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Abstract: It is shown that period, rank and order of the ),( ba -Fibonacci sequence remain invariant by 

extension to the generalized ),,,( dcba -Lucas sequence provided a specific determinant is relatively prime to 

the modulus. Given an odd prime modulus  p   and the 1p   exceptional  ),( ba -Lucas sequences, for which 

p   divides the discriminant of these sequences, we determine the corresponding periods and relate them to 

those of the  ),( ba -Fibonacci sequence. The results can be viewed as extended versions of classical results by 

Wall in case  )1,1(),( ba .  
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I. Introduction 
The topic of Fibonacci numbers and their generalizations is an interesting and important one with a 

wide range of applications (e.g. Dunlap [1], Koshy [2], Stakhov [3]). The classical Fibonacci sequence  

)( nFF    is defined by the linear recurrence of order two  2,,1,0 2110   nFFFFF nnn . The related 

classical Lucas sequence  )( nLL    follows the same recursion  2,21   nLLL nnn , with the different 

initial values  1,2 10  LL . These sequences are special cases of generalized sequences already studied by 

Lucas. Consider the  ),( ba -Fibonacci sequence  )( nFF    defined for non-zero integers  ba, , by the linear 

recurrence 

 

2,,1,0 2110   nbFaFFFF nnn ,    (1.1) 

 

and the  ),( ba -Lucas sequence  )( nLL    defined by 

 

2,,,2 2110   nbLaLLaLL nnn .    (1.2) 

 

These two integer sequences are better known under the parameterization  qbpa  , , for which a 

simultaneous study has been undertaken by Cerda-Morales [4] and Jeffery and Pereira [5]. The latter authors 

have called them generalized Lucas sequences of the first and second order. They contain some important 

sequences. The sequence (1.1) generates the classical Fibonacci, Jacobsthal, Pell and Mersenne numbers for  

)}2,3(),1,2(),2,1(),1,1{(),( ba , while (2.2) generates the classical Lucas and Jacobsthal-Lucas numbers for  

)}2,1(),1,1{(),( ba . In all these examples the discriminant  ba 42    of (1.1) and (1.2) is non-zero. Without 

further mention, it will be assumed that this holds true. It is also remarkable that these sequences contain the 

special cases  ),1(),( aaq    of the generalized Fibonacci ),( aq -sequences and the generalized Lucas ),( aq -

sequences studied in the book by Stakhov [3]. They are obtained setting  1b   in the above and have 

applications in computer science (Fibonacci measurement algorithms, Fibonacci computers, cryptography, etc.). 

On the other hand, it is also well-known that Lucas sequences play an important role in primality testing (e.g. 

Riesel [6], Chap. 4, Bressoud [7], Chap. 12, Pomerance [8]). 

One notes that the integer sequences (1.1) and (1.2) can be embedded into the generalized ),,,( dcba -

Lucas sequence  )( nGG    defined for non-zero integers  ,,,, dcba   by the general linear recurrence of order 

two with arbitrary initial values 

 

2,,, 2110   nbGaGGdGcG nnn .   (1.3) 
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For a general exposé of the generalized Lucas sequences the reader is refereed to Kalman and Mena [9]. In the 

classical case  )1,1(),( ba   it is known that the period length of (1.3) is often independent of the initial values  

),( dc  and depend solely on the period length of (1.1). In generalization to this, we ask whether and how the 

modular properties of the ),( ba -Fibonacci sequence (1.1) established in Renault [10] extend to the ),( ba -Lucas 

sequence (1.2) and more generally to the generalized ),,,( dcba -Lucas sequence (1.3). The content is organized 

as follows. 

Section 2 recalls the notions and some main properties of period, rank, multiplier and order of linear 

recurrences as they are required to study the modular properties of the generalized ),,,( dcba -Lucas sequence. 

Moreover, to make the content more self-contained, a brief summary of some known main modular properties is 

included. Section 3 is the core of the new contribution. Theorem 3.1 shows that period, rank and order of the 

),( ba -Fibonacci sequence remain invariant by extension to the generalized ),,,( dcba -Lucas sequence provided 

a well-defined determinant is relatively prime to the modulus. Theorem 3.2 is an extended version of Theorem 8 

in Wall [11] and refines Theorem 3.1 for the special case  1b . In Section 4, given an odd prime modulus  p   

and the  1p   exceptional ),( ba -Lucas sequences, for which  p   divides the discriminant of these sequences, 

Theorem 4.1 determines the corresponding periods and relate them to those of the  ),( ba -Fibonacci sequence. 

Numerous examples illustrate the obtained results and relate them to earlier findings of Wall and Renault. 

For simplicity, the dependence upon the parameters will be omitted in the sequence notations 

)( nFF  , )( nLL    and  )( nGG    because this will be clear from the context. Moreover, when reducing one 

of these sequences modulo  m , it will always be assumed that  m   is chosen such that  1),gcd( mb   and  

1),,gcd( mdc . With this convention, the linear recurrences (1.1)-(1.3) are uniquely determined for both 

positive and negative values of  ,...2,1,0 n . 

 

II. Preliminaries 

The representation used in [11] for the classical case )1,1(),( ba  is a crucial step of the analysis. 

 

Lemma 2.1. The generalized ),,,( dcba -Lucas sequence )( nGG   satisfies the representation 

1 nnn bcFdFG , where  )( nFF    is the  ),( ba -Fibonacci sequence. 

 

Proof. This is shown by induction on  n . With  1,0,1 101  FFbF   the initial step is satisfied because  

cbcFdFG  100 , dbcFdFG  011 . Now, assuming the formula holds for indices less than  n   and 

using the recursions (1.1) and (1.3) one easily sees that  111   nnnnn bcFdFbGaGG , which is the stated 

formula for the index  1n .  ◊ 

 

First of all, one observes that modulo m   any pair of residues completely determines  )(mod mG , and since 

there are only finitely many of them, all of the sequences (1.1)-(1.3) are periodic. The period of  )(mod mG , 

sometimes called Pisano number, is denoted by  )(mG . In the special cases (1.1) and (1.2) it is denoted by  

)(mF   respectively  )(mL . The period satisfies the trivial divisibility property  )()( mm FG  . This follows 

from Lemma 2.1, which shows that  G   repeats after  )(mn F   terms, which implies that  )(mG   divides  

)(mF . 

The rank of apparition, or simply rank of  )(mod mF , is the least positive integer  r   such that mod 

m   one has  0rF . Sometimes, the rank is also called restricted period and it is denoted by  )(mF . The 

number  s   such that  )(mod1)( msF mF
   is called multiplier of  )(mod mF   and denoted by  smF )( . 

Note that the terms of  F   starting with index  )(mr F   are exactly the initial terms of  F   multiplied by the 

factor  s , i.e. one has  0,  kFsF kkr . Moreover, since  sbFr

1

1



    one sees with Lemma 2.1 that  

0,  kLsL kkr , and  0,  kGsG kkr . In particular, it follows that there must exist least positive integers  

GL rr ,   such that the terms of  GL,   starting with these indices are exactly the initial terms of  GL,   multiplied 

by some factors  GL ss , , i.e. one has congruences  0,  kLsL kLkrL
, and  0,  kGsG kGkrG

. It is 

natural to call  GL rr ,   the ranks of  GL,   and denote them by  )(),( mrmr GGLL   . In particular, the 
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discussion shows that one must have the divisibility properties  )()( mm FL    and  )()( mm FG  . The 

numbers  GL ss ,   are called multipliers of  )(mod mL , )(mod mG   and denoted by  )(),( mm GL  .  

     Furthermore, if  X   denotes any of the sequences   GLF ,, , the order of  )(mod mX   is defined and 

denoted by  )(/)()( mmm XXX   . If  FX    its name stems from the fact that it represents the 

multiplicative order of the multiplier modulo m , that is one has  ))(()( mordm FFF    (e.g. [10], p. 374). 

As a general property, given the unique decomposition of the modulus into prime power factors 
ke

k

ee pppm ...21
21 , the calculation of the period and rank depend solely on the period and rank of the prime 

power factors. This fact follows from the theory of integer sequences  )( nSS    satisfying a linear recurrence of 

arbitrary order of the form  knSaSaS knnnn   ,...11 . Indeed, one knows that  )(mS   respectively  

)(mS   is equal to the least common multiple of the  )( e

S p ’s respectively  )( e

S p ’s (e.g. Knuth [12], 

Exercise 3.2.2.11, Cull et al. [13], p 220). In the following, the bracket  ],...,[ 1 kmm   denotes the least common 

multiple of the numbers  kmm ,...,1 . 

 

Theorem 2.1.  Let  X   denote any of the sequences   GLF ,, . If  ke

k

ee pppm ...21
21   then 

 

)](),...,(),([)( 21
21

ke

kX

e

X

e

XX pppm   ,   )](),...,(),([)( 21
21

ke

kX

e

X

e

XX pppm   .      (2.1) 

 

Corollary 2.1.  If  21 mm   then  )()( 21 mm XX    and  )()( 21 mm XX  . 

 

Reduction formulas for prime powers are also very useful. This means that for a prime  p , the calculation of  

)(),( e

X

e

X pp    can often be expressed in terms of  )(),( pp XX  . For example, if  FX    is the  ),( ba -

Fibonacci sequence (1.1) then the following formulas hold (e.g. [10], Theorem 2). 

 

Theorem 2.2.  Given is an integer  1e . Three cases are distinguished: 

 

Case 1:  The prime  p   is odd 

(i)     )()( ' ppp F

eee

F   , with  ee  '1   maximal such that  )()( ' pp F

e

F    

(ii)    )()( ' ppp F

eee

F   , with  ee  '1   maximal such that  )()( ' pp F

e

F    

 

Case 2:  The prime  2p , and  2e  

(i)     )4(2)2( '

F

eee

F   , with  ee  '2   maximal such that  )4()2( '

F

e

F    

(ii)    )4(2)2( '

F

eee

F   , with  ee  '2   maximal such that  )4()2( '

F

e

F    

 

Case 3:  The prime  2p , and  1e  

If  a   is odd then  3)2()2(  FF  , and if  a   is even then  2)2()2(  FF  . 

 

III. Invariance of period, rank and order of generalized lucas sequences 

Several results in [11] show that for the special case  )1,1(),( ba   the period is often independent of 

the initial values  ),( dc . Here, we investigate whether and how this property extends to generalized Lucas 

sequences, and we also ask if corresponding results hold for the notions of rank and period defined in Section 2. 

The notation  
p
a  stands for the Legendre symbol. 

 

Theorem 3.1. Let  )( nGG    be a generalized Lucas sequence with feasible parameter vector  ),,,( dcba   and 

set  ))(( 2 dacdbcbD  . Then, if  1),gcd( mD   one has  )()( mm FG   , )()( mm FG     and  

)()( mm FG   . In particular, if  p   is a prime satisfying  1),gcd( pD   then the reduction properties for 

prime powers in Theorem 2.2 hold for the sequence  )( nGG  . 
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Proof. The congruences which indicate that the sequence )(mod mG  repeats with period  )(mn G   can be 

written using Lemma 2.1 as follows: 

 

).(mod0)1()(

),(mod0)1(

11

1

mbFdFbcaddG

mbFcdFcG

nnn

nnn








 

 

In matrix notation this linear system of equations modulo m   reads 

 































d

c

F

F

bcadbd

dbc

n

n 1
.     (3.1) 

 

Its determinant equals  ))(( 2 dacdbcbD    and immediately shows that if  1),gcd( mD   its unique 

solution satisfies the congruences  0,11  nn FbF , which characterize the ),( ba -Fibonacci sequence (1.1). 

This shows that  )()( mm GF  . But, as a consequence of Lemma 2.1, one has also  )()( mm FG  . Together, 

this implies that  )()( mm FG   . Similarly, if  )(mn G   is the rank, a linear congruence system of the type 

(3.1) must hold with the column vector  
Tdc ),(   on the right replaced by  

Tdscs ),(   for some  s , which is not 

congruent to zero. If  1),gcd( mD   the unique solution to this modified linear system satisfies  

0,1  nn FsbF , and by definition of the rank one must have  )()( mm GF    and since  )()( mm FG    

one must have  )()( mm FG   . Obviously, the orders will also coincide and the reduction properties of 

Theorem 2.2 hold for primes  p   satisfying  1),gcd( pD .  ◊ 

 

Example 3.1:  Period of the ),( ba -Lucas sequence 

 

The special case  ),2(),( adc    defines the ),( ba -Lucas sequence  )( nLL    studied by Lucas [14]. In this 

situation, one has   bD , with  ba 42    the discriminant of both  LF , . Since  1),gcd( mb   one has  

)()( mm FL     provided  1),gcd(  m . If further  )1,1(),( ba   then  5 , and if  1),5gcd( m   the 

periods modulo m   of the classical Lucas and Fibonacci sequences are equal. The latter result is due to Wall 

[11], Corollary to Theorem 8. Clearly, the same relationships hold for the ranks and orders. 

 

As mentioned in the Introduction, the case  1b   is of special interest. We show that Theorem 3.1 can 

be refined to the following extended version of Theorem 8 in [11]. 

 

Theorem 3.2. Let  )( nGG    be the generalized ),,( dca -Lucas sequence defined by  

2,,, 2110   nGaGGdGcG nnn , such that  1),,gcd( epdc , where  p   is an odd prime and  1e   is 

an integer. Set  42  a   and assume that    1
p

. Then, one has  )()( e

F

e

G pp   , )()( e

F

e

G pp    

and  )()( e

F

e

G pp   , where  )( nFF    is the  )1,(a -Fibonacci sequence. 

 

Proof.  Set  
epm    and let  )(mn G . By the proof of Theorem 3.1 one must solve the linear congruence 

system 































d

c

F

F

cadd

dc

n

n 1
.     (3.2) 

 

with determinant  22 dacdcD  . If  )(mod0 pD    then  )(mod22 pdacdc    and 

 

)(mod)2(44 22222 pdadcdaacdc  . 
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One must have  1),gcd( pd . Otherwise, if  )(mod0 pd    then also  )(mod0 pc  , which contradicts the 

assumption  1),,gcd( epdc . Therefore, if  )(mod0 pD    then    1
p

. But, since    1
p

  by assumption, 

one must have  1),gcd( mD . One concludes similarly to the proof of Theorem 3.1. Similarly, if  )(mn G   

is the rank, a linear congruence system of the type (3.2) must hold with the column vector  
Tdc ),(   on the right 

replaced by  
Tdscs ),(   for some  s . If  1),gcd( mD   the unique solution to this modified linear system 

satisfies  0,1  nn FsbF . One concludes as in the proof of Theorem 3.1.  ◊ 

 

IV. The Exceptional (a,b)-Lucas Sequences For Odd Primes 

To complete somewhat the picture in Example 3.1 let us describe the periodic behaviour of the ),( ba -

Lucas sequence for the odd primes that divide the discriminant. The following notion will be useful. 

 

Definition 4.1. An ),( ba -Lucas sequence is called exceptional for the prime  p  ł ab   if  

)(mod042 pba  . 

 

The existence question for exceptional ),( ba -Lucas sequences is answered as follows. 

 

Lemma 4.1. An ),( ba -Lucas sequence is exceptional for the odd prime  p  ł ab   if, and only if, one has  

,...2,1,0,,1,...,2,1),)(,(),( 2

2
 kjpakpjpaba a . 

 

Proof.  The described pairs solve the defining congruence  )(mod042 pba  .  ◊ 

 

Clearly, the period and rank only depend upon residue classes modulo  p . Therefore, it suffices to restrict the 

attention to the exceptional pairs  1,...,2,1),)(,( 2

2
 paa a . 

 

Theorem 4.1 (Exceptional ),( ba -Lucas sequences for odd primes). For an odd prime  p   let  

1,...,2,1),)(,( 2

2
 paa a , be the  1p   exceptional pairs  ),( ba   of residue classes modulo  p   that satisfy 

the congruence  )(mod042 pba  . The periods of the exceptional ),( ba -Lucas sequences and the 

),( ba -Fibonacci sequences are determined and related as follows: 

 

Case I:  )1,2(),(  pba  

 

One has  1)( pL   and  )()( ppp FL    

 

Case II:  2,1,...,2,1),)(,(),( 2

2
 apaaba a  

 

One has  ))((2)( 2

2
a

pL ordp    and  )(2)(
))((

)(

2

2

2
ppp

ord

ord
FLa

p

a
p

   

 

Proof. A straightforward calculation shows that the first few terms of the  ),( ba -Lucas sequence are given 

modulo  p   by 

2

43210 2,,2,,2 bLabLbLaLL  . 

It is immediately seen that 

1,22,21)(  pbaabapL . 

 

For this choice one has  1)(
2
a

pord   and  ppF )(   by [10], Theorem 3 (c). This shows Case I. Now, 

assume that  2),)(,(),( 2

2
 aaba a . By Case I one must have  2)( pL . Since  )(),(2 32 baLbL    
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one sees that  ))((2)(2)( 2

2
a

ppL ordbordp  . On the other hand, one knows from [10], Theorem 3 (c) 

that  )()(
2
a

pF ordpp  . Cross multiplying both equations one obtains the equation 

 

)())((2)()( 2

22
pordpordp F

a
pL

a
p   , 

 

which is clearly equivalent with the desired relationship in Case II.  ◊ 

 

One notes further that in general either  )()( ppp FL     or  )(2)( ppp FL     because the ratio of  

)(
2
a

pord   to  ))(( 2

2
a

pord   is  1  or  2. The Table 4.1 illustrates for  7,5,3p . It is worthwhile to mention that 

for  5p   and the classical Lucas sequence with  )1,1(),( ba , one has the relation  )5()5(5 FL   , which 

is part of Theorem 9 in [11]. More generally, in the special case  )(mod1 pb    one has for all odd primes and 

independently of the value  a   that  )(mod1)( 2

2
pa  , hence  4))((2)( 2

22
 a

p
a

p ordord . It follows that 

)()( ppp FL   . Moreover, by Theorem 3 (c) in [10] one must have   4)(,4)(  ppp LF  , and 

necessarily  )4(mod1p   because    11 
p

. This yields an improvement of the result by Renault in this special 

case. 

 

Table 4.1  Periods of  ),( ba -Lucas and  ),( ba -Fibonacci sequences for  7,5,3p  

 ),( ba   ),( ba  

(2,2) (1,2) (2,4) (1,1) (3,4) (4,1) 

)3(L  1 2 )5(L  
1 4 2 4 

)3(F  3 6 )5(F  
5 20 20 20 

 ),( ba   

(2,6) (1,5) (3,3) (4,3) (5,6) (6,5)  

)7(L  1 6 6 6 2 6  

)7(F  7 21 42 21 14 42  

 

V. Conclusion 
Modular properties of integer sequences are important in number theory and combinatorics, and have 

numerous applications, especially in computer science. In this respect, the theory of Fibonacci sequences plays a 

special role. We have shown in Theorem 3.1 that the period, rank and order of (a,b)-Fibonacci sequences remain 

invariant under extension to generalized (a,b,c,d)-Lucas sequences provided the determinant is relatively prime 

to the modulus. A refinement of this, which generalizes an older result by Wall, has been obtained in Theorem 

3.2 for the special case b=1. Some new results for the exceptionl (a,b)-Lucas sequences have also been found. 

They are related to earlier findings by Wall and Renault. Extensions to other types of generalized Fibonacci 

sequences might be considered in future work. 
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