Global Triple Connected Domination Number of A Graph

G.Mahadevan ${ }^{1}$, A.Selvam Avadayappan ${ }^{2}$, Twinkle Johns ${ }^{3}$
${ }^{I}$ Department of Mathematics, Gandhigram Rural University, Gandhigram
${ }^{2,3}$ Department of Mathematics, V.H.N.S.N. College, Virdhunagar

Keywords: domination number, Triple connected graph, global triple connected domination number
AMS subject classification: 05 C

I. Introduction

Throughout this paper, we consider finite, simple connected and undirected graph $G(V, E) V$ denotes its vertex set while E its edge set. The number of vertices in G is denoted by P. Degree of a vertex v is denoted by $d(v)$, the maximum degree of a graph G, denoted by Δ. A graph G is connected if any two vertices of G are connected by a path. A maximal connected subgraph of a graph G is called a component of G. The number of components of G is denoted by $\omega(G)$. The complement \bar{G} of G is the graph with vertex set V in which two vertices are adjacent if and only if they are not adjacent in \bar{G}. We denote a cycle on p vertices by C_{p}, a path on P vertices by P_{p}, complete graph on P vertices by K_{p}. The friendship graph F_{n} can be constructed by joining n copies of the cycle C_{3} with a common vertex. A wheel graph can be constructed by connecting a single vertex to all the vertices of $\mathrm{C}_{\mathrm{p}-1}$. A helm graph, denoted by H_{n} is a graph obtained from the wheel by W_{n} by attaching a pendent vertex to each vertex in the outer cycle of W_{n}. If S is a subset of V , then $\langle S\rangle$ denotes the vertex induced subgraph of G induced by S. The cartesian product $G_{1} \times G_{2}$ of two graphs G_{1} and G_{2} was defined as the graph with vertex set $V_{1} \times V_{2}$ and any two distinct vertices (u_{1}, v_{1}) and (u_{2}, v_{2}) are adjacent only if either $u_{1}=u_{2}$ and $v_{1} v_{2}$ $\in E_{2}$ or $u_{1} u_{2} \in E_{1}$ and $v_{1}=v_{2}$. If S is a subset of V, then $\langle S\rangle$ denotes the vertex induced subgraph of G is induced by S. The open neighbourhood of a set S of vertices of a graph G is denoted by $N(S)$ is the set of all vertices adjacent to some vertex in S and $\mathrm{N}(\mathrm{S}) \cup S$ is called the closed neighbourhood of S , denoted by $\mathrm{N}[\mathrm{s}]$. The diameter of a connected graph G is the maximum distance between two vertices in G and is denoted by diam (G). A cut vertex of a graph G is a vertex whose removal increases the number of components. A vertex cut or separating set of a connected graph G is the set of vertices whose removal increases the number of components. The connectivity or vertex connectivity of a graph G is denoted by $\kappa(\mathrm{G})$ (where G is not complete) is the size of a smallest vertex cut. A connected subgraph H of a connected graph G is called a H -cut if $\omega(\mathrm{G}-\mathrm{H}) \geq 2$. The chromatic number of a graph G is denoted by $\chi(G)$ is the smallest number of colors needed to color all the vertices of a graph in which adjacent vertices receive different color. For any real number $\mathrm{x},[x]$ denotes the largest integer less than or equal to x. A subset S of vertices in a graph $G=(V, E)$ is a dominating set if every vertex in V-S is adjacent to at least one vertex in S. A dominating set S of a connected graph G is called a connected dominating set if the induced sub graph $<\mathrm{S}>$ is connected. A set S is called a global dominating set
of G if S is a dominating set of both G and $\overline{\boldsymbol{G}}$. A subset S of vertices of a graph G is called a global connected dominating set if S is both a global dominating and a connected dominating set. The global connected domination number is the minimum cardinality of a global connected dominating set of G and is denoted by $\gamma_{\mathrm{gc}}(\mathrm{G})$. Many authors have introduced different types of domination parameters by imposing conditions on the dominating set. Recently, the concept of triple connected graphs has been introduced by Paul Raj Joseph J.et.al., By considering the existence of a path containing any three vertices of G. They have studied the properties of triple connected if any three vertices lie on a path in G. All paths, cycles, complete graphs and wheels are some standard examples of triple connected graphs. In this paper, we use this idea to develop the concept of connected dominating set and global triple connected domination number of a graph.
Theorem 1.1[2] A tree T is triple connected if and only if $T \cong P_{P} ; P \geq 3$.
Theorem 1.2[2] A connected graph G is not triple connected if and only if there exist a H cut with $\omega(\mathrm{G}-\mathrm{H}) \geq 3$ such that $\left|V(H) \cap N\left(H \cap C_{i}\right)\right|=1$ for atleast three components C_{1}, C_{2}, C_{3}, of G-H.
Notation1.3 Let G be a connected graph with m vertices $v_{1}, v_{2}, \ldots \ldots . v_{m}$. The graph $\mathrm{G}\left(\mathrm{n}_{1} \mathrm{P} l_{1}, \mathrm{n}_{2} \mathrm{p} l_{2}, \mathrm{n}_{3} \mathrm{p} l_{3}, \ldots \ldots . \mathrm{n}_{\mathrm{m}} \mathrm{p} l_{\mathrm{m}}\right)$ where $\mathrm{n}_{\mathrm{i}}, l_{\mathrm{i}} \geq 0$ and $1 \leq i \leq m$, is obtained from G by pasting n_{1} times a pendent vertex $\mathrm{P} l_{1}$ on the vertex $\mathrm{v}_{1}, \mathrm{n}_{2}$ times a pendent vertex of $\mathrm{P} l_{2}$ on the vertex v_{2} and so on.
Example 1.4 Let $v_{1}, v_{2}, v_{3}, v_{4}$ be the vertex of C_{4}, the graph $\mathrm{C}_{4}\left(2 \mathrm{P}_{2}, \mathrm{P}_{3}, 3 \mathrm{P}_{2}, \mathrm{P}_{2}\right)$ is obtained from C_{4} by pasting two times a pendent vertex of P_{2} on $v_{1}, 1$ times a pendent vertex of P_{3} on $v_{2}, 3$ times a pendent vertex of P_{2} on v_{3} and I times a pendent vertex of P_{2} on v_{4}

II. Global Triple Connected Domination Number

Definition 2.1A subset S of V of a nontrivial graph G is said to be a global triple connected dominating set, if S is a global dominating set and the induced subgraph $\langle S\rangle$ is triple connected. The minimum cardinality taken over all triple connected dominating set is called the triple connected domination number of G and is denoted by $\gamma_{\mathrm{gtc}}(\mathrm{G})$.
Example 2.2 For the graph $\mathrm{K}_{5}, \mathrm{~S}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$ forms a global triple connected dominating set
Observation 2.3 Global triple connected dominating set does not exist for all graphs and if exists, then $\gamma_{\mathrm{gtc}}(\mathrm{G}) \geq 3$ and $\gamma_{\mathrm{gtc}}(\mathrm{G}) \leq p$.
Example 2.4. For this Graph G_{1} in figure 2.1, global triple connected dominating set does not exist in this graph

Fig 2.1
Observation 2.5 Every Global triple connected dominating set is a triple connected dominating set. But every triple connected dominating is not a global triple connected dominating set.
Observation 2.6 For any connected graph with $\mathrm{G}, \gamma(\mathrm{G}) \leq \gamma_{\mathrm{c}}(\mathrm{G}) \leq \gamma_{\mathrm{gc}}(\mathrm{G}) \leq \gamma_{\mathrm{gtc}}(\mathrm{G}) \leq p$ and the inequalities are strict.
Example $2.7 \gamma\left(\mathrm{~K}_{\mathrm{n}}\right)=1, \gamma_{\mathrm{c}}\left(\mathrm{K}_{\mathrm{n}}\right)=2, \gamma_{\mathrm{gc}}\left(\mathrm{K}_{\mathrm{n}}\right)=\mathrm{n}, \gamma_{\mathrm{gtc}}\left(\mathrm{K}_{\mathrm{n}}\right)=\mathrm{n}$
Theorem 2.8 If the induced subgraph of all connected dominating set of G has more than two pendent vertices, then G does not contains a global triple connected dominating set.
Example 2.9 Triple connected domination number for some standard graphs

1. Let P be a petersen graph. Then $\gamma_{\mathrm{gtc}}(\mathrm{P})=5$.
2. For any complete graph G with P vertices $\gamma_{\mathrm{gtc}}\left(G 0 K_{1}\right)=P$.
3. For any path of order $\mathrm{P} \geq 3 \gamma_{\text {gtc }}(\mathrm{P})=\left\{\begin{array}{c}3 \text { if } P<5 \\ p-2 \text { if } p \geq 5\end{array}\right.$
4. For any cycle of length P for $\mathrm{P} \geq 3 \quad \gamma_{\mathrm{gtc}}\left(\mathrm{C}_{\mathrm{p}}\right)=\left\{\begin{array}{c}3 \text { if } P<5 \\ p-2 \text { if } P \geq 5\end{array}\right.$

5 For the complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}(\mathrm{m}, \mathrm{n} \geq 2) \gamma_{\mathrm{gtc}}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=3$
6 For any star $\mathrm{K}_{1, \mathrm{P}-1}(\mathrm{P} \geq 3), \gamma_{\mathrm{gtc}}\left(\mathrm{K}_{1, \mathrm{P}-1}\right)=3$
7 For any complete graph $\mathrm{K}_{\mathrm{p}}, \mathrm{P} \geq 3, \gamma_{\mathrm{gtc}}\left(\mathrm{K}_{\mathrm{P}}\right)=\mathrm{P}$
8 For any wheel $\mathrm{W}_{\mathrm{n}}, \gamma_{\mathrm{gtc}}\left(\mathrm{W}_{\mathrm{n}}\right)=3$
9 For any graph Helm graph $H_{n}($ where $\mathrm{p}=2 \mathrm{n}-1, \mathrm{p} \geq 9), \gamma_{\mathrm{gtc}}\left(\mathrm{H}_{\mathrm{n}}\right)=\frac{P+1}{2}$
10 For any friendship graph $\mathrm{F}_{\mathrm{n}}, \gamma_{\mathrm{gtc}}\left(\mathrm{F}_{\mathrm{n}}\right)=3$
11 The Desargues graph is a distance-transitive cubic graph with 20 vertices and 30 edges as shown in figure 2.2.

Fig 2.2

For any Desargues graph G, $\gamma_{\mathrm{gtc}}(G)=10$. Here $S=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}, \mathrm{v}_{7}, \mathrm{v}_{8}, \mathrm{v}_{9}, \mathrm{v}_{10}\right\}$ forms a global triple connected dominating set.
The Möbius-Kantor graph is a symmetric bipartite cubic graph with 16 vertices and 24 edges as shown in figure 2.3.
For the Mobius - Kantor graph G, $\gamma_{\text {gtc }}(G)=8$. Here $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$ is global triple connected dominating set.

Fig 2.3
The Chvátal graph is an undirected graph with 12 vertices and 24 edges as shown in figure 2.4. For the Chvátal graph $G, \gamma_{\mathrm{gtc}}(G)=4$. Here $S=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$ is global triple connected dominating set.

Fig 2.4
The Dürer graph is an undirected cubic graph with 12 vertices and 18 edges as shown below in figure 2.5 .

Fig 2.5
For the Dürer graph G, $\gamma_{\text {gtc }}(G)=6$ Here $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ is an global triple connected dominating set.

Any path with a pendant edge attached at each vertex as shown in figure 2.6 is called Hoffman tree and is denoted by $\mathrm{Pn}^{+} \gamma_{\mathrm{gtc}}\left(\mathrm{Pn}^{+}\right)=\mathrm{n} / 2$

Fig 2.6
Observation 2.10 For any connected graph G with p vertices $\gamma_{\text {gtc }}(G)=p$ if and only if $G \cong P_{3}$ or C_{3}.
Observation 2.11 If a spanning subgraph H of a graph G has a global triple connected dominating set then G also has global triple connected dominating set.
Observation 2.12 For any connected graph G with p vertices $\gamma_{\text {gtc }}(G)=p$ if and only if $G \cong P_{3}$ or C_{3}.
Observation 2.13 If a spanning subgraph H of a graph G has a global triple connected dominating set then G also has global triple connected dominating set
Theorem 2.14 For any connected graph G with $p \geq 4$, we have $3 \leq \gamma_{g t c}(G) \leq p$ and the bound is sharp.
Proof. The lower bound and upperbound follows from the definition 2.1 and observation 2.3. For C_{4} the lowerbound is obtained and for the K_{4} the upper bound is obtained.
Theorem 2.15 For any connected graph G with 4 vertices $\gamma_{\text {gtc }}(G)=P-1$ if and only if $G \cong P_{4}, C_{4}, K_{3}\left(P_{2}\right)$ and $K_{4^{-}}$ $\{\mathrm{e}\}$, where e is any edge inside the cycle of K_{4}.
Proof Suppose G is isomorphic to $P_{4}, C_{4}, K_{3}\left(P_{2}\right), K_{4}-\{e\}$, where e is any edge inside the cycle of K_{4}, then clearly $\gamma_{\mathrm{gtc}}(\mathrm{G})=\mathrm{P}-1$. Conversely let G be a connected graph with 4 vertices and $\gamma_{\mathrm{gtc}}(\mathrm{G})=\mathrm{P}-1$. Let $\quad \mathrm{S}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ be a γ_{gtc} set of G. Let x be in V-S. Since S is a dominating set, there exist a vertex v_{i} from S such that v_{i} is adjacent to x. If $\mathrm{P} \geq 5$, by taking the vertex v_{i}, we can construct a triple connected dominating set S with fewer elements than $\mathrm{p}-1$, which is a contradiction. Hence $\mathrm{P} \leq 4$.
observation we have $\mathrm{P}=4$ then $\mathrm{S}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ and $\mathrm{V}-\mathrm{S}=\{\mathrm{x}\}$, then
$\gamma_{\mathrm{gcc}}(\mathrm{G})=\mathrm{p}-1$.
Case (i) Let $\langle S\rangle=P_{3}=\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$
Since G is connected, x is adjacent to v_{1} (or v_{3}) or x is adjacent to v_{2}. Suppose x is adjacent to v_{1}, then $\left\{x, v_{1}, v_{2}\right\}$ forms a $\gamma_{\text {gtc }}(G)$ set of G. Hence $G \cong P_{4}$ on increasing the degree $G \cong C_{4}$. If x is adjacent to v_{2} then $\left\{x, v_{2}, v_{1}\right\}$ forms a $\gamma_{\text {gtc }}$ set of G. Then $G \cong K_{1,3}$. on increasing the degree $G \cong C_{3}\left(P_{2}\right)$
Case (ii) Let $\langle S\rangle=\mathrm{C}_{3} \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{1}$. Since G is connected, x is adjacent to $\mathrm{v}_{1}\left(\right.$ or v_{2} or $\left.\mathrm{v}_{3}\right)$. Hence $\mathrm{G} \cong \mathrm{C}_{3}\left(\mathrm{P}_{2}\right)$ by increasing the degree $G \cong K_{4}$-e.
Theorem 2.16 For a connected graph G with 5 vertices, $\gamma_{\mathrm{gtc}}(\mathrm{G})=P-2$ if and only if G is isomorphic to $G \cong P_{5}$, $\mathrm{C}_{5}, \mathrm{~K}_{2,3}, \mathrm{C}_{4}\left(\mathrm{P}_{2}\right), \mathrm{C}_{3}\left(\mathrm{P}_{3}\right), \mathrm{K}_{3}\left(2 \mathrm{P}_{2}\right), \mathrm{C}_{3}\left(\mathrm{P}_{2}, \mathrm{P}_{2}, 0\right), \mathrm{P}_{4}\left(0, \mathrm{P}_{2}, 0,0\right), \mathrm{C}_{3}\left(2 \mathrm{P}_{2}\right), \mathrm{K}_{1,4}, \mathrm{~K}_{3}\left(\mathrm{~K}_{3}\right)$, and G_{1} to G_{10} in figure in 2.7.

Since $\gamma_{\mathrm{gtc}}\left(\mathrm{C}_{\mathrm{p}}\right)=\mathrm{p}-1$ by using
\qquad

Proof Let G be a connected graph with 5 vertices and $\gamma_{\mathrm{gtc}}(\mathrm{G})=3$. Let $\mathrm{S}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ be a γ_{gtc} set of G , then clearly $\langle S\rangle=\mathrm{P}_{3}$ or C_{3}. Let $\mathrm{V}-\mathrm{S}=\mathrm{V}(\mathrm{G})-\mathrm{V}(\mathrm{S})=\{\mathrm{u}, \mathrm{v}\}$ then $\mathrm{V}-\mathrm{S}=\mathrm{K}_{2}, \overline{K_{2}}$.
Case1 Let $\langle S\rangle=\mathrm{P}_{3}=\mathrm{xyz}$
Subcase i $\langle V-S\rangle=\mathrm{K}_{2}=$ uv Since G is connected, there exists a vertex say (u or v) in K_{2} which is adjacent to x or z in P_{3}.Suppose u is adjacent to x then $S=\{u, x, y\}$ forms a $\gamma_{g t c}$ set of G. So that $\gamma_{g t c}(G)=P-2$. If $d(x)=d(y)=2$, $d(z)=1$ then $G \cong P_{5}$. On increasing the degree of vertices $G \cong C_{5}, C_{3}\left(P_{2}, P_{2} 0\right), C_{4}\left(P_{2}\right), G_{1}$ to G_{4}. Since G is connected, there exist vertex say (u or v) in K_{2} which is adjacent to y in P_{3}, then $S=\{u, y, x\}$ forms a $\gamma_{\text {gtc }}$ set of G. So that $\gamma_{\mathrm{gtc}}=\mathrm{P}-2$. If $\mathrm{d}(\mathrm{x})=\mathrm{d}(\mathrm{z})=1, \mathrm{~d}(\mathrm{y})=3$ then $\mathrm{G} \cong \mathrm{P}_{4}\left(0, \mathrm{P}_{2}, 0,0\right)$. Now by increasing the degrees of vertices we have $\mathrm{G} \cong \mathrm{C}_{4}\left(\mathrm{P}_{2}\right) \mathrm{C}_{3}\left(2 \mathrm{P}_{2}\right), \mathrm{G}_{2}$ to G_{5}.
Subcase ii Let $\langle V-S\rangle=\bar{K}_{2}$. Let u and v are the vertices of \bar{K}_{2}. Since G is connected there exist a vertex u and v in \bar{K}_{2} is adjacent to x or y or z in P_{3}. Suppose u and v is adjacent to x then $\mathrm{S}=\{\mathrm{u}, \mathrm{x}, \mathrm{y}\}$ forms a γ_{gtc} set of G . So that $\gamma_{\text {gtc }}=P-2$. If $d(x)=3, d(y)=2, d(z)=1 G \cong P_{4}\left(0, P_{2}, 0,0\right)$. On increasing the degree of vertices $G \cong C_{4}\left(P_{2}\right), C_{3}\left(P_{2}, P_{2}\right.$, 0), G_{1} to G_{7}.Since G is connected, there exist a vertex say (u and v) in \bar{K}_{2} is adjacent to y in P_{3} then $\mathrm{S}=\{\mathrm{x}, \mathrm{y}, \mathrm{u}\}$ forms a $\gamma_{\text {gtc }}$ set of G. So that $\gamma_{\text {gtc }}=P-2$. If $d(x)=d(z)=1, d(y)=4$,then $G \cong K_{1,4 .} K_{3}\left(0, K_{3}, 0\right), K_{3}\left(0,2 P_{2}, 0\right), G_{6}$, G_{7}. Since G is connected there exist a vertex say u in \bar{K}_{2} is adjacent to x and v in \bar{K}_{2} is adjacent to y in P_{3}.Then S $=\{u, x, y\}$ forms a γ_{gtc} set of G. So that that $\gamma_{\mathrm{gtc}} \mathrm{P}-2$. If $\quad \mathrm{d}(\mathrm{x})=\mathrm{d}(\mathrm{y})=\mathrm{d}(\mathrm{z})=2$ then $G \cong \mathrm{P}_{4}\left(0, \mathrm{P}_{2}, 0,0\right)$. On increasing the degree of vertices $G_{1}, G_{3}, G_{4}, G_{6}, G_{7}, C_{3}\left(P_{3}\right), C_{3}\left(K_{3}\right), C_{3}\left(2 P_{2}\right), C_{4}\left(P_{2}\right)$. Since G is connected there exist a vertex say u in \bar{K}_{2} is adjacent to x and v in \bar{K}_{2} is adjacent to z in P_{3}. Then $\mathrm{S}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ forms a γ_{gtc} set of G. So that that $\gamma_{\mathrm{gtc}=} \mathrm{P}-2$. If $\mathrm{d}(\mathrm{x})=\mathrm{d}(\mathrm{y})=\mathrm{d}(\mathrm{z})=2$ then $\mathrm{G} \cong \mathrm{P}_{5}$. On increasing the degree of vertices $K_{3}\left(P_{3}\right), K_{3}$ $\left(\mathrm{K}_{3}\right), \mathrm{C}_{4}\left(\mathrm{P}_{2}\right), \mathrm{G}_{1}, \mathrm{G}_{5}$.
Case 2 Let $\langle S\rangle=\mathrm{C}_{3}=\mathrm{xyzx}$
Subcase $\mathbf{i}\langle V-S\rangle=\mathrm{K}_{2}=$ uv Since G is connected, there exist a vertex say u or vin K_{2} is adjacent to anyone of the vertices of C_{3}. If u or v in K_{2} is adjacent to x in C_{3} then $S=\{x, y, u\}$ forms a $\gamma_{g t c}$ set of G. So that $\gamma_{\text {gtc }}(G)=P-2$. If $d(x)=4, d(y)=d(z)=2$ then $G \cong C_{3}\left(P_{3}\right)$. On increasing the degree of vertices $G \cong C_{3}\left(K_{3}\right), G_{2}, G_{3}, G_{4}, G_{5}$ and G_{7}.
Subcase ii $\langle V-S\rangle=\bar{K}_{2}$ Since G is connected there exist a vertex u and v in \bar{K}_{2} is adjacent to x or y or z in P_{3}. Suppose u and v is adjacent to x then $S=\{x, y, u\}$ forms a $\gamma_{\text {gtc }}$ set of G. So that $\gamma_{g \mathrm{gtc}}=P-2$, If $d(x)=4, d(y)=2, d(z)=2$ $G \cong K_{3}\left(2 P_{2}\right)$ then $G \cong G_{3}, G_{6}, G_{8}, G_{9}$ and G_{10}. Since G is connected there exist a vertex say u in \bar{K}_{2} is adjacent to x and v in \bar{K}_{2} is adjacent to y in K_{3}. Then $\mathrm{S}=\{\mathrm{u}, \mathrm{x}, \mathrm{y}\}$ forms a γ_{gtc} set of G . So that $\gamma_{\mathrm{gtc}} \mathrm{P}-2$. If $\mathrm{d}(\mathrm{x})=\mathrm{d}(\mathrm{y})=$ $d(z)=2$ then $G \cong K_{3}\left(0, P_{2}, P_{2}\right)$. On increasing the degree of vertices $G \cong G_{3}, G_{4}, G_{6}, G_{8}$ and G_{10}.

Theorem 2.17 For a connected graph G with 6 vertices $\gamma_{\text {gtc }}(G)=p-3$ if and only if G is isomorphic to $K_{3}\left(P_{4}\right)$, $\mathrm{P}_{3}\left(0, \mathrm{P}_{2}, \mathrm{~K}_{3}\right), \mathrm{K}_{3}\left(0, \mathrm{P}_{2}, \mathrm{~K}_{3}\right), \mathrm{P}_{4}\left(0,2 \mathrm{P}_{2}, 0,0\right), \mathrm{C}_{4}\left(0,2 \mathrm{P}_{2}, 0,0\right), \mathrm{K}_{3}\left(2 \mathrm{P}_{2}, \mathrm{P}_{2}, 0\right), \mathrm{K}_{1,5}, \mathrm{~K}_{3}\left(3 \mathrm{P}_{2}\right), \mathrm{P}_{5}\left(0,0, \mathrm{P}_{2}, 0,0\right), P_{5}\left(0, \mathrm{P}_{2}, 0,0,0\right)$, $\mathrm{C}_{5}\left(\mathrm{P}_{2}, 0,0,0,0\right), \mathrm{C}_{4}\left(\mathrm{P}_{2}, \mathrm{P}_{2}, 0,0\right), \mathrm{P}_{2} \times \mathrm{P}_{3}, \mathrm{~K}_{4}\left(\mathrm{P}_{2}, \mathrm{P}_{2}, 0,0\right), \mathrm{K}_{3}\left(\mathrm{P}_{2}, \mathrm{P}_{2}, \mathrm{P}_{2}\right), \mathrm{K}_{3}\left(\mathrm{P}_{3}, \mathrm{P}_{2}, 0\right), \mathrm{C}_{4}\left(\mathrm{P}_{3}\right), \mathrm{C}_{4}\left(\mathrm{~K}_{3}\right), \mathrm{P}_{4}\left(0, \mathrm{P}_{2}, \mathrm{P}_{2}\right.$,0), $P_{2}\left(K_{3}, K_{3}\right)$, and anyone of the graphs G_{1} to G_{56} in fig2.8.

Fig 2.8
Case I Let $\langle S\rangle=\mathrm{P}_{3=} \mathrm{xyz}$
Subcase $\mathbf{i}\langle\boldsymbol{V}-\boldsymbol{S}\rangle=\mathbf{K}_{\mathbf{3}}=\mathbf{u v w}$ Since G is connected, there exist a vertex say u or vin K_{3} which is adjacent to anyone of the vertices of P_{3} say x, y, z. If u is adjacent to x then $\{u, x, y\}$ forms a $\gamma_{g t c}$ set of G. If $d(x)=d(y)=2$ $d(z)=1$ then $G \cong K_{3}\left(P_{4}\right)$. On increasing the degree of vertices $G \cong G_{1}$ to G_{21}. Since G is connected, there exist a vertex say u in P_{3} which is adjacent to y in P_{3}. Then $\{u, y, x\}$ forms a $\gamma_{g t c}$ set of G. So that $\gamma_{g t c}=3$ Then $G \cong$ $P_{3}\left(0, P_{2}, K_{3}\right)$. On increasing the degree of vertices $G \cong G_{10}$ to $G_{24,} \quad K_{3}\left(0, P_{2}, K_{3}\right)$.

Subcase ii $\langle\boldsymbol{V}-\boldsymbol{S}\rangle=\overline{\boldsymbol{K}_{3}}$ Since G is connected, there exist a vertex u, v, w in $\overline{K_{3}}$ which is adjascent to x in P_{3}. Then $\{x, y, u\}$ forms a γ_{gtc} set of G. So that $G \cong P_{4}\left(0,2 P_{2}, 0,0\right)$. On increasing the degree of vertices $G \cong C_{4}(0$,
$\left.2 P_{2}, 0,0\right), K_{3}\left(P_{2}, 2 P_{2}, 0\right), G_{25}$ Since G is connected, there exist a vertex u, v, w in $\overline{K_{3}}$ which is adjascent to y in P_{3}. Then $\{u, y, x\}$ forms a $\gamma_{g t c}$ Set of G. so that $\gamma_{\mathrm{gtc}}=3$.Then $G \cong K_{1,5}$ On increasing the degree of vertices $G \cong K_{3}$ $\left(3 P_{2}\right), G_{29}, G_{32}, G_{33}, G_{34}$. Since G is connected, there exist a vertex u is adjacent to x and v and w is adjacent to y. Then $\{\mathrm{u}, \mathrm{x}, \mathrm{y}\}$ forms a γ_{gtc} set of G . Then $\mathrm{G} \cong \mathrm{P}_{4}\left(0,2 \mathrm{P}_{2}, 0,0\right)$. On increasing the degree of vertices $\mathrm{G} \cong \mathrm{K}_{3}\left(2 \mathrm{P}_{2}\right.$, $\left.P_{2}, 0\right), C_{4}\left(0,2 P_{2}, 0,0\right), K_{3}\left(3 P_{2}\right), G_{26}$ to G_{34}. Since G is connected, there exist a vertex u and v adjacent to y and w is adjacent to z , then $\{\mathrm{u}, \mathrm{y}, \mathrm{z}\}$ forms a γ_{gtc} set of G . Then $\mathrm{G} \cong \mathrm{P}_{4}\left(0,2 \mathrm{P}_{2}, 0,0\right)$. On increasing the degree of vertices $\mathrm{G} \cong$ G_{33} to $\mathrm{G}_{35} . \mathrm{K}_{3}\left(3 \mathrm{P}_{2}, 0,0\right), \mathrm{C}_{4}\left(0,2 \mathrm{P}_{2}, 0,0\right)$, Since G is connected, there exist a vertex $\mathrm{u}, \mathrm{v}, \mathrm{w}$ adjacent to $\mathrm{x}, \mathrm{y}, \mathrm{z}$ respectively. Then $\{x, y, z\}$ forms a $\gamma_{\text {gtc }}$ set of G. Then $G \cong P_{5}\left(0,0, P_{2}, 0,0\right)$. On increasing the degree of the vertices $\mathrm{G} \cong \mathrm{K}_{3}\left(\mathrm{~K}_{3}, 0, \mathrm{P}_{2}\right), \mathrm{G}_{33}, \mathrm{G}_{35}$ to G_{37}. If $\{\mathrm{u}, \mathrm{x}, \mathrm{y}\}$ forms a γ_{gtc} set of G , then $\mathrm{G} \cong \mathrm{G}_{34}$.

Subcase iii $\langle\boldsymbol{V}-\boldsymbol{S}\rangle=\mathbf{P}_{\mathbf{3}}=\mathbf{u v w}$ Since G is connected, there exist a vertex u is adjacent to anyone of the vertices of P_{3} say $\{x, y, z\}$.If u is adjacent to x Then $\{u, v, x, y\}$ forms $\gamma_{g t c}$ set of G, so that $\gamma_{g t c}(G)=4$ which is a contradiction. On increasing the degree of vertices $\{\mathrm{v}, \mathrm{x}, \mathrm{y}\}$ forms a γ_{gtc} set of G . Hence $\mathrm{G} \cong \mathrm{G}_{38}, P_{4}\left(0, \mathrm{P}_{2}, \mathrm{P}_{2}, 0\right), K_{3}\left(\mathrm{P}_{2}, \mathrm{P}_{2}, \mathrm{P}_{2}\right), C_{4}\left(0, \mathrm{P}_{2}, \mathrm{P}_{2}, 0\right)$. Since G is connected there exist a vertex v in P_{3} which is adjacent to x . Then $\{\mathrm{v}, \mathrm{x}, \mathrm{y}\}$ forms a γ_{gtc} set of G . So that $\mathrm{G} \cong P_{5}\left(0, \mathrm{P}_{2}, 0,0,0\right)$. On increasing the degree of vertices $G \cong K_{3}\left(2 P_{2}, P_{2}, 0\right), C_{4}\left(2 P_{2,0}, 0,0\right), C_{5}\left(P_{2}, 0,0,0,0\right) . G_{38}$ to G_{40}. Since G is connected there exist a vertex v in P_{3} in $\langle V-S\rangle$ which is adjascent to y in P_{3} in $\langle S\rangle$. Then $\{\mathrm{v}, \mathrm{y}, \mathrm{x}\}$ forms a $\gamma_{\text {gtc }}$ set of. Hence $\gamma_{\mathrm{gtc}}(\mathrm{G})=3$. Then $G \cong \mathrm{P}_{4}(0$, $\left.\mathrm{P}_{2}, \mathrm{P}_{2}, 0\right)$. On increasing the degree of vertices $\mathrm{G} \cong \mathrm{C}_{4}\left(\mathrm{P}_{2}, \mathrm{P}_{2}, 0,0\right), \mathrm{K}_{3}\left(2 \mathrm{P}_{2}, \mathrm{P}_{2}, 0\right), \mathrm{C}_{5}\left(\mathrm{P}_{2}, 0,0,0\right) \mathrm{K}_{4}\left(\mathrm{P}_{2}, \mathrm{P}_{2}, 0,0\right), \mathrm{P}_{2} \times \mathrm{P}_{3}$, G_{41} to G_{45}.

Subcase iv $\langle\boldsymbol{V}-\boldsymbol{S}\rangle=\mathbf{K}_{\mathbf{2}} \cup \boldsymbol{K}_{\mathbf{1}}$ Let u and v are the vertices of K_{2} and w be the vertex in K_{1}. Since G is connected, there exist a vertex u in K_{2} and w be the vertex in K_{1} which is adjacent to anyone of the vertices of P_{3} say x , y , z. Let u and w is adjacent to x. Then $\{x, y, u\}$ forms a $\gamma_{\text {gtc }}$ set of G.Then $G \cong P_{5}\left(0,0, P_{2}, 0,0\right)$. On increasing the degree of vertices $G \cong K_{3}\left(P_{2}, P_{2}, P_{2}\right), P_{5}\left(0,0, P_{2}, 0,0\right), C_{4}\left(0,0, P_{2}, P_{2}\right), \quad C_{3}\left(P_{3}, P_{2}, 0\right), C_{5}\left(0,0,0,0, P_{2}\right)$. Since G is connected, the vertices u and w is adjacent to y. Then $\{u, y, z\}$ forms a $\gamma_{g t c}$ set of G. Then $G \cong G_{47}$. Since G is connected there exist a vertex u is adjacent to x and w is adjacent to y. Then $\{u, x, y\}$ forms a γ_{gtc} set of G. Then $\mathrm{G} \cong \mathrm{P}_{5}\left(0, \mathrm{P}_{2}, 0,0,0\right)$.On increasing the degree of vertices $\mathrm{G} \cong \mathrm{C}_{4}\left(2 \mathrm{P}_{2}\right), \mathrm{C}_{5}\left(\mathrm{P}_{2}\right), \mathrm{K}_{3}\left(\mathrm{P}_{4}\right), \mathrm{K}_{3}\left(\mathrm{P}_{3}, \mathrm{P}_{2}, 0\right), \mathrm{K}_{3}\left(2 \mathrm{P}_{2}\right.$, $\left.P_{2}, 0\right), G_{46}$. Since G is connected there exist a vertex v is adjacent to y and w is adjacent to z. Then $\{v, y, z\}$ forms a $\gamma_{\text {gtc }}$ set of G. Then $G \cong P_{5}\left(0,0, P_{2}, 0,0\right)$. On increasing the degree of vertices $G \cong C_{4}\left(P_{3}\right), C_{4}\left(K_{3}\right), K_{3}\left(P_{2}, P_{2}, P_{2}\right)$, $\mathrm{K}_{3}\left(\mathrm{P}_{3}, \mathrm{P}_{2}, 0\right)$.

Case II Let $\langle\boldsymbol{S}\rangle=\mathrm{K}_{3}=\mathrm{xyz}$

Subcase i Let $\langle\boldsymbol{V}-\boldsymbol{S}\rangle=\mathbf{K}_{3}$. Let $\mathrm{u}, \mathrm{v}, \mathrm{w}$ be the vertices of K_{3}. Since G is connected, there exist a vertex u is adjacent to x . Then $\{\mathrm{v}, \mathrm{u}, \mathrm{x}\}$ forms a γ_{gtc} set of G . Then $\mathrm{G} \cong \mathrm{P}_{2}\left(\mathrm{~K}_{3}, \mathrm{~K}_{3}\right)$. On increasing the degree of vertices $\mathrm{G} \cong$ G_{48}.

Subcase ii Let $\langle\boldsymbol{V}-\boldsymbol{S}\rangle=\overline{\boldsymbol{K}_{\mathbf{3}}}$. Since G is connected there exist a vertex u,v and w in $\overline{K_{3}}$ which is adjacent to anyone of the vertices of K_{3} say x. Hence $\{u, x, y\}$ forms a $\gamma_{\text {gtc }}$ set of G, so that $G \cong K_{3}\left(3 P_{2}\right)$. On increasing the degree of vertices $\mathrm{G} \cong \mathrm{G}_{49}$ to G_{52}. Since G is connected there exist a vertex u and v in $\overline{K_{3}}$ which is adjascent to x and w in $\overline{K_{3}}$ which is adjascent to y in K_{3}. Then $\{u, x, y\}$ forms a $\gamma_{\text {gtc }}$ set of G. Then $G \cong K_{3}\left(2 P_{2}, P_{2}, 0\right)$. On increasing the degree of vertices $G \cong G_{50}, G_{51}, G_{52}$. Since G is connected there exist a vertex u in $\overline{K_{3}}$ which is adjascent to x and v in $\overline{K_{3}}$ which is adjascent to y and w in $\overline{K_{3}}$ is adjascent to z . Then $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ forms a γ_{gtc} set of G. Then $\mathrm{G} \cong \mathrm{K}_{3}\left(\mathrm{P}_{2}, \mathrm{P}_{2}, \mathrm{P}_{2}\right)$,On increasing the degree of vertices $\mathrm{G} \cong \mathrm{G}_{53}$

Subcase iii Let $\langle\boldsymbol{V}-\boldsymbol{S}\rangle=\mathbf{P}_{\mathbf{3}}=\mathbf{u v w}$. Since G is connected there exist a vertex u in P_{3} which is adjacent to anyone of the vertex of K_{3} say x. Then $\{u, v, x\}$ forms a $\gamma_{g t c}$ set of G. Then $G \cong K_{3}\left(P_{4}\right)$.On increasing the degree of vertices $G \cong G_{1}$ to G_{20}. Since G is connected there exist a vertex say v in P_{3} which is adjacent to anyone of the vertices of K_{3} say x. Then $\{v, x, y\}$ forms a $\gamma_{\text {gtc }}$ set of G. Then $G \cong P_{3}\left(0, P_{2}, K_{3}\right)$.On increasing the degree of vertices $G \cong \mathrm{G}_{10}$ to G_{24}.

Subcase iv $\langle\boldsymbol{V}-\boldsymbol{S}\rangle=\mathbf{K}_{\mathbf{2}} \cup \boldsymbol{K}_{\mathbf{1}}$ Let u and v are the vertices of K_{2} and w be the vertex of K_{1}. Since G is connected, there exist a vertex u and w is adjacent to x, then $\{u, x, y\}$ forms a $\gamma_{g \text { gt }}$ set of G.Then $G \cong G_{54}$ to G_{56}. Since G is connected there exist a vertex u is adjacent to x and w is adjacent to y. Then $\{u, x, y\}$ forms a $\gamma_{g t c}$ set of G. Then $G \cong K_{3}\left(P_{3}, P_{2}, 0\right)$. On increasing the degree of vertices $G \cong G_{54}, G_{56}$.

Conversely if G is anyone of the graphs $K_{3}\left(P_{4}\right), P_{3}\left(0, P_{2}, K_{3}\right), \mathrm{K}_{3}\left(0, \mathrm{P}_{2}, \mathrm{~K}_{3}\right), \mathrm{P}_{4}\left(0,2 \mathrm{P}_{2}, 0,0\right), \mathrm{C}_{4}\left(0,2 \mathrm{P}_{2}, 0,0\right)$, $\mathrm{K}_{3}\left(2 \mathrm{P}_{2}, \mathrm{P}_{2}, 0\right), \mathrm{K}_{1,5}, \mathrm{~K}_{3}\left(3 \mathrm{P}_{2}\right), \mathrm{P}_{5}\left(0,0, \mathrm{P}_{2}, 0,0\right), P_{5}\left(0, \mathrm{P}_{2}, 0,0,0\right), \mathrm{C}_{5}\left(\mathrm{P}_{2}, 0,0,0,0\right), \mathrm{C}_{4}\left(\mathrm{P}_{2}, \mathrm{P}_{2}, 0,0\right), \mathrm{P}_{2} \times \mathrm{P}_{3}, \mathrm{~K}_{4}\left(\mathrm{P}_{2}, \mathrm{P}_{2}, 0,0\right)$, $K_{3}\left(P_{2}, P_{2}, P_{2}\right), K_{3}\left(P_{3}, P_{2}, 0\right), C_{4}\left(P_{3}\right), C_{4}\left(K_{3}\right), P_{4}\left(0, P_{2}, P_{2}, 0\right), P_{2}\left(K_{3}, K_{3}\right)$, and anyone of the graphs G_{1} to G_{56} in fig2.8 then it can be easily verify that $\gamma_{\mathrm{gtc}}=\mathrm{p}-3$.

III. Global Triple Connected Domination Number And Other Graph Theoretical Parameters

Theorem 3.1 For any connected graph with $\mathrm{p} \geq 5$ vertices, then $\gamma_{\mathrm{gtc}}(\mathrm{G})+\mathrm{k}(\mathrm{G}) \leq 2 \mathrm{p}-1$ and the bound is sharp if and only if $G \cong K_{p}$.
Proof: Let G be a connected graph with $p \geq 5$ vertices. Suppose G is isomorphic to K_{p} We know that $k(G) \leq$ $\mathrm{p}-1$ and by observation 2.3, $\gamma_{\mathrm{gtc}}(G) \leq \mathrm{P}$. Hence $\gamma_{\mathrm{gtc}}(G)+\mathrm{k}(\mathrm{G}) \leq 2 \mathrm{p}-1$, Conversely, let $\quad \gamma_{\mathrm{gtc}}(G)+\mathrm{k}(\mathrm{G}) \leq$ $2 \mathrm{p}-1$. This is possible only if $\gamma_{\mathrm{gtc}}(G)=p$ and $k(G)=p-1$. But $k(G)=p-1$, and so $G \cong K_{p}$ for which $\gamma_{\mathrm{gtc}}(G)=K_{p}$.

Theorem 3.2 For any connected graph G with $P \geq 3$ vertices, $\gamma_{\mathrm{gtc}}(\mathrm{G})+\chi(\mathrm{G}) \leq 2 \mathrm{p}$ and the bound is sharp if and only if $G \cong K_{p}$.
Proof: Let G be a connected graph with $\mathrm{P} \geq 3$ vertices. We know that $\chi(\mathrm{G}) \leq \mathrm{p}$ and by observation $2.3 \gamma_{\mathrm{gtc}} \leq \mathrm{p}$. Hence $\gamma_{\text {gt }}(G)+\chi(G) \leq 2 p$. Suppose G is isomorphic to $K_{\mathrm{p}}, \gamma_{\mathrm{gtc}}(\mathrm{G})+\chi(\mathrm{G}) \leq 2 \mathrm{p}$. Conversely $\quad \gamma_{\mathrm{gtc}}(\mathrm{G})+\chi(\mathrm{G}) \leq$ 2 p . This is possible if $\gamma_{\mathrm{gtc}}(\mathrm{G})=\mathrm{p}$ and $\chi(\mathrm{G})=\mathrm{p}$, So G is isomorphic to K_{p} for which $\quad \gamma_{\mathrm{gtc}}(\mathrm{G})=\mathrm{p}$ so that $\mathrm{p}=3$. Hence $G \cong K_{p}$.
Theorem 3.3. For any connected graph with $\mathrm{p} \geq 5$ vertices, $\gamma_{\mathrm{gtc}}(\mathrm{G})+\Delta(\mathrm{G}) \leq 2 \mathrm{p}-1$ and the bound is sharp if and only if $G \cong K_{p}$
Proof: Let G be a connected graph with $p \geq 5$ vertices. We know that $\Delta(G) \leq p-1$ and by observation 2.3 $\gamma_{\mathrm{gtc}}(\mathrm{G}) \leq \mathrm{p}$. Hence $\gamma_{\mathrm{gtc}}(\mathrm{G})+\Delta(\mathrm{G}) \leq 2 \mathrm{p}-1$. For K_{p} the bound is sharp.

References

[1] John Adidharan Bondy , Murthy U.S.R .(2009): graph Theory
[2] Paulraj Joseph J.,Angel Jebitha M.K.,Chithra Devi P.and Sudhana G. (2011): Triple connected graphs , Accepted for publication
[3] Paulraj Joseph J and Arumugham. S. (1995): Domination in Graphs, International journal of Management systems, 11:177-182.
[4] Sampathkumar, E;Waliker, HB(1979): The connected domination number of a graph,J.Math. Phys.Sci 13(6):607-613.
[5] Teresa W.Haynes, Stephen T. Hedetniemi and peter J. Slater (1998):Domination in graphs, Advanced Topics, Marcel Dekker, New York.
[6] Teresa W.Haynes, Stephen T.Hedetniemi and Peter J.Slater(1998):Fundamentals of domination in graphs, Marcel Dekker, New York.

