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Abstract: In this paper, generalized Hat functions operational matricesare proposed and combined with the 

method of steps to solve linear and nonlinear delay differential equations of fractional order.We convert the 

delay differential equationsof fractional order to non-delay differential equationsof fractional orderon a given 

intervalby apply the method of steps, and then apply the operational matrices for generalized Hat function on 

the obtained non-delay differential equationsof fractional order to transform linear and nonlinear non-delay 

differential equationsof fractional order into a system of algebraic equations and then find the solution.Two 

illustrative examples will be presented to show the accuracy and efficiencyof the proposed method. 
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I. Introduction 
Fractional calculus (that is, calculus of integrals and derivatives of any arbitrary real or complex order) 

is an old mathematical problem, and mainly developed as a pure mathematics problem for nearly three centuries 

[1]-[3]. Though having a long history, it was not used in physics and engineering for a long period. However, in 

the last few decades, fractional calculus began to attract increasing attention of scientists from the viewpoint of 

application [3]-[6]. Fractional calculus and fractional differential equations have found applications in several 

different disciplines [7]-[8]. 

Over the years, many mathematicians, using their own notation and approach, have found various 

definitions that fit the idea of a non-integer order integral or derivative. The most famous of these definitions 

that have been popularized in the world of fractional calculus are Riemann-Liouville and Grünwald-Letnikov 

definition. Also, Caputo, [9] reformulated the more "classic" definition of the Riemann-Liouville fractional 

derivative in order to use integer order initial conditions to solve his fractional order differential equations. 

Delay differential equations (DDEs) are a type of differential equation in which the derivative of the 

unknown function at a certain time is given in terms of the values of the function at previous times. Delay 

differential equations play an important role in the research field of various applied sciences such as control 

theory, electrical networks, population dynamics, environment science, biology and life science [10]. 

Fractional delay differential equations are a very recent topic. Although it seems natural to model 

certain processes and systems in engineering and other sciences with this kind of equations, only in the last few 

years has the attention of the scientific community been devoted to them [11], [12], [13]. 

This paper is organized as follows: In section 2 we recall the definitions of fractional derivatives and 

fractional integration, in section 3, a review of generalized Hat functions and their properties is described. In 

section 4, the operational matrices of integration for generalized Hat functions is derived. In section 5, the 

proposed method is described. In section 6, some illustrative examples are presented. Finally, a conclusion is 

drawn in section 7. 

 

II. Fractional Integral And Differential Operators 
In this section, we review basic definitions of fractionaldifferentiation and fractional integration [3]. 

 

Definition2.1: The Riemann–Liouville fractional order integral operator𝐼𝑡
𝛼of order       𝛼 ≥ 0,  of a function 

𝑢(𝑡) ∈ 𝐿2[𝑎, 𝑏] is given by: - 

 

𝐼𝑡
𝛼𝑢(𝑡) =  

1

𝛤(𝛼)
  𝑡 − 𝑠 𝛼−1𝑢 𝑠 𝑑𝑠,   𝛼 > 0,   
𝑡

0

𝑢 𝑡 ,                                       𝛼 = 0,

 (1) 

where𝑎 ≤ 𝑡 ≤ 𝑏 . 

 

Definition 2.2:The Riemann-Liouville fractional order derivatives operator 𝐷𝑡
𝛼of order 𝛼 ≥ 0,  of a function 

𝑢(𝑡) ∈ 𝐿2[𝑎, 𝑏] is given by: - 
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𝐷𝑡
𝛼𝑢 𝑡 =

1

𝛤(𝑛−𝛼)
(
𝑑

𝑑𝑡
)𝑛   𝑡 − 𝑠 𝑛−𝛼−1𝑢 𝑠 𝑑𝑠.

𝑡

0
(2) 

 

for 𝑎 ≤ 𝑡 ≤ 𝑏 , where 𝛼∈𝑅+ and 𝑛 is integer. 

The Riemann–Liouville derivatives have certain disadvantages when trying to model real-world phenomena 

with fractional differential equations. Therefore, we shall introduce a modified fractional differential 

operator 𝐷𝑡
𝛼𝑐 which is proposed by Caputo [9]. 

 

Definition 2.3: The Caputo fractional derivative of a function  𝑢(𝑡) ∈ 𝐿1[a, b] is given by:- 

𝐷𝑡  
𝛼𝑢 𝑡 =

1

𝛤(𝑛−𝛼)
  𝑡 − 𝑠 𝑛−𝛼−1(

𝑑

𝑑𝑡
)𝑛𝑢 𝑠 𝑑𝑠.

𝑡

0
𝑐 (3) 

 

for 𝑎 ≤ 𝑡 ≤ 𝑏 , where 𝛼∈𝑅+ and 𝑛 is integer. 

 

For 𝑓 𝑡 ∈ 𝐶𝑚  𝑎, 𝑏 ,   𝛼,𝛽 ≥ 0,   𝑛 − 1 < 𝛼 ≤ 𝑛,   𝛼 + 𝛽 ≤ 𝑚, 𝜈 ≥ −1, the fractional integral and derivatives 

satisfy the following: 

 

1.   𝐼𝑡
𝛼𝐼𝑡

𝛽
𝑢  𝑡 =  𝐼𝑡

𝛽
𝐼𝑡
𝛼𝑢  𝑡 =  𝐼𝑡

𝛼+𝛽
𝑢  𝑡 . 

2.  (𝐼𝑡
𝛼 𝐷𝑐 𝛼𝑢) 𝑡 = 𝑢(𝑡) −  𝑢 𝑘 (0+)

𝑡𝑘

𝑘 !

𝑛−1
𝑘=0  . 

3.  (𝐼𝑡
𝛼 𝑡𝑣) =

𝛤(𝑣+1)

𝛤(𝑣+𝛼+1)
𝑡𝛼+𝑣 . 

 

III. Generalized Hat Functions And Their Properties [14] 
The traditional Hat functions are continuous functions, also called triangle, tent or triangular functions 

are defined on the interval [0, 1].The generalized Hat functions are extension of traditional Hat functions on the 

finite interval [0,A]. The interval [0,A]is divided into n equidistant subintervals,[ih,(i+1)h] of equal lengths h 

where h=A/n and nis an arbitrary positive integer. The generalized Hat function’s family of first (n +1)  Hat 

functions are usually defined on [0,A] as [15]: 

 

𝜑0 𝑡 =

 
 
 

 
      

𝑕−𝑡

𝑕
 ,   0 ≤ 𝑡 < 𝑕       

          

0,  𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒         

 (4) 

 

𝜑𝑖 𝑡 =

 
  
 

  
    

𝑡−(𝑖−1)𝑕

𝑕
 ,    𝑖 − 1 𝑕 ≤ 𝑡 < 𝑕                                                       

 

   
 𝑖+1 𝑕−𝑡

𝑕
 ,  𝑖𝑕 ≤ 𝑡 <  𝑖 + 1 𝑕.  𝑖 = 1,2,… ,𝑛 − 1                     

          

0,  𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒                                                         

       (5) 

 

𝜑𝑛 𝑡 =

 
 
 

 
      

𝑡−(𝐴−𝑕)

𝑕
 ,   𝐴 − 𝑕 ≤ 𝑡 ≤ 𝐴                

          

    0,  𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒                                                       

 (6) 

 

According to the definition of Hat functions: 

 

𝜑𝑖 𝑗𝑕 =

 
 
 

 
  1,                  𝑖 = 𝑗

           

0,            𝑖 ≠ 𝑗  

                                            (7) 

 

And     𝜑𝑖 𝑡 𝜑𝑗  𝑡 = 0,       𝑖 − 𝑗 ≥ 2.  

And  𝜑𝑖(t)𝑛
𝑖=0 = 1. 



A Modified Method for Solving Delay Differential Equations of Fractional Order  

DOI: 10.9790/5728-1205040107                                            www.iosrjournals.org                                    3 | Page 

3.1 Function Approximation 

An arbitrary function 𝑔 ∈ 𝐿2 [𝑎, 𝑏] is approximated in vector form as: 

 

𝑔 𝑡 =  𝑓𝑖𝜑𝑖(t)𝑛
𝑖=0  =𝐺𝑛+1

𝑇 Φ𝑛+1(t) =Φ𝑛+1
𝑇 (t) 𝐺𝑛+1,   (8) 

where 

𝐺𝑛+1 ≜ [𝑔0 , 𝑔1, 𝑔2,…, 𝑔𝑛 ] 
𝑇
,                                     (9) 

and 

Φ𝑛+1(t) ≜ [𝜑0(t),𝜑1(t),𝜑2(t),…,𝜑𝑛(t)] 
𝑇
.                                                       (10) 

The important aspect of using generalized Hat functions in theapproximation of function 𝑔 𝑡 , lies in the fact 

that the coefficients 𝑔𝑖  in the Eq. (9), are given by 

 

𝑔𝑖 = 𝑔 𝑖𝑕 ,   𝑖 = 0,1,2,… ,𝑛. 

 

IV. Operational Matrices of The Integration for Generalized Hat Functions 
The integer order and fractional order operational matrices of integration for generalized Hat functions 

is given in the subsections (4.1) and (4.2) respectively. 

4.1 Integer Order Operational Matrix of Integration of the Generalized Hat Functions  

Since  𝜑𝑖 𝜏 𝑑𝜏 ∈ 𝐿2[0,𝐴]
𝑡

0
,Eq. (10) is used to approximate it in the terms of the generalized Hat basis 

functions as 

 𝜑𝑖 𝜏 𝑑𝜏
𝑡

0
≃  𝑏𝑖𝑗

𝑛
𝑗=0 𝜑𝑗 (𝑡),    𝑖 = 0,1, 2,… ,𝑛 .                    (11) 

Using Eq. (11), we calculate the coefficients 𝑎𝑖𝑗 as 

𝑏𝑖𝑗 =  𝜑𝑖 𝜏 𝑑𝜏,   
𝑖𝑕

0
𝑗 = 0,1,2,… ,𝑛.                                     (12) 

The coefficients 𝑏𝑖𝑗  will form a (𝑛 + 1) × (𝑛 + 1) matrix  𝑃𝑛+1  with (𝑖 + 1, 𝑗 + 1)𝑡𝑕  entry as𝑏𝑖𝑗  , for 𝑖 =

0,1,2,… ,𝑛,   𝑗 = 0,1,2,… ,𝑛.Using the values of 𝑏𝑖𝑗 ’s from Eq. (12), we obtain the matrix 𝑃𝑛+1 as: 

 

𝑃𝑛+1=(
   𝑕

2
)

 
 
 
 
 
 
 
 
 0    

0    

0    

1   

1   

0   

1   

2   

1   

1   

2   

2   

⋯
⋯
⋯

1   

2   

2   

1   

2   

2   

1

 2 

2

⋯  ⋯  ⋯  ⋯  ⋯  ⋯  ⋯  ⋯

0    

0    

0    

0   

0   

0   

0   

0   

0   

0   

0   

0   

⋯
⋯
⋯

1   

0   

0   

2   

1   

0   

2

 2 

1  
 
 
 
 
 
 
 
 

 𝑛+1 ×(𝑛+1)

(13) 

 

The matrix 𝑃𝑛+1 is called the integer order Hat functions operational matrix of integration. 

It plays a pivotal role in determination of   𝑔 𝜏 𝑑𝜏
𝑡

0
 for an arbitrary 𝑔 ∈ 𝐿2[0,𝐴]. with the help of Eqs. (10) and 

(11), we have 

 

 𝜑𝑛+1 𝜏 𝑑𝜏
𝑡

0
=𝑃𝑛+1Φ𝑛+1(t). 

 

4.2Fractional orderOperational Matrix of Integration of the Generalized Hat Functions  
The fractional integration of generalized Hat function in Eq. (10) can be approximated as 

(𝐼𝑡
𝛼Φ𝑛+1)(t)=𝑃𝑛+1

𝛼 Φ𝑛+1(𝑡(. 
where 

 𝑃𝑛+1
𝛼 =

𝑕𝛼

𝛤(𝛼+2)

 
 
 
 
 

0 𝛾1 𝛾2

0 1 𝜁1

0 0 1
 ⋯

𝛾𝑛
𝜁𝑛−1

𝜁𝑛−2

⋮ ⋱ ⋮

0 0        0 ⋯ 1  
 
 
 
 

 𝑛+1 ×(𝑛+1)

 

where  

𝛾𝑘 = 𝑘𝛼 𝛼 − 𝑘 + 1 + (𝑘 − 1)𝛼+1 ,  𝑘 = 1,2,… ,𝑛. 
and 

𝜁𝑘 = (𝑘 + 1)𝛼+1−2𝑘𝛼+1 + (𝑘 − 1)𝛼+1,  𝑘 = 1,2,… ,𝑛 − 1. 

For more details,one can see[15]. 
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V. The Approach 
In this section, we shall approximate solution of the following fractional order delay differential equations: 

𝐷𝑡
𝛼𝑢𝑐 (𝑡) = 𝐹(𝑡,𝑢 𝑡 ,𝑢 𝜙 𝑡  ), 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑡 > 0   (14) 

𝑢 𝑡 = 𝜓 𝑡  , 𝑡 ∈  −𝜏, 0 ,     (15) 

𝑢(𝑖) 0 = 𝑢0 
(𝑖)

   , 𝑖 = 0,1,2,… ,𝑛 − 1       (16)  

where 𝐷𝑡  
𝛼𝑐 isCaputo fractional derivative of order 𝛼, 𝐹 is a nonlinear operator, 𝑡 is the independent variable, 

𝑢(𝑡) is the unknown function, 𝜙 𝑡  is the delay function 𝜓 𝑡  is given functions and 𝑢(𝑖) 0  are given 

constants. 

 

First we convert the fractional order delay differential equation to fractional order non-delay differential 

equation by applying the method of steps [13], as 

 

𝐷𝑡  
𝛼𝑢𝑐 (𝑡) = 𝐹(𝑡,𝑢 𝑡 ,𝜓(𝜙 𝑡 )), 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑡 > 0       (17) 

𝑢(𝑖) 0 = 𝑢0 
(𝑖)

   , 𝑖 = 0,1,2,… ,𝑛 − 1   (18) 

 

Now in order to solve Eqs. (17)- (18) by using the operational matrices of generalized Hat functions, we 

approximate 𝐷𝑡  
𝛼𝑢𝑐 (𝑡) and 𝑢 𝑡  in terms of generalized Hat functions as follows 

 

( 𝐷𝑡  
𝛼𝑢𝑐 )(𝑡)=𝐶𝑛+1

𝑇 Φ𝑛+1(𝑡)(19) 

And upon operating 𝐼𝑡  
𝛼 to the both sides of equation (19) leads to 

𝑢(𝑡)=𝐶𝑛+1
𝑇 𝑃𝑛+1

𝛼 Φ
𝑛+1

(𝑡) +  𝑢(𝑘) 0+ 
𝑡𝑘

𝑘 !

𝑛−1
𝑘=0    (20) 

where  

Φ𝑛+1(t) ≜ [𝜑0(t),𝜑1(t),𝜑2(t),…,𝜑𝑛(t)] 
𝑇
, 

and 

𝐶𝑛+1(t) ≜ [𝑐0, 𝑐1,𝑐2,…,𝑐𝑛 ] 
𝑇
.       

Hence 

𝐹  𝑡,𝑢 𝑡 ,𝑢 𝜙 𝑡   = 𝐹(𝑡,𝐶𝑛+1
𝑇 𝑃𝑛+1

𝛼 𝛹𝑛+1(𝑡) +  𝑢(𝑘) 0+ 
𝑡𝑘

𝑘 !

𝑛−1
𝑘=0 ,𝜓(𝜙 𝑡 )) (21) 

Substituting Eqs. (19) and (21) into Eq. (17) gives 

𝐶𝑛+1
𝑇 Φ𝑛+1(𝑡)=𝐹(𝑡,𝐶𝑛+1

𝑇 𝑃𝑛+1
𝛼 Φ

𝑛+1
(𝑡) +  𝑢(𝑘) 0+ 

𝑡𝑘

𝑘 !

𝑛−1
𝑘=0 ,𝜓(𝜙 𝑡 ))(22) 

Also, by substituting Eqs. (11) and (19) into Eq. (18), we get 

𝑢(𝑖) 0 = 𝐶𝑛+1
𝑇 Φ𝑛+1(0)=𝑢0 

(𝑖)
   , 𝑖 = 0,1,2,… ,𝑛 − 1                                         (23)  

 

From Eq. (22), we can obtain the coefficients 𝐶𝑛+1
𝑇 . Then using Eq.(20), we can get the output response 𝑢 𝑡 . 

 

VI. Illustrative Examples 
In this section, we shall solve linear and nonlinear delay differential equations of fractional order by 

using the approach given in section 5, and compare the results that we have been obtained with the existing 

methods and the exact solution. we refer 𝑢𝑕𝑎𝑡  to represent the solution by generalized Hat functions, 𝑢𝑐𝑕  to 

represent the solution by Chebyshev wavelets method and 𝑢𝑒𝑥𝑎𝑐𝑡  to represent the exact solution. 

 

Example (1): 

 Consider the delay differential equations of fractional order with nonlinear delay function 

𝐷𝑡  
𝛼𝑢𝑐 (𝑡) =1-2𝑢2  

𝑡

2
 ,       0 <  𝛼 ≤ 1 ,   0 < 𝑡 ≤ 1   (24) 

𝑢 𝑡 = sin⁡(𝑡),   −1 ≤  𝑡 ≤ 0    (25) 

𝑢 0 = 0  (26) 

The exact solution, when 𝛼 = 1 , is  𝑢 𝑡 = sin⁡(𝑡). 

Solution: 
First we convert the delay differential equation of fractional order to non-delay differential equation of fractional 

order by applying the method of steps, as    

𝐷𝑡  
𝛼𝑢𝑐 (𝑡) =1-2𝑠𝑖𝑛2  

𝑡

2
 . 0 <   𝛼  ≤ 1.  0 < 𝑡 ≤ 1   (27) 

𝑢 0 = 0           (28) 

Now we approximate 𝐷𝑡  
𝛼𝑢𝑐 (𝑡) in Eq. (27), in terms of generalized Hat functions as follows 

( 𝐷𝑡  
𝛼𝑢𝑐 )(𝑡)=𝐶𝑛+1

𝑇 Φ𝑛+1(𝑡)(29) 

Hence 
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𝑢(𝑡)=𝐶𝑛+1
𝑇 𝑃𝑛+1

𝛼 Φ
𝑛+1

(𝑡)         (30) 

Also writing the term 1 − 2𝑠𝑖𝑛2  
𝑡

2
  in Eq. (27) in terms of generalized Hat functions leads to 

1 − 2𝑠𝑖𝑛2  
𝑡

2
 = 𝐺𝑛+1Φ𝑛+1(𝑡) ,          (31) 

Where 

𝐺𝑛+1 ≜ [𝑔0 ,𝑔1, 𝑔2,…, 𝑔𝑛 ] 
𝑇
, 

and 

𝑔𝑖 = 1 − 2𝑠𝑖𝑛2  
𝑖𝑕

2
 ,   𝑖 = 0,1,2,… ,𝑛. 

Substituting Eqs. (29) and (31)  into Eq. (27), we have 

𝐶𝑛+1
𝑇 Φ𝑛+1(𝑡)=𝐺𝑛+1Φ𝑛+1(𝑡),     (32)    

 which implies that 

𝐶𝑛+1
𝑇 =𝐺𝑛+1

𝑇          (33)    

Solving Eq. (33), we can obtain the coefficients 𝐶𝑛+1
𝑇 . Then using Eq.(30), one can get the  output  response 

𝑢 𝑡 . 
For 𝑛 = 8, it seems from Table (1) that the results obtained from the proposed method when 𝛼 = 1 provides 

better results as compared with the existing methods such as Chebyshev wavelet method and the exact solution. 

 

Table 1: Comparison of The Approximate Solution of Example (1) Using The Proposed Method And 

Chebyshev Wavelet Method When 𝛼 = 1 And The Exact Solution. 

T 𝒖𝒄𝒉 

𝜶 = 𝟏 

𝒖𝒉𝒂𝒕 

𝜶 = 𝟏 

𝒖𝒆𝒙𝒂𝒄𝒕 

𝜶 = 𝟏 

0 0 0 0 
0.125 0.124 0.124 0.124 
0.250 0.246 0.247 0.247 
0.375 0.355 0.365 0.366 
0.500 0.464 0.478 0.479 
0.625 0.581 0.584 0.585 
0.750 0.682 0.680 0.681 
0.875 0.755 0.766 0.767 
1 0.846 0.840 0.841 

 

Following Figure (1) represent the approximate solution of example (1) using the proposed method for different 

values of 𝛼and the exact solution when 𝛼 = 1 . 
 

 
Fig. 1: The approximate solution of example (1) by using the proposed method at different values of 𝛼 and the 

exact solutions at 𝛼 = 1 . 

Example (2): 

Consider the delay differential equation of fractional order 

𝐷𝑡  
𝛼𝑢𝑐  𝑡 −  𝑢  

𝑡

2
 = 0,      0 <  𝛼 ≤ 1 ,   0 < 𝑡 ≤ 1   (34) 

𝑢 𝑡 = 1 + t ,  −1 ≤  𝑡 ≤ 0      (35) 

𝑢 0 = 1  (36) 

The exact solution is 𝑢 𝑡 =  
(

1

2
)

1
2𝑘(𝑘−1)

𝑘 !
𝑡𝑘∞

𝑘=0 .  

Solution: 

First we convert the delay differential equation of frractional order  tonon-delay differential equation of 

fractional order by applying the method of steps, as:  
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𝐷𝑡  
𝛼𝑢𝑐  𝑡 = 1 +

𝑡

2
,  0 < 𝛼 ≤ 1,  0 < 𝑡 ≤ 1    (37) 

 𝑢 0 = 1        (38) 

Now we approximate 𝐷𝑡  
𝛼𝑢𝑐 (𝑡) in Eq. (37),  in terms of generalized Hat functions as follows 

( 𝐷𝑡  
𝛼𝑢𝑐 )(𝑡)=𝐶𝑛+1

𝑇 Φ𝑛+1(𝑡)         (39) 

Hence 

𝑢(𝑡)=𝐶𝑛+1
𝑇 𝑃𝑛+1

𝛼 Φ
𝑛+1

(𝑡) + 1    (40) 

Also writing the term 1 +
𝑡

2
 in Eq. (37) in terms of generalized Hat functions leads to 

1 +
𝑡

2
= 𝐺𝑛+1Φ𝑛+1(𝑡) ,                                                            (41) 

Where 

𝐺𝑛+1 ≜ [𝑔0 ,𝑔1, 𝑔2,…, 𝑔𝑛 ] 
𝑇
, 

and 

𝑔𝑖 = 1 +
𝑖𝑕

2
,   𝑖 = 0,1,2,… ,𝑛. 

Substituting Eqs. (39) and (41) into Eq. (37), we have 

𝐶𝑛+1
𝑇 Φ𝑛+1(𝑡)=𝐺𝑛+1Φ𝑛+1(𝑡),                               (42) 

which implies that 

𝐶𝑛+1
𝑇 =𝐺𝑛+1

𝑇       (43)    

Then using Eq.(40), one can get the  output  response 𝑢 𝑡 . 
 

For 𝑛 = 8, it seems from Table (2) that the results obtained from the proposed method when 𝛼 = 1 provides 

better results as compared with the existing methods such as Chebyshev wavelet method and the exact solution.  

 

Table 2: Comparison of The Approximate Solution of Example (2) Using The Proposed Method And 

Chebyshev Wavelet Method When 𝛼 = 1 And The Exact Solution. 
t 𝒖𝒄𝒉 

𝜶 =1 

𝒖𝒉𝒂𝒕 

𝜶 = 𝟏 

𝒖𝒆𝒙𝒂𝒄𝒕 

𝜶 = 𝟏 

0 1 1 1 

0.125 1.13 1.13 1.12 

0.250 1.28 1.26 1.26 

0.375 1.44 1.41 1.41 

0.500 1.62 1.56 1.56 

0.625 1.82 1.72 1.72 

0.750 2.03 1.89 1.90 

0.875 2.26 2.06 2.08 

1 2.50 2.25 2.27 

 

Following Figure (2)represent the approximate solution of example (2) using the proposed method for different 

values of 𝛼and the exact solution when 𝛼 = 1. 

 

 
Fig. 2: The approximate solution of example (2) by using the proposed method at different values of 𝛼 and the 

exact solutions at 𝛼 = 1 . 
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VII. Conclusion 
In this paper, wepresent the integer and fractional orders of integration for the generalized hat functions 

operational matrices and combined them with the method of steps to solve linear and nonlinear delay differential 

equations of fractional order numerically. The obtained results are compared with the exact solutions and with 

the solutions obtained by some other numerical methods such as Chebyshev wavelet method. The results 

obtained from the proposed methodare more accurate and better than the results obtained from Chebyshev 

wavelet methodand are in good agreement with the exact solution. 
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