
IOSR Journal of Mathematics (IOSR-JM)  

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 12, Issue 5 Ver. II (Sep. - Oct.2016), PP 67-75 

www.iosrjournals.org 

DOI: 10.9790/5728-1205026775                                         www.iosrjournals.org                                     67 | Page 

 

Convection in Couple-Stress Magneto-Fluid  
 

Gursharn Jit Singh
1
, Pardeep Kumar

2
  

1
Department of Mathematics, SCD Govt. College Ludhiana (Pb), India.  

2
 Department of Mathematics, ICDEOL, Himachal Pradesh University, Summer-Hill,    Shimla -171005,  

 

Abstract: Double-diffusive convection in a couple-stress fluid in the presence of uniform vertical magnetic field 

through porous medium using linearized stability theory and normal mode analysis is studied. For the case of 

stationary convection, the stable solute gradient, magnetic field and couple-stress are found to have stabilizing 

effects whereas medium permeability has destabilizing effect on the system. The dispersion relation is also 

analyzed analytically. Further, it is found that the solute gradient and uniform magnetic field introduce 

oscillatory modes in the system, which was non-existent in their absence. The sufficient conditions for the non-

existence of overstability are also obtained.  
Keywords: couple-stress fluid, double-diffusive convection, linearized stability theory, porous medium, uniform 

vertical magnetic field,   

 

I. Introduction 
The derivation of the basic equations of a layer of fluid heated from below in porous medium, using 

Boussinesq approximation, has been given by Joseph [1976]. The study of a layer of fluid heated from below in 

porous media is motivated both theoretically and by its practical applications in engineering disciplines. Among 

the applications in engineering disciplines one can find the food process industry, chemical process industry, 

solidification and centrifugal casting of metals.  The development of geothermal power resources has increased 

general interest in the properties of convection in porous medium. Lapwood [1948] has studied the stability of 

convective flow in a porous medium using Rayleigh’s procedure.  The Rayleigh instability of a thermal 

boundary layer in flow through a porous medium has been considered by Wooding [1960].  When the fluid 

slowly percolates through the pores of the rock, the gross effect is represented by the well-known Darcy’s law. 

An extensive and updated account of convection in porous media has been given by Nield and Bejan [1999]. 

A detailed account of the theoretical and experimental results of the onset of thermal instability 

(Bénard convection) in a fluid layer under varying assumptions of hydrodynamics and hydromagnetics has been 

given in the celebrated monograph by Chandrasekhar [1981]. Veronis [1965] has investigated the problem of 

thermohaline convection in a layer of fluid heated from below and subjected to a stable salinity gradient. The 

buoyancy forces can arise not only from density differences due to variations in temperature but also from those 

due to variations in solute concentration. Thermosolutal convection problems arise in oceanography, limnology 

and engineering. The investigation of thermosolutal convection is motivated by its interesting complexities as a 

double diffusion phenomena as well as its direct relevance to geophysics and astrophysics. Stomell et al. [1956] 

did the pioneering work regarding the investigation of thermosolutal convection. This work was elaborated in 

different physical situations by Stern [1960] and Nield [1967]. Examples of particular interest are provided by 

ponds built to trap solar heat (Tabor and Matz [1965]) and some Antarctic lakes (Shirtcliffe [1964]). The 

physics is quite similar in the stellar case in that Helium acts like salt in raising the density and in diffusing more 

slowly than heat. The conditions under which convective motion in double-diffusive convection are important 

(e.g. in lower parts of the Earth’s atmosphere, astrophysics and several geophysical situation) are usually far 

removed from the consideration of a single component fluid and rigid boundaries and therefore it is desirable to 

consider a fluid acted on by a solute gradient and free boundaries.   

The theory of couple-stress fluid has been formulated by Stokes [1966]. One of the applications of 

couple-stress fluid is its use to the study of the mechanisms of lubrications of synovial joints, which has become 

the object of scientific research. A human joint is a dynamically loaded bearing which has articular cartilage as 

the bearing and synovial fluid as the lubricant. When a fluid is generated, squeeze-film action is capable of 

providing considerable protection to the cartilage surface. The shoulder, ankle, knee and hip joints are the 

loaded–bearing synovial joints of the human body and these joints have a low friction coefficient and negligible 

wear. Normal synovial fluid is a viscous, non-Newtonian fluid and is generally clear or yellowish. According to 

the theory of Stokes [1966], couple-stresses appear in noticeable magnitudes in fluids with very large molecules. 

Many of the flow problems in fluids with couple-stresses, discussed by Stokes, indicate some possible 

experiments, which could be used for determining the material constants, and the results are found to differ from 

those of Newtonian fluid. Couple-stresses are found to appear in noticeable magnitudes in polymer solutions for 
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force and couple-stresses. This theory is developed in an effort to examine the simplest generalization of the 

classical theory, which would allow polar effects. The constitutive equations proposed by Stokes [1966] are: 
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, V,   and  ,  ,  ,  , are stress tensor, symmetric  

part of ,ijT  anti-symmetric part of ,ijT  the couple-stress tensor, deformation tensor, the vorticity tensor, the 

vorticity vector, body couple, the alternating unit tensor, velocity field, the density and material constants 

respectively. The dimensions of   and   are those of viscosity whereas the dimensions of   and   are those 

of momentum.  

Since the long chain hyaluronic acid molecules are found as additives in synovial fluids, Walicki and 

Walicka [1999] modeled the synovial fluid as a couple-stress fluid. The synovial fluid is the natural lubricant of 

joints of the vertebrates. The detailed description of the joint lubrication has very important practical 

implications. Practically all diseases of joints are caused by or connected with a malfunction of the lubrication. 

The efficiency of the physiological joint lubrication is caused by several mechanisms. The synovial fluid is, due 

to its content of the hyaluronic acid, a fluid of high viscosity, near to a gel. Goel et al. [1999] have studied the 

hydromagnetic stability of an unbounded couple-stress binary fluid mixture under rotation with vertical 

temperature and concentration gradients. Sharma et al. [2002] have considered a couple-stress fluid with 

suspended particles heated from below. They have found that for stationary convection, couple-stress has a 

stabilizing effect whereas suspended particles have a destabilizing effect. In another study, Sunil et al. [2002] 

have considered a couple stress fluid heated from below in a porous medium in the presence of a magnetic field 

and rotation. Kumar et al [2004] have considered the thermal instability of a layer of a couple–stress fluid acted 

on by a uniform rotation, and have found that for stationary convection, the rotation has a stabilizing effect 

whereas couple-stress has both stabilizing and destabilizing effects.  

Keeping in mind the importance in geophysics, soil sciences, ground water hydrology, astrophysics and 

various applications mentioned above, the double-diffusive convection in couple-stress fluid in the presence of 

uniform magnetic field through porous medium has been considered in the present paper.  

 

II. Formulation of the problem and perturbation equations 
Here we consider a layer of electrically conducting couple-stress fluid of thickness d in porous medium 

heated and soluted from below so that the temperatures and solute concentrations at the bottom surface z = 0 are 

oT  and oC  and at the upper surface z = d are 1T  and 1C  respectively, z- axis being taken as vertical. A uniform 

vertical magnetic field  0,0,H H


 pervades the system. 

Let    , , , , , , , ,x y zp q u v w and h h h h   


 denote the perturbations in density  , pressure p, temperature 

T, solute concentration C, velocity (0,0,0) and magnetic field  0,0,H H


 respectively. Then the linearized 

hydromagnetic equations relevant to the problem are  
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where  1 s sc
E

c
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
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Here   is the medium porosity, 1k  is the medium permeability, and  0, 0,g g


is gravitational 

acceleration respectively. 1k  has the dimension of length squared. , c and ,s sc stand for density and specific 

heat of fluid and solid ( porous matrix) material respectively.  

  is the kinematic viscosity,   is the couple-stress viscosity,  is the thermal diffusivity,   is the coefficient 

of thermal expansion,  is the electrical resistivity ( all assumed to be constants), and e stands for magnetic 

permeability. 

The equation of state is  

                                  0 0 01 ,T T C C                                                                          (7) 

where the suffix zero refers to values at the reference level z = 0 and so the change in density   caused by the 

perturbations and  in temperature and concentration, is given by  

                             0       . 

 

The equation of state (7) contains a thermal coefficient of expansion   and an analogous solvent 

coefficient  . E is a solute parameter analogous to E. 

The steady state solution is 
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where 0 1 0 1T T C C
and

d d
 

 
   are the magnitudes of uniform temperature and concentration gradients 

and are both positive as the temperature and concentration decrease upwards. 

Now we consider the case in which both the boundaries are free, the medium adjoining the fluid is a perfect 

electrical conductor and temperature, concentration at a boundary are kept fixed. Then the boundary conditions 

appropriate to the problem are 

               
2

2
0zhw

w
zz

 


    


 at z = 0 and z = d.                                                          (8) 

Equations (1)-(6) give 
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III. Dispersion relation 
  Analyzing the disturbances into normal modes, we assume that the perturbation quantities are of the 

form  

     , , , ( ), ( ), ( ), ( ) exp ( ),z x yw h W z z z K z ik x ik y nt                                                                  (13) 

where ,x yk k are the wave numbers along the x - and y - directions respectively, 
2 2( )x yk k k  is the 

resultant wave number and n is the growth rate which is, in general, a complex constant. 

Using expression (13), equations (9)-(12) in non-dimensional form become 
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We shall suppress the star (*) for convenience hereafter. 

Eliminating ,  and K between equations (14)-(17) and using the proper solution 0 0sin ,W W z W  being 

constant, we obtain the dispersion relation  
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IV. The stationary convection 
For the stationary convection 0  and equation (18) reduces to  
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Equation (19) yields 
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which imply that couple-stress, stable solute gradient and magnetic field have stabilizing effects whereas 

medium permeability has destabilizing effect on the system. 

The dispersion relation (19) is also analyzed numerically for various values of 1 1, ,S P Q and F . It is also 

evident from Fig. 1 - 4 that couple-stress, stable solute gradient and magnetic field have stabilizing effects 

whereas medium permeability has destabilizing effect on the system. 

 
 

 
 



Convection in Couple-Stress Magneto-Fluid  

DOI: 10.9790/5728-1205026775                                         www.iosrjournals.org                                     72 | Page 

 
 

 
 

Some important theorems 

Theorem I: The system is stable or unstable in the presence of the solute gradient,  magnetic field and porous 

medium. 

 Proof:       Multiplying equation (14) by W*, the complex conjugate of W, integrating over the range of z, 

                    and making use of equations (15)- (17) together with boundary conditions, we obtain 
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which are all positive definite. Substituting r ii     and then equating real and imaginary parts of equation 

(24), we obtain  
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Equation (26) yields that r  may be positive or negative i.e. there may be stability or instability in the presence 

of solute gradient, magnetic field and porous medium in couple-stress fluid.  

 

Theorem II: The modes may be oscillatory or non-oscillatory in contrast to the case of no magnetic field 

                       and in absence of stable solute gradient. 

Proof:     Equation (27) yields that 0 0i ior   , which means that the modes may be non-oscillatory 

              or oscillatory. In the absence of stable solute gradient and magnetic field, equation (27) reduces to  
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and terms in brackets are positive definite. Thus 0i  , which means that oscillatory modes are not allowed 

and the principle of exchange of stabilities is satisfied for a porous medium in couple-stress fluid in the absence 

of stable solute gradient and magnetic field. This result is true for the porous as well as non-porous medium. The 

presence of each, the stable solute gradient and the magnetic field brings oscillatory modes (as i may not be 

zero) which were non-existent in their absence. 

 
V. The Overstable case 

Here we discuss the possibility of whether instability may occur as overstability. Put 12
i


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
 , it being 

remembered that   may be complex. Since for overstability, we wish to determine the critical Rayleigh number 

for the onset of instability via a state of pure oscillations, it suffices to find conditions for which (18) will admit 

of solutions with 1  real. Equation (18) becomes  
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                                              (29) 

 It can be easily shown from equation (29) that 1 1 1 1

1 1

, ,
dR dR dR dR

and
dS dQ dP dF

 yield the same values as given in 

equations (20)-(23). This means that couple-stress, stable solute gradient and magnetic field have stabilizing 

effects whereas medium permeability has destabilizing effect on the system for overstable case also. 

Equating real and imaginary parts of equation (29) and eliminating 1R  between them, we obtain 
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where 
2
1 11 .x and c     As 1  is real for overstability, the two values of 

2
1 1( )c  are positive. 

Equation (30) is quadratic in 1c  and does not involve any of its roots to be positive if  

1 2
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Ep p
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Ep E q
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                                ,                                                                                  (31) 

i.e. 
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                                                                (32) 

where , ,s s s sc c and c c      denote respectively the heat capacity of fluid, solid matrix and analogous solute 

capacity of fluid, solid matrix. 

Thus, if conditions (32) are satisfied, overstability is impossible and the principle of exchange of stabilities 

holds good. Therefore, equations (32) are the sufficient conditions for the non-existence of overstability, the 

violation of which does not necessary involve occurrence of overstability. 

In the absence of solute gradient, the sufficient condition for non-existence of overstability reduces to  

                                   1 s sc

c


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

 
   

 
, 

which for non-porous medium  1   further reduces to   (Chandrasekhar [1981]), for Newtonian fluid], 

but the introduction of solute gradient introduces an additional sufficient condition 

                          1 1 .s s s sc c
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