—Blz—Bzz)]l’2, (38a)
wW=-AAp°r° —3Np°zr )+ P A pir
! 1 ! !

A E—EAZ(Al+lel+szZ)+(BzBl—BzBl), (38b)

® =1+ A(B,r ' +Bzr ) —%/12 B,(A +k,B, +k,B,)r?, (38¢)
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@' = A(B,r ' + B;zr‘a)—%/lsz(Al +k,B, +k,B,)r?. (38d)

The forgoing equations represent fairly general asymptotic behaviour. For example, one can have the correct
asymptotic behaviour for w given by (38b) and yet have a non-zero mass, unlike the Bonnor [14] or Papapetrou
[9] solutions. For the Bonnor solutions, we let [3],

(r,0,¢,m)=(a,0',a,0',a,0',a,0"), (39)
where @; are constants implies that ¢ is proportional to = which means that if o is to have the asymptotic
behaviour as in (37), from (36), (37), we have

A +kB, +k,B, =0, (40)
which implies that the mass of the source is zero. Similarly from the conditions (Salam (1988), eg. (3.20)) [3]

(r,.0.6:m) = (28", —2n' =& —1n") (41)
for the PIW solutions imply the following relations :

A +k,B, +k,B, =-2B,, B, =0, 2B, =A,. (42)

1
These relations imply that the corresponding sources satisfy (1), since for example /18; and E/IAZ are related

1
to the magnetic moment and angular momentum respectively. In equation (42), E/I(A1 +k,B, +k,B,)and

AB; represent the mass and charge, so that the mass is equal to the charge. With the help of these techniques
one can show that the sources for the class of the forgoing solutions satisfy (2). In the absence of the magnetic
monopoles, we should have B, =0 [7].

V. Higher Order Approximate Solutions Of EM Equations
In section (IV), we obtained approximate solutions of EM equations in terms of four harmonic

functions o,7,&,77. In that section we have shown the solutions upto the second order. The third order explicit

solutions in closed form in terms of the above harmonic functions has been obtained by Salam (1988, 2000)
[3,1]. But the fourth order equations could not be solved in closed form. In this section firstly we obtain the
fourth order equations in terms of the harmonic functions o,7,&,77 and then we shall find their explicit
solutions for the particular choice of the harmonic functions.

Before deriving the fourth order equations and finding their solutions, we briefly describe the
procedures for the solutions of third order equations and mention their solutions. Making use of equations (36)
and (37) and their partial derivatives with respect to p and Z into (32a—d), and then by some manipulations

and keeping only upto I~ terms, we have the following respectively [1,3]:

VA = r® 4, , (43)
where
al = (Al + lel + kZ BZ)[A12 + kl2 Bl2 + k22 BZZ + 2(klAlBl + kZAlBZ + klkZBlB2)
+4(Bf +B))].
The solution of (43) can be taken as h® = ,Bll’_3 . (44)

Now to find out the value of /3, applying V2 on both sides of (44) and then by some manipulations and
comparing with (43), we obtain

1
bi=—a. (45)
6
Substituting the value of f3; into (44), we get the required solution of (43) as
1
h =Zar. (46)

From (32b), we have
AW® =, P’ 4 e, , (47)

where a, = {6(A, +k,B, +k,B,)(B/B, —B,B})+2A,(B} +B?)—2(A +k,B, +k,B,)*A,}.
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The solution of (47) can be taken as

w® = B, p%r>. (48)

Applying A on both sides of (48) and then by some simplifications and comparing with (47), we get
1

B, = Eaz. (49)
Putting the value of /3, into (48), we get the required solution of (47) :

w® = %ozzpzr"5 : (50)
From (32c), we have

VED'® = ,F ™ + i) , (51)

where o, =B, (A, +k,B, +k,B,)* +4B’B,.
The solution of (51) can be taken as

Q'O = Bir, (52)
Following the foregoing technique of (45), yields
1
By = gas : (53)

Hence the solution of (51) becomes

1
O = ayr . (54)

Finally from (32d), we obtain

VDD =, r® + ., , (55)
where ar, =B {(A +k,B, +k,B,)* +2(B? + B2)}.
The solution of (55) may be taken as
% = B,r. (56)
Following the similar method of (45), we have
1
Bi=—a,. (56a)
6
Substituting the value of /3, into (56), we obtain the required solution of (55) is
1 _
O =Zq,r . (57)

6

In the fourth order, that is equating the co-efficients of A* from both sides of (21a—d) and making use
of (22), we get respectively [7]

VZh® +h®Ov2h® 1 h®Bv2h@ _{(h@? +h{22) 1+ 2(hPh +hPhP)}
28 (D2 L\ (2)2 D@ L wOw®
= W% + %)+ 2(wWOwWE +wiPwiP)}
= —2[{1+3(h® +hO*)HO D%+ 02+ @' D24 @)%}
) OH? + VD2 + VP @ + Dy @
+@A+3)2AD) D) + DD + DTV DT + DV DTV)H, (58a)

AW +hPAW® +h®Aw® —2{(hPW® +h@w® +hOwd)

+(NOWS + hOWE +hOw®)}

= 4p[(@ DY + P DD + D PPY) — (@ V0P + PP + PP D)
+3hO{(@ 0P + P DY) — (@' PP + P D)}
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(2) @2 O rH® D rH®
+(3h® +3n92) @O DY — ' ODY)], (58b)

VZ(D,(A) +h(l)v2(D!(3) +h(2)v2®!(2)

= H{OPD'® +hPP'@ +hOP'® + KD + KPP/ +hOpD)
-1 1 3 2 2 3 1 1 3 2 2 3 1

P WD + WP + WODY ~WODD —WAD® — WO )}

(58¢c)
VW +hOV2e® +h®viep®
_ OB + hODH? 1 KDY - hODH® + hAH?@ 1+ HOH®
——[{(hp O +hp O +hp D) +h, @ +h," D7 +h," D7)
—p WODO £ WA 4 WD — WD WO —wIDD)}]. (580)

Substituting the various expressions (and their derivatives, etc.) from the equations cited with some

manipulations and taking terms up to r° , we have the following equations for (58a, b, c, d) :
V?h® =-2(B} +BX)r *+4(A +K,B, +K,B,)(B + B)r=
—8(B,B, + BZB;)zr6+%[(A1 +K,B, +K,B,)*

+2(A + KB, +K,B,)*(B} +BZ) +16(B} + B:)]r °
+(A + KB/ +K,B)(3B +5B2)zr ' —6(B/* + B)")z2°r ®+..... .. (59a)

12 ! !
Aw :{E(Al +K,B, + Ksz)2(8182 - BlBZ)

24 4
_?Az(A1 +K,B, + Ksz)(812 + Bzz)"‘gAz(Al +K,B, + Ksz)3

+8(Blz + Bzz)(BlBé - Berz)}pzr_g _{6(A1 + KlBl + Ksz)Z(B1B£ - B{Bz)
_2A2(A1 +K,B, + Ksz)(B12 + Bzz) + 2A2(A1 +K,B, + Ksz)s}P4r_10
—{2A,(A +KB, + Ksz)3 +2(A +KB, + Ksz)z(BlBé -B/B,)

_2A2(A1 + KlBl + Ksz)(812 + Bzz) +8(812 + Bzz)(BlBé - Berz)}pzzzr_lo
o et e e (59b)

Vo' = —[% B, (A + KB, +K,B,)’

+(A + KB, +K,B,)A1B B, +5B)]r ® + ..o (59¢)

Vip®W = —[% B, (A +K,B, +K,B,)?
+8B,(BZ+B2)(A + KB, + K,B)Ir™® + e (59d)

Now we shall find the solutions of the foregoing equations :
From (59a), we have
VS =Lr  + Lr® + Lzr L r e lgzr 7 + 1,28, (60)

- -4 -5 -6 -6 -7
where 1, 1,, l;, 1,, l;and I are constants and co-efficients of ¥, ¥ ~, ZF °, I ~, ZI "and
2,-8 . . . . . .
Z°I' " respectively (It will be clear from the context that in some cases we omit the dots, i.e., terminate the

expression).
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Let the solution of (60) be
h® =mr? +m,r* +myzr *+m,r®+myzr>+m,z%r°, (61)

where M;, M, , M;, M,, My and M are constants, to be determined.

Applying V2 in (61), we get
VZh® =mV2r 2+ mVor 2+ mVezr* + m,vir® + mVezr >+ mVz?r-
(62)

6

Now using the following equation
(pnzmr—p)p: Zm(npn—lr—p _ p,0n+lr—p—2)’ (pnzmr—p)z: pn(mzm—lr—p _ pzm+lr—p—2)’
(P"2"r™) = 2" =Dp"r P — p(2n+1)p"r "2 + p(p+2p
(P"z2"rP),, = p" [MMm-1)z"?r P — p@m+2)z"r P2 + p(p+2)z™2r P,
VAP 2T P) = (P2 ), 4 (0" P o ("),

= [n?p" 22" P +m(m-1)p"z™?r P + p(p-2n-2m-1)p"z"r P?],
A(P"z"rP) = (p"2"r )+ (P "), - p ("2 P,

n_m-2

= [n(n=2)p"2z"r P +m(m-2)p"z"2r P + p(p—2n-2m+1)p"z"r 2] (63a)

n+2r—p—4] ,

(eg. (38) Salam (2016)) [8] into equation (62) and by some simplifications, we get

VZh® =2m, r 4+ 6m, r°+4m,zr ®+ (12m, + 2m,)r ®+10m.zr "+ 6m,zr ®.

Since (63) and (60) are identical, therefore comparing the aforesaid equations, we have
m—llm—ll m—ll m—l(l—ll)m—llandm—ll (64)
1 21' 2 62' 3 43' 4 124 36' 5 105 6 66'

Using the above values (64) into (63) and by simple simplification, we get

VhD =Lr * + Lr° + Lzr ® + ,r ®+ 1l zr " +1,2°r 8. (65)

(63)

Since the final form (65) is the same as (60); therefore (61) is the solution of (60).
From (59b), we have

AW =1 p*r 2+ ptr P+ 15 p%2%r %, (66)

8

- 2,.- 4.-10 2,2,.-10 .
where |1', |£, |3' are constants and co-efficientsof O°I =, oI “"and p"Z°I " respectively.

Let the solution of (66) be
w® =mp?r %+ myp'r®+mip’z°r e, (67)
where m;, M, m; are constants, to be determined.

Applying A on both sides of (67), we get
AW? = mARr S+ miAp r B+ miAp?Zr 8, (68)
Making use of (63a) into the equation (68) and by some manipulation, we have

1

AW = (18m; +8m), + 2m}) p’r °+8m, p*r " + 8mp?z’r *°. (69)
Since (69) and (66) are identical, so equating the co-efficients of like terms, we have
1 1 ] 1 ! ! 1 !
m =—(,-1,-=1), m, == m, == (70)
1 18 ( 1 2 4 3) 2 8 2 3 8 3
Substituting the above values of (70) into (69), we obtain
AWD = Lp?r 8 1 ptr ™ 415 p%2%r 20, (71)

Here (71) is the same as (66). Hence (67) is the solution of (66).
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From (59c), we have
V2O = a1+ e,
where

ol = —[% B,(A + K,B,+ K,B,)* + (A + KB, + K,B,)(11B?B, +5B})].

Let the solution of (72) be

cD((4) :ﬂ]rrfll

where [/ is a constant, to be determined.

From (73), we have

V2®((4) =ﬂl Zr—4.

Using (63a) in the above equation (74), we obtain
Vi(r*=12r"°

Putting (75) into (74) we have

V' =128r°.

Since (76) and (72) are identical, therefore by comparing the two, we get

’ 1 !
=—aq,.
A=y
Putting the value of ﬂl' into (76), we have
V'™ = gr°
which is the same as (72). Hence (73) is the solution of (72).
Again from (59d), we obtain

V2O =) P+ e ,

where, @, = —[% B, (A + K,B,+K,B,)* +8B,(B + BZ)(A + K,B, + K,B,)].

Let the solution of (79) be

oW = pgr*
where, £, is a constant.
From (80), we have
VoW = gvir .,
Making use of (63a), we find
Virt=12r"°.
Putting (82) into (81), we get
Vo™ =128r°.
Comparing (83) with (79), we find

’ l !

=—0q,.

fr =154
Substituting the value of /3, into (83), we have

VoW =a)r°.

which is the same as (79). Therefore (80) is the solution of (79) [7].

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)
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