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Abstract: We find necessary and sufficient conditions under which a regular shifted sampling expansion hold 

on  𝑉 (𝜑(𝑡𝑑)) 𝑚
𝑑=1  and obtain truncation error estimates of the sampling series. We also find a sufficient 

condition for a function in 𝐿2(ℝ) that belongs to a sampling subspace of 𝐿2(ℝ). We use Fourier duality between 

 𝑉 (𝜑(𝑡𝑑)) 𝑚
𝑑=1  and 𝐿2[0, 2𝜋] to find conditions under which there is a stable   asymmetric multi-channel 

sampling formula on 𝑉 (𝜑(𝑡𝑑)) 𝑚
𝑑=1 . 
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I. Introduction 

Let   𝜑(𝑡𝑑)𝑚
𝑑=1   in 𝐿2(ℝ) , let  𝑉 (𝜑(𝑡𝑑)) 𝑚

𝑑=1 = span{  𝜑(𝑡𝑑 − 𝑛)𝑚
𝑑=1 ∶  𝑛 ∈  ℤ} be the closed 

subspace of 𝐿2(ℝ)spanned by integer translates {  𝜑(𝑡𝑑 − 𝑛)𝑚
𝑑=1 ∶  𝑛 ∈  ℤ} of  𝜑(𝑡𝑑)𝑚

𝑑=1  . We call 

 𝑉 (𝜑(𝑡𝑑)) 𝑚
𝑑=1  the series of shift invariant space generated by  𝜑(𝑡𝑑)𝑚

𝑑=1   and  𝜑(𝑡𝑑)𝑚
𝑑=1   a frame or a Riesz 

or an orthonormal generator if {  𝜑(𝑡𝑑 − 𝑛)𝑚
𝑑=1 ∶  𝑛 ∈  ℤ} is a frame or a Riesz basis or an orthonormal basis 

of   𝑉 (𝜑(𝑡𝑑)) 𝑚
𝑑=1 .  The multi-channel sampling method goes back to the works of Shannon [16] and Fogel 

[15], where reconstruction of a band-limited signal from samples of the signal and its derivatives was found. 

Generalized sampling expansion using arbitrary multi-channel sampling on the Paley–Wiener space was 

introduced first by Papoulis [14] .                                                                                                

 Adam zakria
  
 , Ahmed Abdallatif

    , 
Yousif Abdeltuif  [1] and S. Kang , J.M. Kim, K.H. Kwon [12] 

considered sampling expansion in a series of shift invariant spaces and symmetric multi-channel sampling in 

shift-invariant spaces space 𝑉 (𝜑)with a suitable Riesz generator 𝜑(𝑡 ), where each channeled signal is sampled 

with a uniform but distinct rate.Using Fourier duality between  𝑉 (𝜑(𝑡𝑑)) 𝑚
𝑑=1  and 𝐿2[0, 2𝜋] [7,8,9,12], we 

derive under the same considerations a stable series of shifted asymmetric multi-channel sampling formula in 

 𝑉 (𝜑(𝑡𝑑)) 𝑚
𝑑=1 . For example, Walter considered a real-valued continuous orthonormal generator satisfying 

 𝜑(𝑡𝑑)𝑚
𝑑=1  =  𝑂((1 +   |𝑡𝑑 |𝑚

𝑑=1 )−𝑠) with 𝑠 >  1, Chen, Itoh, and Shiki considered a continuous Riesz 

generator satisfying  𝜑(𝑡𝑑)𝑚
𝑑=1  = 𝑂((1 +  |𝑡𝑑 |𝑚

𝑑=1 )−𝑠 with 𝑠 >
1

2
, and Zhou and Sun considered a 

continuous frame generator  𝜑(𝑡𝑑)𝑚
𝑑=1   satisfying 𝑠𝑢𝑝ℝ    𝜑 (𝑡𝑑 − 𝑛) 𝑚

𝑑=1
2

𝑛∈ℤ < ∞. We find necessary and 

sufficient conditions under which an irregular sampling expansion and a regular shifted sampling expansion 

hold on  𝑉(𝜑(𝑡𝑑)) 𝑚
𝑑=1 . We give an illustrative examples (see[6, 12]). 

 

II. Preliminaries 

We consider the notations and formulas in [6, 12]. Take { 𝜑 𝑛 ∶  𝑛 ∈ ℤ} be a sequence of elements of a 

separable Hilbert space H with the inner product  ( , ) and 𝑉 =  𝑠𝑝𝑎𝑛       { 𝜑 𝑛 ∶  𝑛 ∈ ℤ} the closed subspace of H 

spanned by { 𝜑𝑛  ∶  𝑛 ∈ ℤ}. Then { 𝜑𝑛  ∶  𝑛 ∈ ℤ} is called 

 a Bessel sequence (with a Bessel bound B) if there is  a constant 𝐴 + 휀0  >  0 such that   〈𝜑,𝜑𝑛  〉 2𝑛∈ℤ  ≤

  𝐴 + 휀0 || 𝜑 ||2 ,𝜑 ∈ 𝐻 (or equivalently 𝜑 ∈ 𝑉 ), 

 a frame sequence  (with frame bounds (𝐴,𝐴 + 휀0)) if there are constants  𝐴,𝐴 + 휀0 >  0 such that A|| 𝜑 ||2
 

≤  |n∈ℤ 〈𝜑,𝜑𝑛〉|
2
 ≤  𝐴 + 휀0 || 𝜑 ||2 , 𝜑 ∈  𝑉, a Riesz sequence (with Riesz bounds (𝐴,𝐴 + 휀0)) if there 

are constants  𝐴 + 휀0,𝐴 >  0 

𝐴 𝑐 2  ≤    𝑐

𝑛∈ℤ

 (𝑛) 𝜑𝑛 

2

≤  𝐴 + 휀0  𝑐 
2, 𝑐 =  {𝑐(𝑛)}𝑛∈ℤ  ∈  𝑙2 

where  𝑐 2  =    𝑛∈ℤ  𝑐(𝑛) 2 , an orthonormal sequence if (𝜑𝑚 ,𝜑𝑛) = 𝛿𝑚 ,𝑛  for all m and n in ℤ . 
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If { 𝜑𝑛  ∶  𝑛 ∈  ℤ} is a frame sequence or a Riesz sequence or an orthonormal sequence in 𝐻, then we say that 

{ 𝜑𝑛  ∶  𝑛 ∈  ℤ} is  a frame or a Riesz basis or an orthonormal basis of the Hilbert subspace 𝑉 in 𝐻. On 𝐿2(ℝ) ∩

 𝐿1(ℝ), we take the Fourier transform to be normalized as 

ℱ 𝜑   𝜉 =    𝜑   𝜉 =  
1

 2𝜋
  𝜑

∞

−∞

  𝑡 𝑒−𝑖𝑡𝜉  𝑑𝑡,𝜑  𝑡 ∈  𝐿2 ℝ ∩  𝐿1 ℝ  

so that  ℱ[ · ] becomes a unitary operator from 𝐿2(ℝ) onto 𝐿2(ℝ). 

For any  𝜑(𝑡𝑑)𝑚
𝑑=1 ∈  𝐿2 ℝ , let   𝛷 𝑡𝑑 

𝑚
𝑑=1  =     𝜑  𝑡𝑑  −  𝑛  𝑚

𝑑=1
2

𝑛∈ℤ , 

𝐺𝜑(𝜉)  =    𝜑 (𝜉 +  2𝑛𝜋) 2𝑛∈ℤ . Then 𝛷(𝑡)  =  𝛷(𝑡 +  1)  ∈ 𝐿1[0, 1], 

𝐺𝜑(𝜉)  =  𝐺𝜑(𝜉 +  2𝜋) ∈  𝐿1[0, 2𝜋]  and 

||   𝜑(𝑡𝑑)𝑚
𝑑=1 ||2

𝐿2(ℝ)
 =  || 𝛷 (𝑡𝑑)𝑚

𝑑=1 ||𝐿1[0,1]  =  ||𝐺𝜑 (𝜉)||𝐿1[0,1] . 

The normalized Fourier transform is 

ℱ 𝜑  𝜉  = 𝜑  𝜉 =   𝜑 𝑡𝑑  𝑒−𝑖𝑡𝑑𝜉
𝑚

𝑑=1

𝑚

𝑑=1

 𝑑𝑡𝑑

∞

−∞

, 𝜑(𝑡𝑑)

𝑚

𝑑=1

∈  𝐿2 ℝ ∩  𝐿1 ℝ  

so that 
1

 2𝜋
 ℱ [·] extends to a unitary operator from 𝐿2(ℝ)onto 𝐿2(ℝ). For each   𝜑(𝑡𝑑)𝑚

𝑑=1 ∈ 𝐿2 ℝ , let 

 𝐶𝜑(𝑡𝑑)

𝑚

𝑑=1

 =    

𝑛∈ℤ

 |𝜑(𝑡𝑑  + 𝑛)|2

𝑚

𝑑=1

 and  𝐺𝜑 (𝜉 )  =    

𝑛∈ℤ

|𝜑 (𝜉 + 2𝑛𝜋)|2. 

Hence 

 𝐶𝜑(𝑡𝑑)

𝑚

𝑑=1

=  𝐶𝜑(𝑡𝑑

𝑚

𝑑=1

+ 1) ∈ 𝐿1[0, 1],𝐺𝜑(𝜉) = 𝐺𝜑(𝜉 + 2𝜋) ∈  𝐿2[0, 2𝜋] 

and 

  𝜑(𝑡𝑑)

𝑚

𝑑=1

 

 

2

𝐿2 ℝ 

=    𝐶𝜑(𝑡𝑑)

𝑚

𝑑=1

 

 

 

𝐿1  0,1 

=
1

2𝜋
  𝐺𝜑 (𝜉)  

 

𝐿1  0,2𝜋 
. 

In particular,  𝐶𝜑(𝑡𝑑)𝑚
𝑑=1   < ∞ for a.e.  𝑡𝑑

𝑚
𝑑=1 ∈ ℝ . We also let 

 𝑍𝜑(𝑡𝑑 , 𝜉)

𝑚

𝑑=1

 =   

𝑛∈ℤ

 𝜑(𝑡𝑑  + 𝑛)𝑒−𝑖𝑛𝜉
𝑚

𝑑=1

 

be the Zak transform [11] of  𝜑(𝑡𝑑)𝑚
𝑑=1  in 𝐿2(ℝ)). Then  𝑍𝜑(𝑡𝑑 , 𝜉)𝑚

𝑑=1  is well defined a.e. on ℝ2 and is quasi-

periodic in the sense that 

 𝑍𝜑(𝑡𝑑 + 1, 𝜉)𝑚
𝑑=1  =  𝑒𝑖𝜉  𝑍𝜑(𝑡𝑑 , 𝜉)𝑚

𝑑=1 and  𝑍𝜑(𝑡𝑑 , 𝜉 + 2𝜋)𝑚
𝑑=1 =   𝑍𝜑(𝑡𝑑 , 𝜉)𝑚

𝑑=1 . 

A Hilbert space H consisting of complex valued functions on a set 𝐸 is called a reproducing kernel Hilbert space 

(RKHS in short) if there is a series of a functions  𝑞(𝑠, 𝑡𝑑)𝑚
𝑑=1  on 𝐸 ×  𝐸, called the reproducing kernel of 𝐻 , 

satisfying 

(i)  𝑞(. , 𝑡𝑑)𝑚
𝑑=1  ∈ 𝐻 for each  𝑡𝑑

𝑚
𝑑=1 ∈ 𝐸 , 

(ii) 〈𝑓 (𝑠), 𝑞(𝑠, 𝑡𝑑)𝑚
𝑑=1 〉  =   𝑓(𝑡𝑑)𝑚

𝑑=1 , 𝑓 ∈ 𝐻. 

In an RKHS 𝐻, any norm converging sequence also converges uniformly on any subset of E, on which 

  𝑞(. , 𝑡𝑑)𝑚
𝑑=1  2

𝐻
=  𝑞(𝑡𝑑 , 𝑡𝑑)𝑚

𝑑=1  is bounded. 

A sequence {𝜑𝑛 : 𝑛 ∈  ℤ} of vectors in a separable Hilbert space 𝐻 is 

(i) a Bessel sequence with a bound 𝐴 + 휀0 ∶ 휀0 >  0 if 

  〈𝜑,𝜑𝑛  〉 2

𝑛∈𝕫

 ≤   𝐴 + 휀0  𝜑 
2,𝜑 ∈  𝐻 , 휀0 >  0, 

(ii) a frame of H with bounds 𝐴 + 휀0  ≥  𝐴 ∶ 휀0 >  0  if 

𝐴 𝜑 2 ≤  〈𝜑,𝜑𝑛  〉 2

𝑛∈𝕫

≤  𝐴 + 휀0  𝜑 
2 ,𝜑 ∈  𝐻 , 휀0 >  0, 

(iii) a Riesz basis of 𝐻 with bounds 𝐴 + 휀0 ≥  𝐴 ∶ 휀0 >  0 if it is complete in 𝐻 and 

𝐴 𝒄 𝟐 ≤   𝑐(𝑛)𝜑𝑛
𝑛∈ℤ

 

2

≤  𝐴 + 휀0  𝑐 
2 , 𝑐 =  𝑐(𝑛) 𝑛∈ℤ ∈ 𝑙

2, 휀0 >  0, 

where       𝒄 𝟐  =    c(n) 2

𝑛∈ℤ

     . 
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We let  𝑉 (𝜑(𝑡𝑑)) 𝑚
𝑑=1  be the series of the shift invariant spaces, where  𝜑(𝑡𝑑)𝑚

𝑑=1  is a series of a Riesz 

generators, that is, { 𝜑(𝑡𝑑  − 𝑛)𝑚
𝑑=1 : 𝑛 ∈  ℤ} is a series of a Riesz bases of  𝑉 (𝜑(𝑡𝑑)) 𝑚

𝑑=1 . Then 

 𝑉  𝜑 𝑡𝑑  

𝑚

𝑑=1

=     (𝒄 ∗  𝜑)(𝑡𝑑)

𝑚

𝑑=1

=   𝑐(𝑛)𝜑(𝑡𝑑 − 𝑛)

𝑚

𝑑=1𝑛∈ℤ

: 𝐶 =  𝑐(𝑛) 𝑛∈ℤ ∈ 𝑙
2 . 

It is well known see [5] that  𝜑(𝑡𝑑)𝑚
𝑑=1  is a series of a Riesz generators if and only if there are constant 𝐴 such 

that 𝐴 ≤ 𝐺𝜑(𝜉) ≤ 𝐴 + 휀0  𝑎. 𝑒. 𝑜𝑛 [0, 2𝜋]. In this case, { 𝜑(𝑡𝑑  − 𝑛)𝑚
𝑑=1 : 𝑛 ∈  ℤ} is a series of a Riesz bases of 

 𝑉 (𝜑(𝑡𝑑)) 𝑚
𝑑=1 with bound 휀0 > 0 . For any  𝑐 =  {𝑐(𝑛)}𝑛∈ℤ  and   𝑑 =  {𝑑(𝑛)} 𝑛∈ℤ

  in 𝑙2, the discrete 

convolution product of c and d is defined by 

𝑐 ∗  𝑑 =    (𝑐 ∗  𝑑)(𝑛)   =   𝑐𝑛∈ℤ  (𝑘)𝑑(𝑛 −  𝑘) .Then 𝑐 ∗   ( 𝜉) 𝑑  ∗( 𝜉) belongs to 𝐿1[0, 2 𝜋] and its Fourier 

series is  ( 𝑐 ∗  𝑑)(𝑛)𝑒−𝑖𝑛  𝜉  so that 

  𝑐 ∗   ( 𝜉) 𝑑  ∗( 𝜉) 
2

2𝜋

0

𝑑 𝜉 =  2 𝜋 ||𝑐 ∗  𝑑||2 .                                                         (1) 

Proposition 2.1: Let  𝜑(𝑡𝑑)𝑚
𝑑=1  ∈  𝐿2 ℝ and    𝐴 >  0. Then 

(a) {  𝜑(𝑡𝑑 − 𝑛)𝑚
𝑑=1 ∶  𝑛 ∈  ℤ} is a Bessel sequence with a Bessel bound 𝐴 + 휀0  if and only if  2 𝜋 𝐺𝜑   (𝜉)  ≤

 𝐴 + 휀0 a.e. on [0, 2𝜋] , 

(b) {  𝜑(𝑡𝑑 − 𝑛)𝑚
𝑑=1 ∶  𝑛 ∈  ℤ} is a frame sequence with frame bounds (𝐴,𝐴 + 휀0) if and only if 

 𝐴 ≤ 2 𝜋 𝐺𝜑    𝜉 ≤  𝐴 + 휀0 𝑎. 𝑒.  𝑜𝑛 𝐸𝜑   ,                                                                     (2)  

(c) {  𝜑(𝑡𝑑 − 𝑛)𝑚
𝑑=1 ∶  𝑛 ∈  ℤ} is a Riesz sequence with Riesz bounds  

(𝐴,𝐴 + 휀0) if and only if  𝐴 ≤ 2 𝜋 𝐺𝜑    𝜉 .  𝐴 + 휀0   a.e. on [0, 2 𝜋] , 

(d) {  𝜑(𝑡𝑑 − 𝑛)𝑚
𝑑=1 ∶  𝑛 ∈  ℤ}  is an orthonormal sequence if and only if  

2 𝜋 𝐺𝜑   (𝜉) = 1 a.e. on [0, 2 𝜋]. 

Proof: (See [6] ) For each   𝜑(𝑡𝑑)𝑚
𝑑=1  ∈  𝐿2 ℝ  and    𝑐 = {𝑐(𝑛)}𝑛∈ℤ  ∈  𝑙2 ,  let 

 𝑇(𝑐) = (𝑐 ∗  𝜑)(𝑡) =   𝑐(𝑘) 𝜑 (𝑡𝑑  −  𝑘)𝑚
𝑑=1𝑘∈ℤ   be the semi-discrete convolution product of c and 

 𝜑(𝑡𝑑)𝑚
𝑑=1  , which may or may not converge in 𝐿2 ℝ . In terms of the operator T, called the  pre-frame 

operator of {  𝜑(𝑡𝑑 − 𝑛)𝑚
𝑑=1 ∶  𝑛 ∈  ℤ}, (see [6]): {  𝜑(𝑡𝑑 − 𝑛)𝑚

𝑑=1 ∶  𝑛 ∈  ℤ}is a Bessel sequence with a 

Bessel bound B if and only if T is a bounded linear operator from 𝑙2 into  𝑉 (𝜑(𝑡𝑑)) 𝑚
𝑑=1 and  ||𝑇(𝑐)||2

𝐿2 ℝ  ≤ 

𝐴 + 휀0||𝑐||2, 𝑐 ∈  𝑙2, {  𝜑(𝑡𝑑 − 𝑛)𝑚
𝑑=1 ∶  𝑛 ∈  ℤ} is a frame sequence with frame bounds (𝐴,𝐴 + 휀0) if and 

only if T is a bounded linear operator from 𝑙2  onto  𝑉 (𝜑(𝑡𝑑)) 𝑚
𝑑=1 and  

                  𝐴||𝑐||2  ≤  ||𝑇(𝑐)||2
𝐿2 ℝ 

 ≤  𝐴 + 휀0 ||𝑐||2 , 𝑐 ∈  𝑁(𝑇)⊥  ,                              (3) 

where 𝑁(𝑇)  =  𝐾𝑒𝑟 𝑇 =  {𝑐 ∈  𝑙2 ∶  𝑇(𝑐)  =  0} and 𝑁(𝑇)⊥  
is the orthogonal complement of 𝑁(𝑇)   in 𝑙2, 

{  𝜑(𝑡𝑑 − 𝑛)𝑚
𝑑=1 ∶  𝑛 ∈  ℤ} is a Riesz sequence with Riesz bounds (𝐴,𝐴 + 휀0) if and only if T is an 

isomorphism from 𝑙2 onto  𝑉 (𝜑(𝑡𝑑)) 𝑚
𝑑=1 and 

  𝑨||𝒄||𝟐  ≤  ||𝑻(𝒄)||𝟐
𝑳𝟐 ℝ 

 ≤   𝐴 + 휀0 ||𝒄||𝟐, 𝒄 ∈  𝒍𝟐, {  𝜑(𝑡𝑑 − 𝑛)𝑚
𝑑=1 ∶  𝒏 ∈  ℤ} is an orthonormal sequence 

if and only if T is a unitary operator from 𝑙2 onto  𝑉 (𝜑(𝑡𝑑)) 𝑚
𝑑=1 . 

Lemma 2.2: Let  𝜑(𝑡𝑑)𝑚
𝑑=1  ∈  𝐿2 ℝ . If {  𝜑 (𝑡𝑑  −  𝑛)𝑚

𝑑=1 ∶  𝑛 ∈  ℤ} is  a Bessel sequence, then for any 

 𝑐 =  {𝑐(𝑛)}𝑛  ∈ ℤ  in  𝑙2, 𝑐 ∗ 𝜑   𝜉 =  𝑐 ∗    𝜉 𝜑   𝜉                                                 (4) 

so that 

  𝑐 ∗ 𝜑  𝑡  2
𝐿2 ℝ 

 =    

∞

−∞

  𝑐 ∗   𝜉 𝜑  𝜉  2𝑑 𝜉    

                                          =      𝑐 ∗( 𝜉) 2

2𝜋

0

𝐺𝜑   𝜉 𝑑𝜉 .                                                      (5) 

Proof: See [2,18]. Let  𝜑(𝑡𝑑)𝑚
𝑑=1   be a frame or    a Riesz generator. Then 𝑇 is an  isomorphism from 𝑁(𝑇)⊥  

  

onto  𝑉 (𝜑(𝑡𝑑)) 𝑚
𝑑=1  so that 

 𝑉 (𝜑(𝑡𝑑)) 

𝑚

𝑑=1

=    (𝑐 ∗ 𝜑)(𝑡𝑑)

𝑚

𝑑=1

∶  𝑐 ∈   𝑙2  =     𝑐 ∗  𝜑  𝑡𝑑 

𝑚

𝑑=1

: 𝑐 ∈  𝑁 𝑇 ⊥     , 



Sampling Expansion with Symmetric Multi-Channel Sampling in a series of  Shift-Invariant Spaces 

DOI: 10.9790/5728-1205085564                                          www.iosrjournals.org                                    58 | Page 

where   𝑓(𝑡𝑑)𝑚
𝑑=1  =   (𝑐 ∗  𝜑)(𝑡𝑑)𝑚

𝑑=1  is the 𝐿2-𝑙𝑖𝑚𝑖𝑡 of    𝑐 (𝑘) 𝜑 (𝑡𝑑  −  𝑘)𝑚
𝑑=1𝑘∈ℤ . Applying  (5), we 

have 𝑁(𝑇) =  {𝑐 ∈  𝑙2 ∶  𝑐 ∗( 𝜉)  =  0 a.e. on 𝐸𝜑   } so that   

              𝑁(𝑇)⊥ =   𝑐 ∈  𝑙2 ∶  𝑐 ∗  𝜉  =  0 𝑎. 𝑒. 𝑜𝑛 𝑁𝜑     .                                      (6) 

Proposition 2.3: putting   𝜑(𝑡𝑑)𝑚
𝑑=1  ∈  𝐿2 ℝ  be a frame generator and 

  𝑓(𝑡𝑑)𝑚
𝑑=1  =   (𝑐 ∗  𝜑)(𝑡𝑑)𝑚

𝑑=1  ∈  𝑉 (𝜑(𝑡𝑑)) 𝑚
𝑑=1  hence 𝑐 ∈  𝑙2. Then c ∈ 𝑁(𝑇)⊥  if and only if  𝑐 𝑘 =

〈 𝑓 𝑡𝑑 ,𝜓 𝑡𝑑  –  𝑘 〉𝐿2 ℝ , 𝑘 ∈  ℤ, 1 ≤ 𝑑 ≤ 𝑚 , hence  { 𝜓 (𝑡𝑑  − 𝑘)𝑚
𝑑=1 ∶ 𝑘 ∈ ℤ} is the canonical dual frame of 

{  𝜑 (𝑡𝑑 − 𝑘)𝑚
𝑑=1 ∶ 𝑘 ∈  ℤ }. 

Proof: Applying  (4) for any  𝑓(𝑡𝑑)𝑚
𝑑=1 = (𝑐 ∗  𝜑)(𝑡)  ∈  𝑉  (𝜑 (𝑡𝑑)) 𝑚

𝑑=1 , 

 〈 𝑓 𝑡𝑑 ,𝜓 𝑡𝑑  –  𝑘 〉𝐿2 ℝ 

𝑚

𝑑=1

 =  〈𝑐 ∗  𝜉 𝜑   𝜉 , 𝑒−𝑖𝑘  𝜉  𝜓   𝜉 〉𝐿2 ℝ                                               

                                            =  〈𝑐 ∗( 𝜉) 𝜑  (𝜉),
𝜑  (𝜉)

2𝜋𝐺𝜑   (𝜉)
𝜒𝑠𝑢𝑝𝑝 𝐺𝜑 (𝜉)𝑒−𝑖𝑘  𝜉  〉𝐿2 ℝ  

                    =   
1

2𝜋
  𝑐 ∗ ( 𝜉) 𝜒𝐸𝜑  (𝜉)𝑒𝑖𝑘  𝜉  𝑑 𝜉

2𝜋

0

, 𝑘 ∈  ℤ 

since 𝜓  (𝜉)  =  
𝜑  (𝜉)

2𝜋𝐺𝜑 (𝜉)
𝜒𝑠𝑢𝑝𝑝 𝐺𝜑(𝜉) (see [13]), where 𝜒𝐸(𝜉) is the characteristic function of a subset 𝐸 of ℝ. 

Hence 

   〈 𝑓 𝑡𝑑 ,𝜓 𝑡𝑑  –  𝑘 〉𝐿2 ℝ 

𝑘∈ℤ

𝑚

𝑑=1

𝑒−𝑖𝑘𝜉 =  
1

2𝜋
      𝑐 ∗   𝜉 𝜒𝐸𝜑   𝜉 𝑒𝑖𝑘  𝜉  𝑑 𝜉

2𝜋

0

 

𝑘∈ℤ

  

               =  𝑐 ∗( 𝜉) 𝜒𝐸𝜑  (𝜉). 

Now, 𝑐 ∈ 𝑁(𝑇)⊥  if and only if  𝑐 ∗ ( ξ) = 0 a.e. on 𝑁𝜑  (see (6)). 

 That is,  𝑐 ∗ ( 𝜉)  =  𝑐 ∗ ( 𝜉) 𝜒𝐸𝜑  (𝜉) a.e. on [0, 2𝜋]. Hence the conclusion follows. A Hilbert space H consisting 

of complex-valued functions on a set 𝐸 is called a reproducing kernel Hilbert space  (RKHS in short)  if the  

point evaluation 𝑙𝑡(𝑓)  =  𝑓(𝑡) is a bounded linear functional on H for each t in 𝐸. In an RKHS 𝐻, there is a 

function 𝑘(𝑠, 𝑡) on 𝐸 ×  𝐸, called the reproducing kernel of 𝐻 satisfying   

(i) 𝑘(·, 𝑠)  ∈  𝐻 for each 𝑠 in 𝐸, 

(ii) 〈𝑓(𝑡), 𝑘(𝑡, 𝑠)〉  =  𝑓(𝑠), 𝑓 ∈  𝐻.  

 Moreover, any norm converging sequence in an RKHS H converges also uniformly on any subset of 𝐸, on 

which 𝑘(𝑡, 𝑡) is bounded (see [4]). 

 If a series of shift invariant space  𝑉  (𝜑 (𝑡𝑑)) 𝑚
𝑑=1  with a frame generator  𝜑(𝑡𝑑)𝑚

𝑑=1   is an RKHS, then its 

reproducing kernel is given by 

                  𝑘(𝑡𝑑 , 𝑠)

𝑚

𝑑=1

=   

𝑛∈ℤ

 𝜑(𝑡𝑑 −  𝑛)𝜑 𝑠 –  𝑛            
𝑚

𝑑=1

=    𝜑(𝑡𝑑  −  𝑛) 𝜑  𝑠 –  𝑛             
𝑚

𝑑=1𝑛∈ℤ

            (7) 

where { 𝜓 (𝑡𝑑  −  𝑛)𝑚
𝑑=1 ∶  𝑛 ∈  ℤ} is the canonical dual frame of {  𝜑 (𝑡𝑑  −  𝑛)𝑚

𝑑=1 ∶  𝑛 ∈  ℤ}. We now find 

conditions on the generator   𝜑(𝑡𝑑)𝑚
𝑑=1   under which  𝑉 (𝜑(𝑡𝑑)) 𝑚

𝑑=1  can be recognized as an RKHS. Since all 

functions in an RKHS must be pointwise well defined, we only consider generators  

 𝜑(𝑡𝑑)𝑚
𝑑=1  satisfying  𝜑(𝑡𝑑)𝑚

𝑑=1   is a complex valued square integrable  

   function well  defined   every    where on    ℝ    .                                                   (8) 

If  𝑉 (𝜑(𝑡𝑑)) 𝑚
𝑑=1  is recognizable as an RKHS with the reproducing kernel  𝑘(𝑡𝑑 , 𝑠)𝑚

𝑑=1  as in (7), where 

 𝜑(𝑡𝑑)𝑚
𝑑=1   is a frame generator satisfying (8), hence   

Φ 𝑠 =     𝜑  𝑠 –  𝑛  2

𝑛∈ ℤ

    =         〈(𝑘(𝑡𝑑 , 𝑠),𝜑 (𝑡𝑑  −  𝑛)〉𝐿2 ℝ  
2

𝑚

𝑑=1𝑛∈ ℤ

           

                                                               ≤   𝐴 + 휀0 ||𝐾(·, 𝑠)||2
𝐿2 ℝ  

 =   𝐴 + 휀0 𝑘(𝑠, 𝑠), 𝑠 ∈  ℝ, 

therefore  𝐴 + 휀0 is an upper frame bound of {  𝜑 (𝑡𝑑  −  𝑛)𝑚
𝑑=1 ∶ 𝑛 ∈  ℤ}. Hence 

                 Φ  𝑡𝑑 

m

d=1

=     𝜑  𝑡𝑑  –  𝑛  2
𝑚

𝑑=1𝑛∈ ℤ

 <  ∞  for  any    t     in  ℝ   .              (9)  
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Conversely, we have: 

 

III. Asymmetric multi-channel sampling Lemmas 
The aim of this paper is as follows (see [11]). Let {𝐿 1+휀1 

 [·]: 휀1 ≥ 0} be 𝑁 LTI (linear time-invariant) 

systems with impulse responses { 𝐿 1+휀1 
 𝑡𝑑 

𝑚
𝑑=1 : 휀1 ≥ 0}. Develop a stable  series of shifted multi-channel 

sampling formula for any signal  𝑓(𝑡𝑑)𝑚
𝑑=1  ∈   𝑉 (𝜑(𝑡𝑑)) 𝑚

𝑑=1  using discrete sample values from 

{ 𝐿 1+휀1 
 𝑡𝑑 

𝑚
𝑑=1 : 휀1 ≥ 0}, where each channeled signal   𝐿 1+휀1 

 [ 𝑓 ](𝑡𝑑)𝑚
𝑑=1  for 휀1 ≥ 0 is assigned with a 

distinct sampling rate  

 𝑓 𝑡𝑑 

𝑚

𝑑=1

=        𝐿 1+휀1   𝑓   𝜎 1+휀1  +  1 + 휀2  1+휀1 𝑛 𝑠𝑑  1+휀1 ,𝑛
  𝑡𝑑 

𝑚

𝑑=1

,

𝑛∈ℤ

𝑁

휀1=0

 

                                                                        𝑓(𝑡𝑑) ∈   𝑉 (𝜑(𝑡𝑑)) 

𝑚

𝑑=1

𝑚

𝑑=1

,            (10) 

where   𝑠𝑑  1+휀1 ,𝑛
 𝑡𝑑 

𝑚
𝑑=1 : 휀1 ≥ 0,𝑛 ∈  ℤ  is a series of frames or a Riesz basis of  𝑉  𝜑 𝑡𝑑  

𝑚
𝑑=1 ,  

{ 1 + 휀2  1+휀1 
∶  휀1 ≥ 0} are positive integers, and {𝜎 1+휀1 

: 휀1 ≥ 0} are real constants. Note that the  series of 

shifting of sampling instants is unavoidable in some uniform sampling [11] and arises naturally when we allow 

rational sampling periods in (10). Here, we assume that each 𝐿 1+휀1   [·] is one of the following three types: the 

impulse response  𝑙(𝑡𝑑)𝑚
𝑑=1  of an LTI system  is such that 

 (i)  𝑙(𝑡𝑑)𝑚
𝑑=1  =   𝛿(𝑡𝑑  + 𝑎)𝑚

𝑑=1 , 𝑎 ∈  ℝ or 

 (ii)  𝑙(𝑡𝑑)𝑚
𝑑=1  ∈  𝐿2(ℝ) or 

 (iii) 𝑙  𝜉  ∈  𝐿∞ ℝ ∪  𝐿2 ℝ  when 

𝐻𝜑  𝜉  =  |  𝜑 (𝜉 + 2𝑛𝜋)| 𝑛∈ℤ ∈  𝐿2[0, 2𝜋] .For type (i), 

  𝐿  𝑓   𝑡𝑑 
𝑚
𝑑=1  =   𝑓 𝑡𝑑  +  𝑎 𝑚

𝑑=1 , 𝑓 ∈  𝐿2 ℝ  so that 𝐿 · :  𝐿2 ℝ →  𝐿2 ℝ  is an isomorphism. In 

particular, for any  𝑓 𝑡𝑑 
𝑚
𝑑=1 =   𝒄 ∗  𝜑  𝑡𝑑 

𝑚
𝑑=1 ∈   𝑉  𝜑 𝑡𝑑  

𝑚
𝑑=1 , 

  𝐿  𝑓   𝑡𝑑 
𝑚
𝑑=1 =    𝒄 ∗  𝜓  𝑡𝑑 

𝑚
𝑑=1  converges  absolutely on ℝ since 

 𝐶𝜓 𝑡𝑑 

𝑚

𝑑=1

=     𝜓 𝑡𝑑  + 𝑛  2
𝑚

𝑑=1𝑛∈ℤ

 < ∞, 𝑡𝑑

𝑚

𝑑=1

 ∈  ℝ , where 

  𝜓(𝑡𝑑)𝑚
𝑑=1  =  𝐿[𝜑](𝑡𝑑)𝑚

𝑑  =   𝜑(𝑡𝑑  + 𝑎)𝑚
𝑑=1 . For types (ii) and (iii), we have  the following  results (see 

[11]): 

Lemma 𝟑.𝟏. Putting  𝐿[·] be an LTI system with the impulse response   𝑙(𝑡𝑑)𝑚
𝑑=1  of the type (ii) or (iii) as 

above and 

  𝜓(𝑡𝑑)𝑚
𝑑=1  =   𝐿[𝜑](𝑡𝑑)𝑚

𝑑=1  =   (𝜑 ∗  𝑙)(𝑡𝑑
1
𝑑=1 )  .Then 

 a   𝜓 𝑡𝑑 

𝑚

𝑑=1

 ∈ 𝐶∞ ℝ =    𝑢 𝑡𝑑 

𝑚

𝑑=1

∈ 𝐶 ℝ : lim
  𝑡𝑑  
𝑚
𝑑=1 →∞

 𝑢 𝑡𝑑 

𝑚

𝑑=1

 = 0 , 

(b) 𝑠𝑢𝑝ℝ   𝐶𝜓(𝑡𝑑)𝑚
𝑑=1  < ∞ ;  

(c) for each  𝑓 𝑡𝑑 
𝑚
𝑑=1 =   𝒄 ∗  𝜑  𝑡𝑑 

𝑚
𝑑=1 ∈   𝑉  𝜑 𝑡𝑑  

𝑚
𝑑=1 ,  

 𝐿[ 𝑓 ](𝑡𝑑)𝑚
𝑑=1  =    𝒄 ∗  𝜓  𝑡𝑑 

𝑚
𝑑=1  converges absolutely and uniformly on ℝ.  

Hence  𝐿[ 𝑓 ](𝑡𝑑)𝑚
𝑑=1  ∈  𝐶(ℝ). 

Proof .Suppose that   𝑙(𝑡𝑑)𝑚
𝑑=1  ∈  𝐿2(ℝ). Then  𝜓(𝑡𝑑)𝑚

𝑑=1  ∈  𝐶∞(ℝ) by the  Riemann–Lebesgue lemma 

since  𝜓  𝜉 =   𝜑  𝜉 𝑙 (𝜉 )  ∈  𝐿1(ℝ).  Since  

  𝜓  𝜉 + 2𝑛𝜋  

𝑛∈ℤ

≤ 𝐺𝜑 𝜉  
1
2𝐺𝑙 𝜉  

1
2      ,                                                               

   𝜓  𝜉 + 2𝑛𝜋  

𝑛∈ℤ

 

2

𝐿2  0,2𝜋 

≤  𝐺𝜑 𝜉   𝐺𝑙 𝜉  𝑑𝜉  

2𝜋

0

  ≤ 2𝜋 𝐺𝜑 (𝜉 ) 
𝐿∞ (ℝ) 

 𝑙 2
𝐿2(ℝ).  

Thus for any  𝑡𝑑
𝑚
𝑑=1  in ℝ, we have by the Poisson summation formula (se [1]) 

 𝜓  𝜉 + 2𝑛𝜋 

𝑛∈ℤ

 𝑒𝑖𝑡𝑑(𝜉+2𝑛𝜋 )

𝑚

𝑑=1

=    𝜓 𝑡𝑑  + 𝑛 

𝑚

𝑑=1𝑛∈ℤ

𝑒−𝑖𝑛𝜉  in   𝐿2   0,2𝜋  

Therefore   any  𝑡𝑑
𝑚
𝑑=1  in ℝ 

 𝐶𝜓 𝑡𝑑 

𝑚

𝑑=1

 =     𝜓 𝑡𝑑 + 𝑛  2
𝑚

𝑑=1

=
1

2𝜋
𝑛∈ℤ

   𝜓 𝑡𝑑  + 𝑛 

𝑚

𝑑=1𝑛∈ℤ

𝑒−𝑖𝑛𝜉  

2

𝐿2   0,2𝜋  
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 =  
1

2𝜋
  𝜓  𝜉 + 2𝑛𝜋 

𝑛∈ℤ

 𝑒𝑖𝑡𝑑 (𝜉+2𝑛𝜋 )

𝑚

𝑑=1

 

2

𝐿2   0,2𝜋 

            

                                                          ≤   𝐺𝜑 (𝜉 ) 
𝐿∞ (ℝ) 

 𝑙 2
𝐿2(ℝ).                                                                        

By Young’s inequality on the convolution product,  𝐿[ 𝑓 ] 𝐿∞ (ℝ)  ≤  𝑓  𝐿2(ℝ) 𝑙 
 
𝐿2(ℝ) so that 𝐿[·] ∶  𝐿2(ℝ) →

𝐿∞(ℝ) is a bounded linear operator. Where  

 𝑓(𝑡𝑑)

𝑚

𝑑=1

 =   (𝑐 ∗  𝜑)(𝑡𝑑)

𝑚

𝑑=1

 =    𝑐(𝑛)𝜑(𝑡𝑑  − 𝑛)

𝑚

𝑑=1

 ∈   𝑉 (𝜑 𝑡𝑑 )

𝑚

𝑑=1𝑛∈ℤ

, 

 𝐿[ 𝑓 ](𝑡𝑑)

𝑚

𝑑=1

 =   𝑐(𝑛)𝐿 𝜑(𝑡𝑑  − 𝑛) 

𝑚

𝑑=1𝑛∈ℤ

 =    𝑐(𝑛)𝜓(𝑡𝑑  − 𝑛)

𝑚

𝑑=1𝑛∈ℤ

, 

which converges absolutely and uniformly on R by (b). Now assume that 𝐻𝜑 (𝜉 )  ∈  𝐿2   0,2𝜋 . The case 

𝑙 (𝜉 )  ∈  𝐿2(ℝ) is reduced to type (ii). So let 𝑙 (𝜉 )  ∈  𝐿∞(ℝ). Then 𝜑 (𝜉)  ∈  𝐿2(ℝ)  ∩  𝐿1(ℝ) so that 𝜓 (𝜉)  =

  𝜑 (𝜉)𝑙 (𝜉 )  ∈ 𝐿2(ℝ)  ∩  𝐿1(ℝ) and so 𝜓(𝜉)  ∈  𝐶∞(𝑅) ∩𝐿2(ℝ)). Since  

  𝜓  𝜉 + 2𝑛𝜋  

𝑛∈ℤ

≤  𝑙  𝐿∞  ℝ 𝐻𝜑 𝜉  , we have again  

by the Poisson summation formula 

 𝐶𝜓(𝑡𝑑)

𝑚

𝑑=1

 =  
1

2𝜋
  𝜓  𝜉 + 2𝑛𝜋 

𝑛∈ℤ

 𝑒𝑖𝑡𝑑 𝜉+2𝑛𝜋  

𝑚

𝑑=1

 

2

𝐿2   0,2𝜋 

           

       ≤  𝑙 2
 𝐿∞ (ℝ) 𝐻𝜑 (𝜉 ) 

2

𝐿2   0,2𝜋 
                          

so that  supℝ  𝐶𝜓 𝑡𝑑 
𝑚
𝑑=1  < ∞. For any  𝑓 ∈  𝐿2(ℝ), 

  𝐿[ 𝑓 ](𝑡𝑑) 𝐿2(ℝ)

𝑚

𝑑=1

=   𝑓 ∗ 𝑙 𝐿2(ℝ)  =  
1

 2𝜋
  𝑓  𝜉  𝑙 (𝜉 ) 

𝐿2(ℝ)
 

                                                                           ≤  𝑙   
𝐿∞  ℝ 

 𝑓  𝐿2 ℝ .                

Hence 𝐿[·] ∶  𝐿2(ℝ) →  𝐿2(ℝ) is a bounded linear operator so that for any 

  𝑓(𝑡𝑑)𝑚
𝑑=1 =   𝒄 ∗ 𝜑  𝑡𝑑 

𝑚
𝑑=1 ∈   𝑉 (𝜑(𝑡𝑑)) 𝑚

𝑑=1 , 𝐿  𝑓   𝑡𝑑 
𝑚
𝑑=1 =    𝒄 ∗ 𝜓  𝑡𝑑 

𝑚
𝑑=1  converges in 𝐿2(ℝ). 

By (b),   𝒄 ∗ 𝜓  𝑡𝑑 
𝑚
𝑑=1  also converges absolutely and uniformly on ℝ . 

 By  Lemma 3.2(b) , 𝜓(𝑡𝑑)𝑚
𝑑=1  ∈  𝐿2(ℝ) . However,   𝒄 ∗  𝜓  𝑡𝑑 

𝑚
𝑑=1  may not converge in 𝐿2(ℝ)  unless 

{ 𝜓(𝑡𝑑  −  𝑛)𝑚
𝑑=1 : 𝑛 ∈  ℤ} is a Bessel sequence. 

 Lemma 3.2(b) improves Lemma 1 in [9], in which the proof uses   𝑙 𝑡𝑑 
𝑚
𝑑=1  ∈  𝐿2 ℝ ∩  𝐿1 ℝ ,  

𝑠𝑢𝑝ℝ  𝐶𝜑 𝑡𝑑 
𝑚
𝑑=1 <  ∞, and the integral version of  Minkowski  inequality. Note that the condition 𝐻𝜑 (𝜉 )  ∈

 𝐿2[0, 2𝜋] implies  𝜑(𝑡𝑑)𝑚
𝑑=1  ∈  𝐿2(ℝ)  ∩  𝐶∞((ℝ) and 𝑠𝑢𝑝ℝ  𝐶𝜑  

 𝑡𝑑 
𝑚
𝑑=1  < ∞. (see [1]). Note also that 

𝐻𝜑 (𝜉 )  ∈  𝐿2[0, 2𝜋] if 𝜑  𝜉 =  𝑂 (1 + |𝜉 |)− 1+휀2    ,  1 + 휀2  1+휀1  >  1, 휀1 ≥ 0, which holds e.g. for  

 𝜑𝑛(𝑡𝑑)𝑚
𝑑=1  =   (𝜑0 ∗  𝜑𝑛−1)(𝑡𝑑)𝑚

𝑑=1  the cardinal B-spline of degree 𝑛 (≥ 1), where 

 𝜑0 =   𝜒[0,1)(𝑡𝑑)𝑚
𝑑=1 . We have as a consequence of Lemma 3.2: Let 𝐿[·] be an LTI system with impulse 

response  𝑙(𝑡𝑑)𝑚
𝑑=1  of type (i) or (ii) or (iii) as above and   𝜓 𝑡𝑑 

𝑚
𝑑=1  =   𝐿 𝜑  𝑡𝑑 

𝑚
𝑑=1 . Then for any 

 𝑓 𝑡𝑑 
𝑚
𝑑=1  =    𝒥𝐹   𝑡𝑑 

𝑚
𝑑=1  ∈   𝑉  𝜑 𝑡𝑑  

𝑚
𝑑=1 ,𝐹 (𝜉 )  ∈ 𝐿2[0, 2𝜋] 

        𝐿  𝑓   𝑡𝑑 

𝑚

𝑑=1

   =   〈 𝜉  ,
1

2𝜋
𝑍𝜓 𝑡𝑑 , 𝜉             〉𝐿2 0,2𝜋 

𝑚

𝑑=1

                    (11) 

since 𝐿[·] is a bounded linear operator from 𝐿2(ℝ)  into 𝐿2(ℝ) or 𝐿∞(ℝ) and { 𝜓(𝑡𝑑  − 𝑛): 𝑚
𝑑=1 𝑛 ∈  ℤ} ∈  𝑙2, 

 𝑡𝑑
𝑚
𝑑=1  ∈  ℝ. Let  𝜓 1+휀1 (𝑡𝑑)𝑚

𝑑=1  =   𝐿 1+휀1 [𝜑](𝑡𝑑
𝑚
𝑑=1 )  and 

 𝑔 1+휀1 (𝜉 ) = 
1

2𝜋
𝑍𝜓 1+휀1 

 (𝜎 1+휀1 , 𝜉), 휀1 ≥ 0. Then we have by (11) 

𝐿 1+휀1   𝑓   𝜎 1+휀1  +  1 + 휀2  1+휀1 𝑛 = 〈𝐹  𝜉  ,
1

2𝜋
𝑍𝜓 1+휀1 

  𝜎 1+휀1  +  1 + 휀2  1+휀1 𝑛, 𝜉 〉𝐿2   0,2𝜋    

 

                                         = 〈𝐹 (𝜉 ),𝑔 1+휀1  (𝜉 )              𝑒−𝑖 1+휀2  1+휀1 
 𝑛  𝜉 〉𝐿2   0,2𝜋                           (12) 

for any  𝑓(𝑡𝑑)𝑚
𝑑=1  =   (𝒥 𝐹 )(𝑡𝑑)𝑚

𝑑=1  ∈   𝑉 (𝜑 𝑡𝑑 )
𝑚
𝑑=1  and 휀1 ≥ 0. Then by (12) and the isomorphism 𝒥 

from 𝐿2   0,2𝜋  onto  𝑉(𝜑 𝑡𝑑 )
𝑚
𝑑=1 , the sampling expansion (10) is equivalent to 
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𝐹  𝜉   =    〈𝐹  𝜉  ,𝑔 1+휀1   𝜉                𝑒−𝑖 1+휀2  1+휀1 
 𝑛  𝜉 〉𝐿2   0,2𝜋 

𝑛∈ℤ

𝑁

휀1=0

𝑆 1+휀1 ,𝑛
 𝜉  ,  

𝐹 (𝜉 ) ∈  𝐿2   0,2𝜋 , where {𝑆 1+휀1 ,𝑛
 𝜉 : 휀1 ≥ 0 ,𝑛 ∈ ℤ} is a series of frames or a Riesz basis of 𝐿2   0,2𝜋 . This 

observation leads us to consider the problem when is {𝑔 1+휀1 
  𝜉                𝑒−𝑖 1+휀2  1+휀1 

 𝑛  𝜉 : 휀1 ≥ 0 ,𝑛 ∈ ℤ } a series of 

frames or a Riesz basis of 𝐿2   0,2𝜋 . Note that 

    𝑔 1+휀1   𝜉                𝑒−𝑖 1+휀2  1+휀1 
 𝑛  𝜉 : 휀1 ≥ 0 ,𝑛 ∈ ℤ    =                                    

 𝑔 1+휀1 ,𝑚 1+휀1 
 (𝜉 )                       𝑒−𝑖 1+휀2 𝑛𝜉 : 휀1 ≥ 0, 1 ≤ 𝑚 1+휀1 

 ≤
 1 + 휀2 

 1 + 휀2  1+휀1 
 ,𝑛 ∈  ℤ  

where  1 + 휀2 =  𝑙𝑐𝑚{ 1 + 휀2  1+휀1 ∶  휀1 ≥ 0} and 

𝑔 1+휀1 ,𝑚  1+휀1 
(𝜉 ) =  𝑔 1+휀1 

(𝜉 )𝑒𝑖 1+휀2  1+휀1 
 (𝑚 1+휀1 

  −  1)𝜉  for 휀1 ≥ 0. Let 𝐷 be the unitary operator from 

𝐿2   0,2𝜋 onto 𝐿2(𝐼) 1+휀2  , where  𝐼 =  [0,
2𝜋

 1+휀2 
] , defined by  

𝐷𝐹 =  𝐹  𝜉 +  (𝑘 −  1)
2𝜋

 1+휀2 
  
𝑘=1

 1+휀2 

,𝐹  𝜉  ∈  𝐿2   0,2𝜋 . We also let 

𝐺 𝜉  =  𝐷𝑔1,1 𝜉  , . . . ,𝐷𝑔
1,
 1+휀2 

 1+휀2 1

 𝜉  , . . . ,𝐷𝑔𝑁,1 𝜉  , . . . ,𝐷𝑔
𝑁,

 1+휀2 

 1+휀2 𝑁

 𝜉   

𝑇

              (13)     

be a   
 1 + 휀2 

 1 + 휀2  1+휀1 

𝑁

휀1=0

   ×  1 + 휀2  matrix on 𝐼 and 𝜆𝑚  𝜉  , 𝜆𝑀 𝜉     

be the smallest and the largest eigenvalues of the positive semi-definite  1 + 휀2  ×  1 + 휀2    matrix   𝐺(𝜉 ) ∗
𝐺(𝜉 ), respectively. 

Lemma 3.2 :  Let  𝐹(𝜉)  ∈  𝐿1(ℝ)   so  that  𝑓(𝑡) = ℱ−1[𝐹](𝑡) ∈  𝐶(ℝ) and  0 ≤  𝜎 <  1. Then 

  𝑒𝑖𝜎  𝜉  +2𝑛𝜋  𝐹 𝜉 +  2𝑛𝜋 

𝑛∈𝕫

 converges  absolutely in  𝐿1[0, 2𝜋]  and 

 𝑒𝑖𝜎 ( 𝜉  +2𝑛𝜋 )𝐹(𝜉 +  2𝑛𝜋)

𝑛∈𝕫

  ~
1

 2𝜋
𝑍𝑓(𝜎, 𝜉)                      

                                                                        =  
1

 2𝜋
  

𝑛∈𝕫

𝑓 𝜎 +  𝑛 𝑒−𝑖𝑛𝜉                   14  

which means that  
1

 2𝜋
𝑍𝑓(𝜎, 𝜉) is the Fourier series expansion of 

  𝑒𝑖𝜎 ( 𝜉  +2𝑛𝜋 )𝐹(𝜉 +  2𝑛𝜋)

𝑛∈𝕫

 .  If moreover   

𝑛∈𝑍

𝑒i𝜎( ξ +2n𝜋)𝐹(ξ +  2n𝜋) 

  converges in 𝐿2[0, 2𝜋] or equivalently {𝑓(𝜎 +  𝑛)}𝑛∈𝕫 ∈  𝑙2, then 

                 𝑒𝑖𝜎 ( 𝜉  +2𝑛𝜋 )𝐹(𝜉 +  2𝑛𝜋)

𝑛∈𝕫

 =
1

 2𝜋
𝑍𝑓 𝜎, 𝜉  in  𝐿2[0, 2𝜋].                  (15)  

 Proof: Assume that (𝜉)  ∈  𝐿1(ℝ) . Then 

  𝑒𝑖𝜎  𝜉  +2𝑛𝜋  𝐹 𝜉 +  2𝑛𝜋  
𝐿1 0,2𝜋 

𝑛∈𝕫

 =      𝐹 𝜉 +  2𝑛𝜋  

2𝜋

0

𝑑 𝜉

𝑛∈𝕫

                           

                                                                     =   

𝑛∈𝕫

  

2(𝑛+1)𝜋

2𝑛𝜋

|𝐹(𝜉)|𝑑 𝜉 =   

+∞

−∞

|𝐹(𝜉)|𝑑 𝜉 

so that 

 𝑒𝑖𝜎 ( 𝜉  +2𝑛𝜋 )𝐹(𝜉 +  2𝑛𝜋)

𝑛∈𝕫

 converges  absolutely  in   𝐿1 0, 2𝜋    . 

 Hence 

 𝑒𝑖𝜎 ( 𝜉  +2𝑛𝜋 )𝐹(𝜉 +  2𝑛𝜋)

𝑛∈𝕫

                                                                         

                        ~
1

2𝜋
 〈 𝑒𝑖𝜎 ( 𝜉  +2𝑛𝜋 )𝐹(𝜉 +  2𝑛𝜋)

𝑛∈𝕫

, 𝑒−𝑖𝑘𝜉 〉𝐿2[0,2𝜋]

𝑘∈𝕫

  𝑒−𝑖𝑘𝜉 , 
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where 

〈 𝑒𝑖𝜎  𝜉  +2𝑛𝜋  𝐹 𝜉 +  2𝑛𝜋 

𝑛∈𝕫

, 𝑒−𝑖𝑘𝜉 〉𝐿2 0,2𝜋                                         

                                             =   

2𝜋

0

 𝑒𝑖𝜎  𝜉  +2𝑛𝜋  𝐹 𝜉 +  2𝑛𝜋 

𝑛∈𝕫

 𝑒𝑖𝑘𝜉  𝑑 𝜉 

                                           =    𝑒𝑖𝜎   𝜉  +2𝑛𝜋  𝐹 𝜉 +  2𝑛𝜋 

2𝜋

0𝑛∈𝕫

 𝑒𝑖𝑘𝜉  𝑑 𝜉 

                                            =   𝐹(𝜉) 𝑒𝑖(𝜎+𝑘) 𝜉  𝑑 𝜉

+∞

−∞

 =  2𝜋 𝑓(𝜎 +  𝑘) 

by the Lebesgue dominated convergence theorem. Hence (14) holds. Now assume that 𝐹(𝜉)  ∈  𝐿1(ℝ) and 

 𝑒𝑖𝜎 ( 𝜉  +2𝑛𝜋 )𝐹(𝜉 + 2𝑛𝜋)

𝑛∈𝕫

converges  in 𝐿2 0, 2𝜋 . Then  15  becomes 

an  orthonormal   basis  expansion   of    𝑒𝑖𝜎 ( 𝜉  +2𝑛𝜋 )𝐹(𝜉 +  2𝑛𝜋)

𝑛∈𝕫

 in 𝐿2[0, 2𝜋]   

so that (15) holds.  

Corollary 3.3: (see [3]). If 𝐹(𝜉) is measurable on ℝ and 

  𝐹(𝜉 +  2𝑛 𝜋)𝑛∈𝕫  converges absolutely in 𝐿2[0, 2𝜋], then 

 𝐹(𝜉 +  2𝑛 𝜋)

𝑛∈𝕫

=
1

 2𝜋
𝑍𝑓 0, 𝜉    where   𝑓(𝑡)  =  ℱ−1[𝐹](𝑡). 

𝐏𝐫𝐨𝐨𝐟 ∶ Assume that  𝐹(𝜉 +  2𝑛 𝜋)

𝑛∈𝕫

  converges absolutely in 𝐿2[0, 2 𝜋]. Then   

 𝐹(𝜉 +  2𝑛 𝜋)

𝑛∈𝕫

 converges absolutely  also in  𝐿1 0, 2 𝜋  so that  𝐹(𝜉)  ∈  𝐿1 0, 2 𝜋  

and   𝐹(𝜉 + 2𝑛 𝜋)𝑛∈𝕫  converges in 𝐿2[0, 2𝜋]. Hence the conclusion follows from Lemma 3.1 for 𝜎 =  0. 

Example 3.4: (see [1],[19] and [15]). Let  𝜑0(𝑡𝑑)𝑚
𝑑=1  =   𝜒[0,1)(𝑡𝑑)𝑚

𝑑=1  and 

 𝜑𝑛 𝑡𝑑 

𝑚

𝑑=1

=  𝜑𝑛−1 𝑡𝑑 ∗ 𝜑0 𝑡𝑑 

𝑚

𝑑=1

=   𝜑𝑛−1 𝑡𝑑 − 𝑠 𝑑𝑠

𝑚

𝑑=1

1

0

,𝑛 ≥ 1 , (𝜑𝑛(𝑡𝑑)

𝑚

𝑑=1

=  𝐵𝑛+1(𝑡𝑑))

𝑚

𝑑=1

 

 be the cardinal B-spline of degree 𝑛. Then 

𝜑𝑛 (𝜉)  =  
1

 2𝜋
 

1 − 𝑒−𝑖𝜉

𝑖𝜉
 
𝑛+1

  and  |𝜑 𝑛(𝜉)|  =  
1

 2𝜋
 𝑠𝑖𝑛𝑐 

𝜉

2𝜋
 
𝑛+1

  
 ,𝑛 ≥  0. 

  It is known in [5] that  𝜑0(𝑡𝑑)𝑚
𝑑=1   are an orthonormals generators and  (𝜑𝑛(𝑡𝑑)𝑚

𝑑=1  for 𝑛 ≥ 1is a continuous 

Riesz generator. Moreover since  (𝜑𝑛(𝑡𝑑)𝑚
𝑑=1  has compact support,  

𝑠𝑢𝑝ℝ 𝛷𝑛 𝑡𝑑 

𝑚

𝑑=1

=  𝑠𝑢𝑝ℝ  

𝑘∈ℤ

  𝜑𝑛 𝑡𝑑   –     𝑘  2
𝑚

𝑑=1

 <  ∞   so  that    𝑉   
(𝜑 (𝑡𝑑)) 

𝑚

𝑑=1

   is    an RKHS for  

𝑛 ≥  0. Since 𝜑0 𝜎 +  𝑛 = 𝛿0,𝑛  for 𝑛 ∈ ℤ and 0 ≤ 𝜎 < 1, 𝑍𝜑0
(𝜎, 𝜉) = 1 

so that by Theorem 3.3 in [1], we have an orthonormal expansion 

   𝑓 𝑡𝑑 

𝑚

𝑑=1

=    

𝑛∈ℤ

 𝑓 𝜎 +  𝑛 𝜑0 𝑡𝑑  −  𝑛 

𝑚

𝑑=1

   ,   𝑓 ∈   𝑉   
(𝜑0 

(𝑡𝑑)) 

𝑚

𝑑=1

    

which converges in 𝐿2(ℝ) and uniformly on ℝ since 

 𝛷0 𝑡𝑑 

𝑚

𝑑=1

=     𝜑0 𝑡𝑑  –  𝑛  2
𝑚

𝑑=1𝑛∈ℤ

=  1     on ℝ . 

      For   𝜑1(𝑡𝑑)𝑚
𝑑=1  =  𝑡𝜒 0,1   𝑡𝑑  +     2   −  𝑡  𝜒 1,2   𝑡𝑑 

𝑚
𝑑=1 ,   and  0 ≤ 𝜎 <  1  , 𝜑1 𝑡 =  𝜎, 

 𝜑1(𝜎 +  1)  =  1 −  𝜎,𝜑1(𝜎 +  𝑛)  =  0 for 𝑛 ≠  0, 1 so that 𝑍𝜑1
(𝜎, 𝜉)  =  𝜎 +  (1 −  𝜎)𝑒−𝑖𝜉 . Then  

 𝑍𝜑1
 𝜎, 𝜉  

0
  =   2 𝜎 −  1  and   𝑍𝜑1

 𝜎, 𝜉  
∞

=1. Hence by Theorem 3.3 in [1], for any 𝜎 with 



Sampling Expansion with Symmetric Multi-Channel Sampling in a series of  Shift-Invariant Spaces 

DOI: 10.9790/5728-1205085564                                          www.iosrjournals.org                                    63 | Page 

 0 ≤  𝜎 < 1  and 𝜎 ≠  
1

2
 ,  

we have a Riesz basis expansion 

    𝑓 𝑡𝑑 

𝑚

𝑑=1

=   

𝑛∈ℤ

 𝑓 𝜎 +  𝑛 𝑆 𝑡𝑑  –  𝑛 

𝑚

𝑑=1

  , 𝑓 ∈   𝑉   
(𝜑1 

(𝑡𝑑)) 

𝑚

𝑑=1

 

which converges  in 𝐿2(ℝ) and uniformly on ℝ . For 

  𝜑2(𝑡𝑑)𝑚
𝑑=1 =

1

2
𝑡2

  𝜒 1,2   𝑡𝑑 
𝑚
𝑑=1 +  

1

𝑡22
(6𝑡 − 2 − 3) 𝜒 1,2   𝑡𝑑 

𝑚
𝑑=1 + 

1

2
(3 − 𝑡)2  𝜒 1,2   𝑡𝑑 

𝑚
𝑑=1 , it is 

known (see [1] and [11]) that 

 𝑍𝜑2
(0, 𝜉) 

0
=  0 but  

1

2
≤  𝑍𝜑2

 
1

2
  , 𝜉  

0
 <   𝑍𝜑2

 
1

2
  , 𝜉  

∞
≤ 1 so that there is a Riesz basis expansion 

                𝑓 𝑡𝑑 

𝑚

𝑑=1

=    

𝑛∈ℤ

 𝑓 
1

2
+  𝑛 𝑆 𝑡𝑑  −  𝑛 

𝑚

𝑑=1

, 𝑓 ∈    𝑉   
(𝜑2 

(𝑡𝑑)) 

𝑚

𝑑=1

      (16) 

which converges in 𝐿2(ℝ) and uniformly on ℝ. Since the optimal upper Riesz bound of the Riesz sequence 

{𝜑2(𝑡𝑑  −  𝑘) ∶  𝑘,𝑑 ∈  ℤ} is 1 (see [5]), we have for the sampling series (16) 

  𝐸𝑛(𝑓)(𝑡𝑑) 2
𝐿2(ℝ)

𝑚

𝑑=1

  ≤    4   𝑓  
1

2
+ 𝑘  

2

 𝑘 >𝑛

 , 𝑓 ∈   𝑉   
(𝜑2 

(𝑡𝑑)) 

𝑚

𝑑=1

. 

On the other hand, we have 

𝐻𝜑2   𝜉 =   

𝑘∈ℤ

  𝜑 2  𝜉 +  2𝑘𝜋  =  
1

 2𝜋
   

𝑘∈ℤ

 𝑠𝑖𝑛𝑐  
𝜉

2𝜋
+ 𝑘  

3

               

                                                             ≤  
1

 2𝜋
   

𝑘∈ℤ

 𝑠𝑖𝑛𝑐  
𝜉

2𝜋
+ 𝑘  

2

=
1

 2𝜋
 . 

Example 3.5:  (See [1]) Let  𝜑 𝑡𝑑 
𝑚
𝑑=1   =  𝑒

−𝑡𝑑
2  

2𝑚
𝑑=1   be  the   Gauss kernel . Then 

 𝜑  (𝜉)  =  𝑒
−𝜉2

2   and 0 <  𝐺𝜑(𝜉) 0 <  𝐺𝜑(𝜉) ∞  < ∞ so that  𝜑 𝑡𝑑 
𝑚
𝑑=1  is a continuous Riesz generator 

satisfying  

𝑠𝑢𝑝ℝ 𝛷(𝑡𝑑)

𝑚

𝑑=1

 =  𝑠𝑢𝑝ℝ  

𝑘∈ℤ

    𝜑  𝑡𝑑 − 𝑘  2
𝑚

𝑑=1

 <  ∞. Since  𝜑  (𝜉)  ∈  𝐿1(ℝ)         

and { 𝜑 (𝑛)}𝑛∈ℤ  ∈  𝑙1, we have by Lemma 3.1 

𝑍 𝜑(0, 𝜉) =  2𝜋 𝑒
−1
2
 𝜉  +2n𝜋 2 

𝑛∈ℤ

so that 0 <  𝑍𝜑(𝜉) 0 <  𝑍𝜑(𝜉) ∞  <  ∞. 

Hence by Theorem 3.3 in [1] ,  𝑉   
(𝜑(𝑡𝑑)) 𝑚

𝑑=1  is an RKHS and there is a Riesz basis expansion 

   𝑓 𝑡𝑑 

𝑚

𝑑=1

 =    
𝑛∈ℤ

 𝑓(𝑛)𝑆(𝑡𝑑 −  𝑛)

𝑚

𝑑=1

, 𝑓 ∈  𝑉   
(𝜑(𝑡𝑑)) 

𝑚

𝑑=1

 

which converges in 𝐿2(ℝ) and uniformly on ℝ . 

Corollary 𝟑.𝟔. (Cf. Theorem 3.2 in [19].) Let 𝑁 =  1. Then there is a series of  Riesz bases { 𝑠𝑛(𝑡𝑑)𝑚
𝑑=1 : 𝑛 ∈

 ℤ} of  𝑉(𝜑 𝑡𝑑 )
𝑚
𝑑=1  such that 

 𝑓 𝑡𝑑 

𝑚

𝑑=1

=   𝐿 𝑓  𝜎 +  1 + 휀2 𝑛 𝑠𝑛 𝑡𝑑 

𝑚

𝑑=1𝑛  ∈ ℤ

, 𝑓 𝑡𝑑 

𝑚

𝑑=1

∈  𝑉(𝜑 𝑡𝑑 )

𝑚

𝑑=1

  (17) 

if and only if 휀2  =  0 and 

0 <  𝑍𝜓(𝜎, 𝜉) 
0
≤   𝑍𝜓(𝜎, 𝜉) 

∞
  .                                                                     (18) 

In this case, we also have 

(i)  𝑠𝑛(𝑡𝑑)𝑚
𝑑=1  =   𝑠(𝑡𝑑  − 𝑛)𝑚

𝑑=1 ,𝑛 ∈  ℤ , 

(ii) 𝑠 (𝜉 )  =  
𝜑 (𝜉)

𝑍𝜓 (𝜎 ,𝜉)
 , 

(iii) 𝐿[𝑠](𝜎 + 𝑛)  =  𝛿𝑛 ,0 ,𝑛 ∈  ℤ.                                                                                 (19) 
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Proof .Note that for 휀2  = 0 ,𝐺 𝜉  =  
1

2𝜋
 𝑍𝜓 𝜎, 𝜉  and  𝜆𝑚  𝜉  =  𝜆𝑀 𝜉  =    

1

2𝜋
 

2

  𝑍𝜓 𝜎, 𝜉  
2 

so that 

0 < 𝛼𝐺  ≤ 𝛽𝐺 < ∞  if and only if (18) holds. Therefore, everything except (19) follows from Theorem 3.4 in 

[1]. Finally applying (17) to  𝜑(𝑡𝑑)𝑚
𝑑=1  gives  𝜑(𝑡𝑑)𝑚

𝑑=1 =   𝜓(𝜎 + 𝑛)𝑠(𝑡𝑑  − 𝑛𝑚
𝑑=1 )𝑛  ∈ ℤ  

from which we have (19) by taking the Fourier transform. When  𝑙(𝑡𝑑)𝑚
𝑑=1  =   𝛿(𝑡𝑑)𝑚

𝑑=1  so that 𝐿[·] is the 

identity operator, Corollary 3.6  reduces to a series of  regular   shifted  sampling   on   𝑉(𝜑 𝑡𝑑 )
𝑚
𝑑=1  (see 

Theorem 3.3 in [17]). 

Corollary 𝟑.𝟕. Suppose  𝑍𝜓(2 − 휀0 
, 𝜉) ∈ 𝐿∞[0, 2𝜋], 0 ≤ 휀1 ≤ 𝑞 − 1,then the following are all equivalent. 

(i) There is a series of  frames { 𝑠𝑛(𝑡𝑑)𝑚
𝑑=1 : 𝑛 ∈  ℤ} of  𝑉(𝜑 𝑡𝑑 )

𝑚
𝑑=1  for which 

  𝑓(𝑡𝑑

𝑚

𝑑=1

) =   𝐿  𝑓   2 − 휀0 
 𝑠𝑛   𝑡𝑑   ,

𝑚

𝑑=1𝑛∈ ℤ

  𝑓(𝑡𝑑

𝑚

𝑑=1

)  ∈  𝑉(𝜑 𝑡𝑑 )

𝑚

𝑑=1

.          

 (ii) There is a series of frames   𝑠 1+휀1 
  𝑡𝑑  – 𝑛 𝑚

𝑑=1 : 휀1 > 0 ,𝑛 ∈  ℤ  of   𝑉(𝜑 𝑡𝑑 )
𝑚
𝑑=1  for which 

  𝑓(𝑡𝑑

𝑚

𝑑=1

) =    𝐿  𝑓   𝑛 − 휀0 
 𝑠 1+휀1   𝑡𝑑 − 𝑛 ,

𝑚

𝑑=1휀1≥0𝑛∈ ℤ

  𝑓(𝑡𝑑

𝑚

𝑑=1

)  ∈  𝑉(𝜑 𝑡𝑑 )

𝑚

𝑑=1

.       

(iii)    |𝑍𝜓(2 − 휀0 
, 𝜉)|

 

휀1≥0

 

0

 >  0. 

Proof: Since 

  𝐿  𝑓   2 − 휀0  =  𝐿  𝑓   𝑛 − 휀0 
 :  𝑛 ∈  ℤ     . Now we have {𝐿 1+휀1   [·]: 휀1 > 0} with 

 𝐿 1+휀1    · =  𝐿 · , 휀1 > 0   . Then  𝑔 1+휀1 
 𝜉 =

1

2𝜋
𝑍𝜓 2 − 휀0 

, 𝜉 , 휀1 > 0 and  

 𝐺 𝜉 ∗𝐺 𝜉 =
1

 2𝜋 2
  𝑍𝜓 2 − 휀0 

, 𝜉  
2 

휀1≥0  . There for    𝛼𝐺 >  0 if and only if  

  |𝑍𝜓(2 − 휀0 
, 𝜉)| 

 

휀1≥0

  0 >  0 .  
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