ADCSS-Labeling of 2-Tuple Graphs of Some Graphs

Dr. Mathew Varkey T K* and Sunoj B S**

*Department of Mathematics, T K M College of Engineering, Kollam 5
**Department of Mathematics, Government Polytechnic College, Attingal

Abstract: A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. In this paper, we introduce the new concept, an absolute difference of cubic and square sum labeling of a graph. The graph for which every edge label is the absolute difference of the sum of the cubes of the end vertices and the sum of the squares of the end vertices. It is also observed that the weights of the edges are found to be multiples of 2. Here we characterize 2-tuple graphs of middle graph of paths and cycles, crown graph, star graphs, the triangular snake graph, quadrilateral snake graph for adcss labeling.

Keywords: Graph labeling, sum square graph, square sum graphs, cubic graphs, middle graphs, 2-tuple graph.

I. Introduction

All graphs in this paper are finite and undirected. The symbol V(G) and E(G) denotes the vertex set and edge set of a graph G. The graph whose cardinality of the vertex set is called the order of G, denoted by n and the cardinality of the edge set is called the size of the graph G, denoted by m. A graph with p vertices and q edges is called a (p,q)-graph.

A graph labeling is an assignment of integers to the vertices or edges. Some basic notations and definitions are taken from [1], [2], [3], [4] and [5]. Some basic concepts are taken from Frank Harary [2]. We introduced the new concept, an absolute difference of cubic and square sum labeling of a graph [6]. In [6], [7], [8], [9], [10], [11], it is shown that planar grid, web graph, kayak paddle graph, snake graphs, friendship graph, armed crown, fan graph, cycle graphs, wheel graph etc have an adcss labeling. In this paper we investigated ADCCS labeling of some 2-tuple graphs.

Definition 1.1 [6] Let G = (V(G), E(G)) be a graph. A graph G is said to be absolute difference of the sum of the cubes of the vertices and the sum of the squares of the vertices, if there exist a bijection f : V(G) → {1, 2, ..., p} such that the induced function f_{adcss} : E(G) → multiples of 2 is given by f_{adcss}(uv) = |(f(u)^3 + f(v)^3) - (f(u)^2 + f(v)^2)| is injective.

Definition 1.2 A graph in which every edge associates distinct values with multiples of 2 is called the sum of the cubes of the vertices and the sum of the squares of the vertices. Such a labeling is called an absolute difference of cubic and square sum labeling or an absolute difference css-labeling.

II. Main Results

Definition 2.1 Let V(G) and X(G) denote the vertex set and the edge set of G, respectively. The middle graph M(G) of G whose vertex set is V(G) union X(G) where two vertices are adjacent if and only if

(i) They are adjacent edges of G or
(ii) One is a vertex and other is an edge incident with it.

Definition 2.2 The crown graph Crn is obtained by joining a pendant edge to each vertex of cycle Cn.

Definition 2.3 The triangular snake graph Tn is obtained from the path Pn by replacing each edge vi,vi+1 by cycle C3(vi,vi+1,vi+2) for 1 ≤ i ≤ n - 1.

Definition 2.4 The quadrilateral snake graph Qn is obtained from the path Pn by replacing each edge vi,vi+1 by cycle C4(vi,vi+1,vi+2,vi+3) for 1 ≤ i ≤ n - 1.

Definition 2.5 Let G = (V,E) be a simple graph and G' = (V',E') be another copy of graph G. Join each vertex v of G to the corresponding vertex v' of G' by an edge. The new graph thus obtained is the 2-tuple graph of G. 2-tuple graph of G is denoted by T(G). Further if G = (p,q) then |V(T(G))| = 2p and |E(T(G))| = 2q + p

Theorem 2.1 2-tuple graph of the middle graph of path Pn, T(M(Pn)) admits ADCCS labeling.

Proof: Let G = T(M(Pn)) and let v1,v2,......,v4n-2 are the vertices of G. Here |V(G)| = 4n-2 and |E(G)| = 8n-9.

Define a function f : V(G) → {1,2,3,......,4n-2} by

f(vi) = i, i = 1,2,......,4n-2.

For the vertex labeling f, the induced edge labeling f_{adcss} is defined as follows

f_{adcss}(v1, v2) = (i+1)^2(i+2)^2, i = 1,2,3,......,n-2.

DOI: 10.9790/5728-1205051215 www.iosrjournals.org 12 | Page
Define a function $f : V(G) \rightarrow \mathbb{Z}$

Proof:

Theorem: 2.2

2-tuple graph of the middle graph of cycle $C_n,T^2(M(C_n))$ admits ADCSS-labeling.

Proof: Let $G = T^2(M(C_n))$ and let v_1,v_2,\ldots,v_{4n} be the vertices of G.

Here $|V(G)| = 4n$ and $|E(G)| = 8n$.

Define a function $f : V \rightarrow \{1,2,3,\ldots,4n\}$ by

$$f(v_i) = 1, i = 1,2,\ldots,4n.$$

For the vertex labeling f, the induced edge labeling f^*_e is defined as follows

- $f^*_e(v_i,v_{i+1}) = (i+1)\cdot(i+1)$, $i = 1,2,\ldots,2n-1,2n+1,\ldots,4n-1$
- $f^*_e(v_i,v_{2i-1}) = (2i+2)(2i+2) + (2i-1)(2i-1)$, $i = 1,2,3,\ldots,n$
- $f^*_e(v_i,v_{2i}) = (2n)(2n-1)+4$
- $f^*_e(v_i,v_{2i}) = (2n)^2(2n-1)$
- $f^*_e(v_{2i+1},v_{4n}) = (2n+2)(2n+2) + (4n)(4n)$
- $f^*_e(v_{2i+1},v_{4n}) = (2n+2)(2n+2) + (4n)(4n)$
- $f^*_e(v_{2i+2},v_{2i+2}) = (2n+2)(2n+2)^2 + (2n+2)(2n+2)^2$, $i = 1,2,\ldots,n$
- $f^*_e(v_i,v_{2i}) = (i)^2(i-1) + (2n+i)(2n+i)$, $i = 1,2,\ldots,4n$.

All edge values of G are distinct, which are multiples of 2. That is the edge values of G are in the form of an increasing order. Hence $T^2(M(C_n))$ admits ADCSS-labeling.

Example 2.2 ADCSS labeling of the graph $T^2(M(C_3))$ is shown in figure (ii)

Theorem: 2.3 $T^2(C_r)$ admits ADCSS-labeling.

Proof: Let $G = T^2(C_r)$ and let v_1,v_2,\ldots,v_{4n} be the vertices of G.

Here $|V(G)| = 4n$ and $|E(G)| = 6n$.

Define a function $f : V \rightarrow \{1,2,3,\ldots,4n\}$ by

$$f(v_i) = 1, i = 1,2,\ldots,4n.$$
f(v_i) = i , i = 1,2,-------,4n.

For the vertex labeling f, the induced edge labeling f^*_{adcss} is defined as follows

\[f^*_{adcss}(v_i, v_{i+1}) = i^2(i-1)+i, \quad i = 1,2,-------,n. \]

\[f^*_{adcss}(v_i, v_{i+1}) = i^2(i-1)+i, \quad i = 1,2,-------,n. \]

\[f^*_{adcss}(v_i, v_{2n+i}) = (n+i)^2(n-i)(n+i), \quad i = 1,2,-------,n. \]

All edge values of G are distinct, which are multiples of 2. That is the edge values of G are in the form of an increasing order. Hence \(T^2(K_{1,n}) \) admits adcss-labeling.

Example 2.3 ADCSS labeling of the graph \(T^2(C_r) \) is shown in figure (iii)

```
fig - iii
```

Theorem: 2.4 \(T^2(K_{1,n}) \) admits ADCSS – labeling, where \(K_{1,n} \) is the star graph.

Proof: Let G = \(T^2(K_{1,n}) \) and let \(v_1, v_2,-------, v_{2n+2} \) are the vertices of G.

Here \(|V(G)| = 2n+2 \) and \(|E(G)| = 3n+1 \)

Define a function \(f : V \rightarrow \{1,2,3,-------,2n+2\} \) by

\[f(v_i) = i , i = 1,2,-------,2n+2. \]

For the vertex labeling \(f \), the induced edge labeling \(f^*_{adcss} \) is defined as follows

\[f^*_{adcss}(v_i, v_{i+1}) = i^2(i-1), \quad i = 1,2,-------,n. \]

\[f^*_{adcss}(v_{n+i}, v_{n+2+i}) = (n+i)^2(n+1)(n+i+1)(n+i), \quad i = 1,2,-------,n. \]

All edge values of G are distinct, which are multiples of 2. That is the edge values of G are in the form of an increasing order. Hence \(T^2(K_{1,n}) \) admits adcss-labeling.

Example 2.4 ADCSS labeling of the graph \(T^2(K_{1,3}) \) is shown in figure (iv)

```
fig - iv
```

Theorem: 2.5 \(T^2(T_n) \) admits ADCSS – labeling, where \(T_n \) is the triangular snake graph.

Proof: Let G = \(T^2(T_n) \) and let \(v_1, v_2,-------, v_{4n+2} \) are the vertices of G.
ADCSS-Labeling of 2-Tuple Graphs of Some Graphs

Here \(|V(G)| = 4n-2 \) and \(|E(G)| = 8n-7 \)

Define a function \(f : V \rightarrow \{1,2,3,\ldots,4n-2\} \) by

\[
f(v_i) = i, \quad i = 1, 2, \ldots, 4n-2.
\]

For the vertex labeling \(f \), the induced edge labeling \(f_{\text{adc}} \) is defined as follows

\[
f_{\text{adc}}(v_i, v_{i+1}) = (i+1)^2 + i^2 (i-1),
\]

\[
f_{\text{adc}}(v_{2n-1+i}, v_{2n+i}) = (2n-1+i)^2 (2n-2i+1) + (2n+i)^2 (2n+i-1),
\]

\[
f_{\text{adc}}(v_{2n-2i+1}, v_{2n+i+1}) = (2n-2i+1)^2 (2n-3i+2i) + (2n+2i)^2 (2n+2i-1),
\]

\[
f_{\text{adc}}(v_{2i-1} v_{2i+1}) = (2i+1)^2 (2i+1) + (2i-1)^2 (2i-2).
\]

All edge values of \(G \) are distinct, which are multiples of 2. That is the edge values of \(G \) are in the form of an increasing order. Hence \(T^2(Q_n) \) admits adcss-labeling.

Example 2.5 ADCSS labeling of the graph \(T^2(T_4) \) is shown in figure (v)

![Diagram of T^2(T_4) with ADCSS labeling](image)

Theorem 2.6 \(T^2(Q_n) \) admits ADCSS-labeling, where \(Q_n \) is the quadrilateral snake graph.

Proof: Let \(G = T^2(Q_n) \) and let \(v_1, v_2, \ldots, v_{6n-4} \) are the vertices of \(G \).

Here \(|V(G)| = 6n-4 \) and \(|E(G)| = 11n-10 \)

Define a function \(f : V \rightarrow \{1,2,3,\ldots,6n-4\} \) by

\[
f(v_i) = i, \quad i = 1, 2, \ldots, 6n-4.
\]

For the vertex labeling \(f \), the induced edge labeling \(f_{\text{adc}} \) is defined as follows

\[
f_{\text{adc}}(v_i, v_{i+1}) = (i+1)^2 i^2 + (i-1)^2,
\]

\[
f_{\text{adc}}(v_{3n-2i+1}, v_{3n-1+i}) = (3n-2i+1)^2 (3n-3i) + (3n+1+i)^2 (3n-2i),
\]

\[
f_{\text{adc}}(v_{3n-2i}, v_{3n+i+1}) = (3i-2)^2 (3i-2) + (3i+1)^2 (3i),
\]

\[
f_{\text{adc}}(v_{3n-2i+1}, v_{3n-1+i}) = (3n+3i)^2 (3n+3i) + (3n-1+i)^2 (3n-3i),
\]

\[
f_{\text{adc}}(v_{3n-2i+1}, v_{3n-1+i}) = (3n+2i)^2 (3n+2i) + i^2 (i-1).
\]

All edge values of \(G \) are distinct, which are multiples of 2. That is the edge values of \(G \) are in the form of an increasing order. Hence \(T^2(Q_n) \) admits adcss-labeling.

References

DOI: 10.9790/5728-1205051215 www.iosrjournals.org