Sampling Expansion with Symmetric Multi-Channel Sampling in a series of Shift-Invariant Spaces

Adam zakria ${ }^{1}$, Yousif Abdeltuif ${ }^{2}$, Ahmed Abdallatif ${ }^{3}$
${ }^{1}$ University of Kordofan, Faculty of Science, Department of Mathematics, Sudan
${ }^{2}$ Dalanj University, College of Education, Department of Mathematics, Sudan
${ }^{3}$ University of Zalingei, Faculty of Education, Department of Mathematics, Sudan

Abstract

We find necessary and sufficient conditions under which a regular shifted sampling expansion hold on $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$ and obtain truncation error estimates of the sampling series. We also find a sufficient condition for a function in $L^{2}(\mathbb{R})$ that belongs to a sampling subspace of $L^{2}(\mathbb{R})$. We use Fourier duality between $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$ and $L^{2}[0,2 \pi]$ to find conditions under which there is a stable asymmetric multi-channel sampling formula on $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$.

Keywords: Shift invariant space, sampling expansion, Multi-channel sampling , Frame Riesz basis.

I. Introduction

Let $\quad \sum_{d=1}^{m} \varphi\left(t_{d}\right)$ in $L^{2}(\mathbb{R})$, let $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)=\operatorname{span}\left\{\sum_{d=1}^{m} \varphi\left(t_{d}-n\right): n \in \mathbb{Z}\right\}$ be the closed subspace of $L^{2}(\mathbb{R})$ spanned by integer translates $\left\{\sum_{d=1}^{m} \varphi\left(t_{d}-n\right): n \in \mathbb{Z}\right\}$ of $\sum_{d=1}^{m} \varphi\left(t_{d}\right)$. We call $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$ the series of shift invariant space generated by $\sum_{d=1}^{m} \varphi\left(t_{d}\right)$ and $\sum_{d=1}^{m} \varphi\left(t_{d}\right)$ a frame or a Riesz or an orthonormal generator if $\left\{\sum_{d=1}^{m} \varphi\left(t_{d}-n\right): n \in \mathbb{Z}\right\}$ is a frame or a Riesz basis or an orthonormal basis of $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$. The multi-channel sampling method goes back to the works of Shannon [16] and Fogel [15], where reconstruction of a band-limited signal from samples of the signal and its derivatives was found. Generalized sampling expansion using arbitrary multi-channel sampling on the Paley-Wiener space was introduced first by Papoulis [14] .

Adam zakria , Ahmed Abdallatif , Yousif Abdeltuif [1] and S. Kang, J.M. Kim, K.H. Kwon [12] considered sampling expansion in a series of shift invariant spaces and symmetric multi-channel sampling in shift-invariant spaces space $V(\varphi)$ with a suitable Riesz generator $\varphi(t)$, where each channeled signal is sampled with a uniform but distinct rate.Using Fourier duality between $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$ and $L^{2}[0,2 \pi][7,8,9,12]$, we derive under the same considerations a stable series of shifted asymmetric multi-channel sampling formula in $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$. For example, Walter considered a real-valued continuous orthonormal generator satisfying $\sum_{d=1}^{m} \varphi\left(t_{d}\right)=O\left(\left(1+\sum_{d=1}^{m}\left|t_{d}\right|\right)^{-s}\right)$ with $s>1$, Chen, Itoh, and Shiki considered a continuous Riesz generator satisfying $\sum_{d=1}^{m} \varphi\left(t_{d}\right)=O\left(\left(1+\sum_{d=1}^{m}\left|t_{d}\right|\right)^{-s}\right.$ with $s>\frac{1}{2}$, and Zhou and Sun considered a continuous frame generator $\sum_{d=1}^{m} \varphi\left(t_{d}\right)$ satisfying $\sup _{\mathbb{R}} \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m}\left|\varphi\left(t_{d}-n\right)\right|^{2}<\infty$. We find necessary and sufficient conditions under which an irregular sampling expansion and a regular shifted sampling expansion hold on $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$. We give an illustrative examples (see[6, 12]).

II. Preliminaries

We consider the notations and formulas in [6,12]. Take $\{\varphi n: n \in \mathbb{Z}\}$ be a sequence of elements of a separable Hilbert space H with the inner product (,) and $V=\overline{\operatorname{span}}\{\varphi n: n \in \mathbb{Z}\}$ the closed subspace of H spanned by $\left\{\varphi_{n}: n \in \mathbb{Z}\right\}$. Then $\left\{\varphi_{n}: n \in \mathbb{Z}\right\}$ is called

- a Bessel sequence (with a Bessel bound B) if there is a constant $A+\varepsilon_{0}>0$ such that $\sum_{n \in \mathbb{Z}}\left|\left\langle\varphi, \varphi_{n}\right\rangle\right|^{2} \leq$ $\left(A+\varepsilon_{0}\right)\|\varphi\|^{2}, \varphi \in H$ (or equivalently $\varphi \in V$),
- a frame sequence (with frame bounds $\left(A, A+\varepsilon_{0}\right)$) if there are constants $A, A+\varepsilon_{0}>0$ such that $\mathrm{A}\|\varphi\|^{2}$ $\leq \sum_{\mathrm{n} \in \mathbb{Z}}\left|\left\langle\varphi, \varphi_{n}\right\rangle\right|^{2} \leq\left(A+\varepsilon_{0}\right)\|\varphi\|^{2}, \varphi \in V$, a Riesz sequence (with Riesz bounds $\left(A, A+\varepsilon_{0}\right)$) if there are constants $A+\varepsilon_{0}, A>0$

$$
A\|c\|^{2} \leq\left\|\sum_{n \in \mathbb{Z}} c(n) \varphi_{n}\right\|^{2} \leq\left(A+\varepsilon_{0}\right)\|c\|^{2}, c=\{c(n)\}_{n \in \mathbb{Z}} \in l^{2}
$$

where $\|c\|^{2}=\sum_{n \in \mathbb{Z}}|c(n)|^{2}$, an orthonormal sequence if $\left(\varphi_{m}, \varphi_{n}\right)=\delta_{m, n}$ for all m and n in \mathbb{Z}.

If $\left\{\varphi_{n}: n \in \mathbb{Z}\right\}$ is a frame sequence or a Riesz sequence or an orthonormal sequence in H, then we say that $\left\{\varphi_{n}: n \in \mathbb{Z}\right\}$ is a frame or a Riesz basis or an orthonormal basis of the Hilbert subspace V in H. On $L^{2}(\mathbb{R}) \cap$ $L^{1}(\mathbb{R})$, we take the Fourier transform to be normalized as

$$
\mathcal{F}[\varphi](\xi)=\hat{\varphi}(\xi)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \varphi(t) e^{-i t \xi} d t, \varphi(t) \in L^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})
$$

so that $\mathcal{F}[\cdot]$ becomes a unitary operator from $L^{2}(\mathbb{R})$ onto $L^{2}(\mathbb{R})$.
For any $\sum_{d=1}^{m} \varphi\left(t_{d}\right) \in L^{2}(\mathbb{R})$, let $\sum_{d=1}^{m} \Phi\left(t_{d}\right)=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m}\left|\varphi\left(t_{d}-n\right)\right|^{2}$,
$G_{\varphi}(\xi)=\sum_{n \in \mathbb{Z}}|\varphi(\xi+2 n \pi)|^{2}$. Then $\Phi(t)=\Phi(t+1) \in L^{1}[0,1]$,
$G_{\varphi}(\xi)=G_{\varphi}(\xi+2 \pi) \in L^{1}[0,2 \pi]$ and
$\left\|\sum_{d=1}^{m} \varphi\left(t_{d}\right)\right\|_{L^{2}(\mathbb{R})}^{2}=\left\|\sum_{d=1}^{m} \Phi\left(t_{d}\right)\right\|_{L^{1}[0,1]}=\left\|G_{\varphi}(\xi)\right\|_{L^{1}[0,1]}$.
The normalized Fourier transform is

$$
\mathcal{F}[\varphi](\xi)=\hat{\varphi}(\xi)=\int_{-\infty}^{\infty} \sum_{d=1}^{m} \varphi\left(t_{d}\right) \prod_{d=1}^{m} e^{-i t_{d} \xi} d t_{d}, \sum_{d=1}^{m} \varphi\left(t_{d}\right) \in L^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})
$$

so that $\frac{1}{\sqrt{2 \pi}} \mathcal{F}[\cdot]$ extends to a unitary operator from $L^{2}(\mathbb{R})$ onto $L^{2}(\mathbb{R})$. For each $\sum_{d=1}^{m} \varphi\left(t_{d}\right) \in L^{2}(\mathbb{R})$, let

$$
\sum_{d=1}^{m} C_{\varphi}\left(t_{d}\right)=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m}\left|\varphi\left(t_{d}+n\right)\right|^{2} \text { and } G_{\varphi}(\xi)=\sum_{n \in \mathbb{Z}}|\hat{\varphi}(\xi+2 n \pi)|^{2}
$$

Hence

$$
\sum_{d=1}^{m} C_{\varphi}\left(t_{d}\right)=\sum_{d=1}^{m} C_{\varphi}\left(t_{d}+1\right) \in L^{1}[0,1], G_{\varphi}(\xi)=G_{\varphi}(\xi+2 \pi) \in L^{2}[0,2 \pi]
$$

and

$$
\left\|\sum_{d=1}^{m} \varphi\left(t_{d}\right)\right\|_{L^{2(\mathbb{R})}}^{2}=\left\|\sum_{d=1}^{m} C_{\varphi}\left(t_{d}\right)\right\|_{L^{1}[0,1]}=\frac{1}{2 \pi}\left\|G_{\varphi}(\xi)\right\|_{L^{1}[0,2 \pi]}
$$

In particular, $\sum_{d=1}^{m} C_{\varphi}\left(t_{d}\right)<\infty$ for a.e. $\sum_{d=1}^{m} t_{d} \in \mathbb{R}$. We also let

$$
\sum_{d=1}^{m} Z_{\varphi}\left(t_{d}, \xi\right)=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} \varphi\left(t_{d}+n\right) e^{-i n \xi}
$$

be the Zak transform [11] of $\sum_{d=1}^{m} \stackrel{d=1}{\varphi}\left(t_{d}\right)$ in $\left.L^{2}(\mathbb{R})\right)$. Then $\sum_{d=1}^{m} Z_{\varphi}\left(t_{d}, \xi\right)$ is well defined a.e. on \mathbb{R}^{2} and is quasiperiodic in the sense that
$\sum_{d=1}^{m} Z_{\varphi}\left(t_{d}+1, \xi\right)=e^{i \xi} \sum_{d=1}^{m} Z_{\varphi}\left(t_{d}, \xi\right)$ and $\sum_{d=1}^{m} Z_{\varphi}\left(t_{d}, \xi+2 \pi\right)=\sum_{d=1}^{m} Z_{\varphi}\left(t_{d}, \xi\right)$.
A Hilbert space H consisting of complex valued functions on a set E is called a reproducing kernel Hilbert space (RKHS in short) if there is a series of a functions $\sum_{d=1}^{m} q\left(s, t_{d}\right)$ on $E \times E$, called the reproducing kernel of H, satisfying
(i) $\sum_{d=1}^{m} q\left(., t_{d}\right) \in H$ for each $\sum_{d=1}^{m} t_{d} \in E$,
(ii) $\left\langle f(s), \sum_{d=1}^{m} q\left(s, t_{d}\right)\right\rangle=\sum_{d=1}^{m} f\left(t_{d}\right), f \in H$.

In an RKHS H, any norm converging sequence also converges uniformly on any subset of E, on which $\left\|\sum_{d=1}^{m} q\left(., t_{d}\right)\right\|_{H}^{2}=\sum_{d=1}^{m} q\left(t_{d}, t_{d}\right)$ is bounded.
A sequence $\left\{\varphi_{n}: n \in \mathbb{Z}\right\}$ of vectors in a separable Hilbert space H is
(i) a Bessel sequence with a bound $A+\varepsilon_{0}: \varepsilon_{0}>0$ if

$$
\sum_{n \in \mathbb{Z}}\left|\left\langle\varphi, \varphi_{n}\right\rangle\right|^{2} \leq\left(A+\varepsilon_{0}\right)\|\varphi\|^{2}, \varphi \in H, \varepsilon_{0}>0
$$

(ii) a frame of H with bounds $A+\varepsilon_{0} \geq A: \varepsilon_{0}>0$ if

$$
A\|\varphi\|^{2} \leq \sum_{n \in \mathbb{Z}}\left|\left\langle\varphi, \varphi_{n}\right\rangle\right|^{2} \leq\left(A+\varepsilon_{0}\right)\|\varphi\|^{2}, \varphi \in H, \varepsilon_{0}>0
$$

(iii) a Riesz basis of H with bounds $A+\varepsilon_{0} \geq A: \varepsilon_{0}>0$ if it is complete in H and

$$
A\|\boldsymbol{c}\|^{2} \leq\left\|\sum_{n \in \mathbb{Z}} c(n) \varphi_{n}\right\|^{2} \leq\left(A+\varepsilon_{0}\right)\|c\|^{2}, c=\{c(n)\}_{n \in \mathbb{Z}} \in l^{2}, \varepsilon_{0}>0
$$

where $\quad\|\boldsymbol{c}\|^{2}=\sum_{n \in \mathbb{Z}}|c(n)|^{2}$.

We let $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$ be the series of the shift invariant spaces, where $\sum_{d=1}^{m} \varphi\left(t_{d}\right)$ is a series of a Riesz generators, that is, $\left\{\sum_{d=1}^{m} \varphi\left(t_{d}-n\right): n \in \mathbb{Z}\right\}$ is a series of a Riesz bases of $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$. Then

$$
\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)=\left\{\sum_{d=1}^{m}(\boldsymbol{c} * \varphi)\left(t_{d}\right)=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} c(n) \varphi\left(t_{d}-n\right): C=\{c(n)\}_{n \in \mathbb{Z}} \in l^{2}\right\}
$$

It is well known see [5] that $\sum_{d=1}^{m} \varphi\left(t_{d}\right)$ is a series of a Riesz generators if and only if there are constant A such that $A \leq G_{\varphi}(\xi) \leq A+\varepsilon_{0}$ a.e. on $[0,2 \pi]$. In this case, $\left\{\sum_{d=1}^{m} \varphi\left(t_{d}-n\right): n \in \mathbb{Z}\right\}$ is a series of a Riesz bases of $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$ with bound $\varepsilon_{0}>0$. For any $c=\{c(n)\}_{n \in \mathbb{Z}} \quad$ and $\quad d=\{d(n)\}_{n \in \mathbb{Z}}$ in l^{2}, the discrete convolution product of c and d is defined by
$c * d=\left\{(c * d)(n)=\sum_{n \in \mathbb{Z}} c(k) d(n-k)\right\}$.Then $\hat{c}^{*}(\xi) \hat{d}^{*}(\xi)$ belongs to $L^{1}[0,2 \pi]$ and its Fourier series is $(c * d)(n) e^{-i n \xi}$ so that

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\hat{c}^{*}(\xi) \hat{d}^{*}(\xi)\right|^{2} d \xi=2 \pi\|c * d\|^{2} \tag{1}
\end{equation*}
$$

Proposition 2.1: Let $\sum_{d=1}^{m} \varphi\left(t_{d}\right) \in L^{2}(\mathbb{R})$ and $A>0$. Then
(a) $\left\{\sum_{d=1}^{m} \varphi\left(t_{d}-n\right): n \in \mathbb{Z}\right\}$ is a Bessel sequence with a Bessel bound $A+\varepsilon_{0}$ if and only if $2 \pi G_{\varphi}(\xi) \leq$ $A+\varepsilon_{0}$ a.e. on $[0,2 \pi]$,
(b) $\left\{\sum_{d=1}^{m} \varphi\left(t_{d}-n\right): n \in \mathbb{Z}\right\}$ is a frame sequence with frame bounds $\left(A, A+\varepsilon_{0}\right)$ if and only if

$$
\begin{equation*}
A \leq 2 \pi G_{\varphi}(\xi) \leq A+\varepsilon_{0} \text { a.e. on } E_{\varphi}, \tag{2}
\end{equation*}
$$

(c) $\left\{\sum_{d=1}^{m} \varphi\left(t_{d}-n\right): n \in \mathbb{Z}\right\}$ is a Riesz sequence with Riesz bounds
($A, A+\varepsilon_{0}$) if and only if $A \leq 2 \pi G_{\varphi}(\xi)$. $\left(A+\varepsilon_{0}\right)$ a.e. on [0, $\left.2 \pi\right]$,
(d) $\left\{\sum_{d=1}^{m} \varphi\left(t_{d}-n\right): n \in \mathbb{Z}\right\}$ is an orthonormal sequence if and only if
$2 \pi G_{\varphi}(\xi)=1$ a.e. on $[0,2 \pi]$.
Proof: (See [6]) For each $\sum_{d=1}^{m} \varphi\left(t_{d}\right) \in L^{2}(\mathbb{R})$ and $c=\{c(n)\}_{n \in \mathbb{Z}} \in l^{2}$, let
$T(c)=(c * \varphi)(t)=\sum_{k \in \mathbb{Z}} \sum_{d=1}^{m} c(k) \varphi\left(t_{d}-k\right) \quad$ be the semi-discrete convolution product of c and $\sum_{d=1}^{m} \varphi\left(t_{d}\right)$, which may or may not converge in $L^{2}(\mathbb{R})$. In terms of the operator T, called the pre-frame operator of $\left\{\sum_{d=1}^{m} \varphi\left(t_{d}-n\right): n \in \mathbb{Z}\right\}$, (see [6]): $\left\{\sum_{d=1}^{m} \varphi\left(t_{d}-n\right): n \in \mathbb{Z}\right\}$ is a Bessel sequence with a Bessel bound B if and only if T is a bounded linear operator from l^{2} into $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$ and $\|T(c)\|_{L^{2}(\mathbb{R})}^{2} \leq$ $A+\varepsilon_{0}\|c\|^{2}, c \in l^{2},\left\{\sum_{d=1}^{m} \varphi\left(t_{d}-n\right): n \in \mathbb{Z}\right\}$ is a frame sequence with frame bounds $\left(A, A+\varepsilon_{0}\right)$ if and only if T is a bounded linear operator from l^{2} onto $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$ and

$$
\begin{equation*}
A\|c\|^{2} \leq\|T(c)\|_{L^{2}(\mathbb{R})}^{2} \leq\left(A+\varepsilon_{0}\right)\|c\|^{2}, c \in N(T)^{\perp} \tag{3}
\end{equation*}
$$

where $N(T)=\operatorname{Ker} T=\left\{c \in l^{2}: T(c)=0\right\}$ and $N(T)^{\perp}$ is the orthogonal complement of $N(T)$ in l^{2}, $\left\{\sum_{d=1}^{m} \varphi\left(t_{d}-n\right): n \in \mathbb{Z}\right\}$ is a Riesz sequence with Riesz bounds $\left(A, A+\varepsilon_{0}\right)$ if and only if T is an isomorphism from l^{2} onto $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$ and
$\boldsymbol{A}\|\boldsymbol{c}\|^{2} \leq\|\boldsymbol{T}(\boldsymbol{c})\|_{\boldsymbol{L}^{2}(\mathbb{R})}^{2} \leq\left(A+\varepsilon_{0}\right)\|\boldsymbol{c}\|^{2}, \boldsymbol{c} \in \boldsymbol{l}^{2},\left\{\sum_{d=1}^{m} \varphi\left(t_{d}-n\right): \boldsymbol{n} \in \mathbb{Z}\right\}$ is an orthonormal sequence if and only if T is a unitary operator from l^{2} onto $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$.
Lemma 2.2: Let $\sum_{d=1}^{m} \varphi\left(t_{d}\right) \in L^{2}(\mathbb{R})$. If $\left\{\sum_{d=1}^{m} \varphi\left(t_{d}-n\right): n \in \mathbb{Z}\right\}$ is a Bessel sequence, then for any

$$
\begin{equation*}
c=\{c(n)\}_{n \in \mathbb{Z}} \text { in } l^{2}, \widehat{c * \varphi}(\xi)=\hat{c}^{*}(\xi) \hat{\varphi}(\xi) \tag{4}
\end{equation*}
$$

so that

$$
\begin{align*}
\|(c * \varphi)(t)\|_{L^{2}(\mathbb{R})}^{2} & =\int_{-\infty}^{\infty}\left|\hat{c}^{*}(\xi) \hat{\varphi}(\xi)\right|^{2} d \xi \\
& =\int_{0}^{2 \pi}\left|\hat{c}^{*}(\xi)\right|^{2} G_{\varphi}(\xi) d \xi \tag{5}
\end{align*}
$$

Proof: See $[2,18]$. Let $\sum_{d=1}^{m} \varphi\left(t_{d}\right)$ be a frame or a Riesz generator. Then T is an isomorphism from $N(T)^{\perp}$ onto $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$ so that

$$
\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)=\left\{\sum_{d=1}^{m}(c * \varphi)\left(t_{d}\right): c \in l^{2}\right\}=\left\{\sum_{d=1}^{m}(c * \varphi)\left(t_{d}\right): c \in N(T)^{\perp}\right\}
$$

where $\sum_{d=1}^{m} f\left(t_{d}\right)=\sum_{d=1}^{m}(c * \varphi)\left(t_{d}\right)$ is the L^{2}-limit of $\sum_{k \in \mathbb{Z}} \sum_{d=1}^{m} c(k) \varphi\left(t_{d}-k\right)$. Applying (5), we have $N(T)=\left\{c \in l^{2}: \hat{c}^{*}(\xi)=0\right.$ a.e. on $\left.E_{\varphi}\right\}$ so that

$$
\begin{equation*}
N(T)^{\perp}=\left\{c \in l^{2}: \hat{c}^{*}(\xi)=0 \text { a.e.on } N_{\varphi}\right\} . \tag{6}
\end{equation*}
$$

Proposition 2.3: putting $\sum_{d=1}^{m} \varphi\left(t_{d}\right) \in L^{2}(\mathbb{R})$ be a frame generator and
$\sum_{d=1}^{m} f\left(t_{d}\right)=\sum_{d=1}^{m}(c * \varphi)\left(t_{d}\right) \in \sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$ hence $c \in l^{2}$. Then $\mathrm{c} \in N(T)^{\perp}$ if and only if $c(k)=$ $\left\langle f\left(t_{d}\right), \psi\left(t_{d}-k\right)\right\rangle_{L^{2}(\mathbb{R})}, k \in \mathbb{Z}, 1 \leq d \leq m$, hence $\left\{\sum_{d=1}^{m} \psi\left(t_{d}-k\right): k \in \mathbb{Z}\right\}$ is the canonical dual frame of $\left\{\sum_{d=1}^{m} \varphi\left(t_{d}-k\right): k \in \mathbb{Z}\right\}$.
Proof: Applying (4) for any $\sum_{d=1}^{m} f\left(t_{d}\right)=(c * \varphi)(t) \in \sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$,

$$
\begin{aligned}
\sum_{d=1}^{m}\left\langle f\left(t_{d}\right), \psi\left(t_{d}-k\right)\right\rangle_{L^{2}(\mathbb{R})} & =\left\langle\hat{c}^{*}(\xi) \hat{\varphi}(\xi), e^{-i k \xi} \hat{\psi}(\xi)\right\rangle_{L^{2}(\mathbb{R})} \\
& =\left\langle\hat{c}^{*}(\xi) \hat{\varphi}(\xi), \frac{\hat{\varphi}(\xi)}{2 \pi G_{\varphi}(\xi)} \chi \operatorname{supp} G_{\varphi}(\xi) e^{-i k \xi}\right\rangle_{L^{2}(\mathbb{R})} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \hat{c}^{*}(\xi) \chi_{E_{\varphi}}(\xi) e^{i k \xi} d \xi, k \in \mathbb{Z}
\end{aligned}
$$

since $\hat{\psi}(\xi)=\frac{\widehat{\varphi}(\xi)}{2 \pi G_{\varphi}(\xi)} \chi \operatorname{supp} G_{\varphi}(\xi)$ (see [13]), where $\chi_{E}(\xi)$ is the characteristic function of a subset E of \mathbb{R}. Hence

$$
\begin{aligned}
\sum_{d=1}^{m} \sum_{k \in \mathbb{Z}}\left\langle f\left(t_{d}\right), \psi\left(t_{d}-k\right)\right\rangle_{L^{2}(\mathbb{R})} e^{-i k \xi} & =\frac{1}{2 \pi} \sum_{k \in \mathbb{Z}}\left(\int_{0}^{2 \pi} \hat{c}^{*}(\xi) \chi_{E_{\varphi}}(\xi) e^{i k \xi} d \xi\right) \\
& =\hat{c}^{*}(\xi) \chi_{E_{\varphi}}(\xi)
\end{aligned}
$$

Now, $c \in N(T)^{\perp}$ if and only if $\hat{c}^{*}(\xi)=0$ a.e. on $N_{\varphi}($ see (6)).
That is, $\hat{c}^{*}(\xi)=\hat{c}^{*}(\xi) \chi_{E_{\varphi}}(\xi)$ a.e. on $[0,2 \pi]$. Hence the conclusion follows. A Hilbert space H consisting of complex-valued functions on a set E is called a reproducing kernel Hilbert space (RKHS in short) if the point evaluation $l_{t}(f)=f(t)$ is a bounded linear functional on H for each t in E. In an RKHS H, there is a function $k(s, t)$ on $E \times E$, called the reproducing kernel of H satisfying
(i) $k(\cdot, s) \in H$ for each s in E,
(ii) $\langle f(t), k(t, s)\rangle=f(s), f \in H$.

Moreover, any norm converging sequence in an RKHS H converges also uniformly on any subset of E, on which $k(t, t)$ is bounded (see [4]).
If a series of shift invariant space $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$ with a frame generator $\sum_{d=1}^{m} \varphi\left(t_{d}\right)$ is an RKHS, then its reproducing kernel is given by

$$
\begin{equation*}
\sum_{d=1}^{m} k\left(t_{d}, s\right)=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} \varphi\left(t_{d}-n\right) \overline{\varphi(s-n)}=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} \varphi\left(t_{d}-n\right) \overline{\varphi(s-n)} \tag{7}
\end{equation*}
$$

where $\left\{\sum_{d=1}^{m} \psi\left(t_{d}-n\right): n \in \mathbb{Z}\right\}$ is the canonical dual frame of $\left\{\sum_{d=1}^{m} \varphi\left(t_{d}-n\right): n \in \mathbb{Z}\right\}$. We now find conditions on the generator $\sum_{d=1}^{m} \varphi\left(t_{d}\right)$ under which $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$ can be recognized as an RKHS. Since all functions in an RKHS must be pointwise well defined, we only consider generators $\sum_{d=1}^{m} \varphi\left(t_{d}\right)$ satisfying $\sum_{d=1}^{m} \varphi\left(t_{d}\right)$ is a complex valued square integrable

$$
\begin{equation*}
\text { function well defined every where on } \mathbb{R} \text {. } \tag{8}
\end{equation*}
$$

If $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$ is recognizable as an RKHS with the reproducing kernel $\sum_{d=1}^{m} k\left(t_{d}, s\right)$ as in (7), where $\sum_{d=1}^{m} \varphi\left(t_{d}\right)$ is a frame generator satisfying (8), hence

$$
\begin{array}{r}
\Phi(s)=\sum_{n \in \mathbb{Z}}|\varphi(s-n)|^{2}=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} \mid\left\langle\left.\left(k\left(t_{d}, s\right), \varphi\left(t_{d}-n\right)\right\rangle_{L^{2}(\mathbb{R})}\right|^{2}\right. \\
\leq\left.\left(A+\varepsilon_{0}\right)| | K(\cdot, s)\right|_{L^{2}(\mathbb{R})} ^{2}=\left(A+\varepsilon_{0}\right) k(s, s), s \in \mathbb{R}
\end{array}
$$

therefore $A+\varepsilon_{0}$ is an upper frame bound of $\left\{\sum_{d=1}^{m} \varphi\left(t_{d}-n\right): n \in \mathbb{Z}\right\}$. Hence

$$
\begin{equation*}
\sum_{\mathrm{d}=1}^{\mathrm{m}} \Phi\left(t_{d}\right)=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m}\left|\varphi\left(t_{d}-n\right)\right|^{2}<\infty \text { for any } \mathrm{t} \text { in } \mathbb{R} \tag{9}
\end{equation*}
$$

Conversely, we have:

III. Asymmetric multi-channel sampling Lemmas

The aim of this paper is as follows (see [11]). Let $\left\{L_{\left(1+\varepsilon_{1}\right)}[\cdot]: \varepsilon_{1} \geq 0\right\}$ be N LTI (linear time-invariant) systems with impulse responses $\left\{\sum_{d=1}^{m} L_{\left(1+\varepsilon_{1}\right)}\left(t_{d}\right): \varepsilon_{1} \geq 0\right\}$. Develop a stable series of shifted multi-channel sampling formula for any signal $\sum_{d=1}^{m} f\left(t_{d}\right) \in \sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$ using discrete sample values from $\left\{\sum_{d=1}^{m} L_{\left(1+\varepsilon_{1}\right)}\left(t_{d}\right): \varepsilon_{1} \geq 0\right\}$, where each channeled signal $\sum_{d=1}^{m} L_{\left(1+\varepsilon_{1}\right)}[f]\left(t_{d}\right)$ for $\varepsilon_{1} \geq 0$ is assigned with a distinct sampling rate

$$
\begin{array}{r}
\sum_{d=1}^{m} f\left(t_{d}\right)=\sum_{\varepsilon_{1}=0}^{N} \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} L_{\left(1+\varepsilon_{1}\right)}[f]\left(\sigma_{\left(1+\varepsilon_{1}\right)}+\left(1+\varepsilon_{2}\right)_{\left(1+\varepsilon_{1}\right)} n\right) s_{d\left(1+\varepsilon_{1}\right), n}\left(t_{d}\right), \\
\sum_{d=1}^{m} f\left(t_{d}\right) \in \sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right), \tag{10}
\end{array}
$$

where $\left\{\sum_{d=1}^{m} s_{d\left(1+\varepsilon_{1}\right), n}\left(t_{d}\right): \varepsilon_{1} \geq 0, n \in \mathbb{Z}\right\}$ is a series of frames or a Riesz basis of $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$,
$\left\{\left(1+\varepsilon_{2}\right)_{\left(1+\varepsilon_{1}\right)}: \varepsilon_{1} \geq 0\right\}$ are positive integers, and $\left\{\sigma_{\left(1+\varepsilon_{1}\right)}: \varepsilon_{1} \geq 0\right\}$ are real constants. Note that the series of shifting of sampling instants is unavoidable in some uniform sampling [11] and arises naturally when we allow rational sampling periods in (10). Here, we assume that each $L_{\left(1+\varepsilon_{1}\right)}[\cdot]$ is one of the following three types: the impulse response $\sum_{d=1}^{m} l\left(t_{d}\right)$ of an LTI system is such that
(i) $\sum_{d=1}^{m} l\left(t_{d}\right)=\sum_{d=1}^{m} \delta\left(t_{d}+a\right), a \in \mathbb{R}$ or
(ii) $\sum_{d=1}^{m} l\left(t_{d}\right) \in L^{2}(\mathbb{R})$ or
(iii) $\hat{l}(\xi) \in L^{\infty}(\mathbb{R}) \cup L^{2}(\mathbb{R})$ when
$H_{\varphi}(\xi)=\sum_{n \in \mathbb{Z}}|\hat{\varphi}(\xi+2 n \pi)| \in L^{2}[0,2 \pi]$. For type (i),
$\sum_{d=1}^{m} L[f]\left(t_{d}\right)=\sum_{d=1}^{m} f\left(t_{d}+a\right), f \in L^{2}(\mathbb{R})$ so that $L[\cdot]: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is an isomorphism. In particular, for any $\sum_{d=1}^{m} f\left(t_{d}\right)=\sum_{d=1}^{m}(\boldsymbol{c} * \varphi)\left(t_{d}\right) \in \sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$,
$\sum_{d=1}^{m} L[f]\left(t_{d}\right)=\sum_{d=1}^{m}(\boldsymbol{c} * \psi)\left(t_{d}\right)$ converges absolutely on \mathbb{R} since

$$
\sum_{d=1}^{m} C_{\psi}\left(t_{d}\right)=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m}\left|\psi\left(t_{d}+n\right)\right|^{2}<\infty, \sum_{d=1}^{m} t_{d} \in \mathbb{R}, \text { where }
$$

$\sum_{d=1}^{m} \psi\left(t_{d}\right)=\sum_{d}^{m} L[\varphi]\left(t_{d}\right)=\sum_{d=1}^{m} \varphi\left(t_{d}+a\right)$. For types (ii) and (iii), we have the following results (see [11]):
Lemma 3.1. Putting $L[\cdot]$ be an LTI system with the impulse response $\sum_{d=1}^{m} l\left(t_{d}\right)$ of the type (ii) or (iii) as above and
$\sum_{d=1}^{m} \psi\left(t_{d}\right)=\sum_{d=1}^{m} L[\varphi]\left(t_{d}\right)=\sum_{d=1}^{1}(\varphi * l)\left(t_{d}\right)$. Then
(a) $\sum_{d=1}^{m} \psi\left(t_{d}\right) \in C_{\infty}(\mathbb{R})=\left\{\sum_{d=1}^{m} u\left(t_{d}\right) \in C(\mathbb{R}): \lim _{\sum_{d=1}^{m}\left|t_{d}\right| \rightarrow \infty} \sum_{d=1}^{m} u\left(t_{d}\right)=0\right\}$,
(b) $\sup _{\mathbb{R}} \sum_{d=1}^{m} C_{\psi}\left(t_{d}\right)<\infty$;
(c) for each $\sum_{d=1}^{m} f\left(t_{d}\right)=\sum_{d=1}^{m}(\boldsymbol{c} * \varphi)\left(t_{d}\right) \in \sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$,
$\sum_{d=1}^{m} L[f]\left(t_{d}\right)=\sum_{d=1}^{m}(\boldsymbol{c} * \psi)\left(t_{d}\right)$ converges absolutely and uniformly on \mathbb{R}.
Hence $\sum_{d=1}^{m} L[f]\left(t_{d}\right) \in C(\mathbb{R})$.
Proof .Suppose that $\sum_{d=1}^{m} l\left(t_{d}\right) \in L^{2}(\mathbb{R})$. Then $\sum_{d=1}^{m} \psi\left(t_{d}\right) \in C_{\infty}(\mathbb{R})$ by the Riemann-Lebesgue lemma since $\hat{\psi}(\xi)=\hat{\varphi}(\xi) \hat{l}(\xi) \in L^{1}(\mathbb{R})$. Since

$$
\sum_{n \in \mathbb{Z}}|\hat{\psi}(\xi+2 n \pi)| \leq G_{\varphi}(\xi)^{\frac{1}{2}} G_{l}(\xi)^{\frac{1}{2}}
$$

$$
\left\|\sum_{n \in \mathbb{Z}}|\hat{\psi}(\xi+2 n \pi)|\right\|_{L^{2}[0,2 \pi]}^{2} \leq \int_{0}^{2 \pi} G_{\varphi}(\xi) G_{l}(\xi) d \xi \leq 2 \pi\left\|G_{\varphi}(\xi)\right\|_{L^{\infty}(\mathbb{R})}\|l\|_{L^{2}(\mathbb{R})}^{2}
$$

Thus for any $\sum_{d=1}^{m} t_{d}$ in \mathbb{R}, we have by the Poisson summation formula (se [1])

$$
\sum_{n \in \mathbb{Z}} \hat{\psi}(\xi+2 n \pi) \prod_{d=1}^{m} e^{i t_{d}(\xi+2 n \pi)}=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} \psi\left(t_{d}+n\right) e^{-i n \xi} \text { in } L^{2}[0,2 \pi]
$$

Therefore any $\sum_{d=1}^{m} t_{d}$ in \mathbb{R}

$$
\sum_{d=1}^{m} C_{\psi}\left(t_{d}\right)=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m}\left|\psi\left(t_{d}+n\right)\right|^{2}=\frac{1}{2 \pi}\left\|\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} \psi\left(t_{d}+n\right) e^{-i n \xi}\right\|_{L^{2}[0,2 \pi]}^{2}
$$

$$
\begin{aligned}
& =\frac{1}{2 \pi}\left\|\sum_{n \in \mathbb{Z}} \hat{\psi}(\xi+2 n \pi) \prod_{d=1}^{m} e^{i t_{d}(\xi+2 n \pi)}\right\|_{L^{2}[0,2 \pi]}^{2} \\
& \quad \leq\left\|G_{\varphi}(\xi)\right\|_{L^{\infty}(\mathbb{R})}\|l\|_{L^{2}(\mathbb{R})}^{2} .
\end{aligned}
$$

By Young's inequality on the convolution product, $\|L[f]\|_{L^{\infty}(\mathbb{R})} \leq\|f\|_{L^{2}(\mathbb{R})}\|l\|_{L^{2}(\mathbb{R})}$ so that $L[\cdot]: L^{2}(\mathbb{R}) \rightarrow$ $L^{\infty}(\mathbb{R})$ is a bounded linear operator. Where

$$
\begin{gathered}
\sum_{d=1}^{m} f\left(t_{d}\right)=\sum_{d=1}^{m}(c * \varphi)\left(t_{d}\right)=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} c(n) \varphi\left(t_{d}-n\right) \in \sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right), \\
\sum_{d=1}^{m} L[f]\left(t_{d}\right)=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} c(n) L\left[\varphi\left(t_{d}-n\right)\right]=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} c(n) \psi\left(t_{d}-n\right),
\end{gathered}
$$

which converges absolutely and uniformly on R by (b). Now assume that $H_{\varphi}(\xi) \in L^{2}[0,2 \pi]$. The case $\hat{l}(\xi) \in L^{2}(\mathbb{R})$ is reduced to type (ii). So let $\hat{l}(\xi) \in L^{\infty}(\mathbb{R})$. Then $\hat{\varphi}(\xi) \in L^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ so that $\hat{\psi}(\xi)=$ $\hat{\varphi}(\xi) \hat{l}(\xi) \in L^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ and so $\left.\psi(\xi) \in C_{\infty}(R) \cap L^{2}(\mathbb{R})\right)$. Since
$\sum_{n \in \mathbb{Z}}|\hat{\psi}(\xi+2 n \pi)| \leq\|l\|_{L^{\infty}(\mathbb{R})} H_{\varphi}(\xi)$, we have again
by the Poisson summation formula

$$
\begin{aligned}
\sum_{d=1}^{m} C_{\psi}\left(t_{d}\right) & =\frac{1}{2 \pi}\left\|\sum_{n \in \mathbb{Z}} \hat{\psi}(\xi+2 n \pi) \prod_{d=1}^{m} e^{i t_{d}(\xi+2 n \pi)}\right\|_{L^{2}[0,2 \pi]}^{2} \\
& \leq\|l\|_{L^{\infty}(\mathbb{R})}^{2}\left\|H_{\varphi}(\xi)\right\|_{L^{2}[0,2 \pi]}^{2}
\end{aligned}
$$

so that $\sup _{\mathbb{R}} \sum_{d=1}^{m} C_{\psi}\left(t_{d}\right)<\infty$. For any $f \in L^{2}(\mathbb{R})$,

$$
\begin{aligned}
& \sum_{d=1}^{m}\left\|L[f]\left(t_{d}\right)\right\|_{L^{2}(\mathbb{R})}=\|f * l\|_{L^{2}(\mathbb{R})}=\frac{1}{\sqrt{2 \pi}}\|\hat{f}(\xi) \hat{l}(\xi)\|_{L^{2}(\mathbb{R})} \\
& \leq\|\widehat{l}\|_{L^{\infty}(\mathbb{R})}\|f\|_{L^{2}(\mathbb{R})} .
\end{aligned}
$$

Hence $L[\cdot]: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is a bounded linear operator so that for any
$\sum_{d=1}^{m} f\left(t_{d}\right)=\sum_{d=1}^{m}(\boldsymbol{c} * \varphi)\left(t_{d}\right) \in \sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right), \sum_{d=1}^{m} L[f]\left(t_{d}\right)=\sum_{d=1}^{m}(\boldsymbol{c} * \psi)\left(t_{d}\right)$ converges in $L^{2}(\mathbb{R})$. By (b), $\sum_{d=1}^{m}(\boldsymbol{c} * \psi)\left(t_{d}\right)$ also converges absolutely and uniformly on \mathbb{R}.
By Lemma 3.2(b), $\sum_{d=1}^{m} \psi\left(t_{d}\right) \in L^{2}(\mathbb{R})$. However, $\sum_{d=1}^{m}(\boldsymbol{c} * \psi)\left(t_{d}\right)$ may not converge in $L^{2}(\mathbb{R})$ unless $\left\{\sum_{d=1}^{m} \psi\left(t_{d}-n\right): n \in \mathbb{Z}\right\}$ is a Bessel sequence.
Lemma 3.2(b) improves Lemma 1 in [9], in which the proof uses $\sum_{d=1}^{m} l\left(t_{d}\right) \in L^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})$,
$\sup _{\mathbb{R}} \sum_{d=1}^{m} C_{\varphi}\left(t_{d}\right)<\infty$, and the integral version of Minkowski inequality. Note that the condition $H_{\varphi}(\xi) \in$ $L^{2}[0,2 \pi]$ implies $\sum_{d=1}^{m} \varphi\left(t_{d}\right) \in L^{2}(\mathbb{R}) \cap C_{\infty}\left((\mathbb{R})\right.$ and $\sup _{\mathbb{R}} \sum_{d=1}^{m} C_{\varphi}\left(t_{d}\right)<\infty$. (see [1]). Note also that $H_{\varphi}(\xi) \in L^{2}[0,2 \pi]$ if $\hat{\varphi}(\xi)=O\left((1+|\xi|)^{-\left(1+\varepsilon_{2}\right)}\right),\left(1+\varepsilon_{2}\right)_{\left(1+\varepsilon_{1}\right)}>1, \varepsilon_{1} \geq 0$, which holds e.g. for $\sum_{d=1}^{m} \varphi_{n}\left(t_{d}\right)=\sum_{d=1}^{m}\left(\varphi_{0} * \varphi_{n-1}\right)\left(t_{d}\right)$ the cardinal B-spline of degree $n(\geq 1)$, where
$\varphi_{0}=\sum_{d=1}^{m} \chi_{[0,1)}\left(t_{d}\right)$. We have as a consequence of Lemma 3.2: Let $L[\cdot]$ be an LTI system with impulse response $\sum_{d=1}^{m} l\left(t_{d}\right)$ of type (i) or (ii) or (iii) as above and $\sum_{d=1}^{m} \psi\left(t_{d}\right)=\sum_{d=1}^{m} L[\varphi]\left(t_{d}\right)$. Then for any $\sum_{d=1}^{m} f\left(t_{d}\right)=\sum_{d=1}^{m}(\mathcal{J} F)\left(t_{d}\right) \in \sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right), F(\xi) \in L^{2}[0,2 \pi]$

$$
\begin{equation*}
\sum_{d=1}^{m} L[f]\left(t_{d}\right)=\sum_{d=1}^{m}\left\langle(\xi), \frac{1}{2 \pi} \overline{Z_{\psi}\left(t_{d}, \xi\right)}\right\rangle_{L^{2}}[0,2 \pi] \tag{11}
\end{equation*}
$$

since $L[\cdot]$ is a bounded linear operator from $L^{2}(\mathbb{R})$ into $L^{2}(\mathbb{R})$ or $L^{\infty}(\mathbb{R})$ and $\left\{\sum_{d=1}^{m} \psi\left(t_{d}-n\right): n \in \mathbb{Z}\right\} \in l^{2}$, $\sum_{d=1}^{m} t_{d} \in \mathbb{R}$. Let $\sum_{d=1}^{m} \psi_{\left(1+\varepsilon_{1}\right)}\left(t_{d}\right)=\sum_{d=1}^{m} L_{\left(1+\varepsilon_{1}\right)}[\varphi]\left(t_{d}\right)$ and
$g_{\left(1+\varepsilon_{1}\right)}(\xi)=\frac{1}{2 \pi} Z_{\psi_{\left(1+\varepsilon_{1}\right)}}\left(\sigma_{\left(1+\varepsilon_{1}\right)}, \xi\right), \varepsilon_{1} \geq 0$. Then we have by (11)
$L_{\left(1+\varepsilon_{1}\right)}[f]\left(\sigma_{\left(1+\varepsilon_{1}\right)}+\left(1+\varepsilon_{2}\right)_{\left(1+\varepsilon_{1}\right)} n\right)=\left\langle F(\xi), \frac{1}{2 \pi} Z_{\psi_{\left(1+\varepsilon_{1}\right)}}\left(\sigma_{\left(1+\varepsilon_{1}\right)}+\left(1+\varepsilon_{2}\right)_{\left(1+\varepsilon_{1}\right)} n, \xi\right)\right\rangle_{L^{2}[0,2 \pi]}$

$$
\begin{equation*}
=\left\langle F(\xi), \overline{g_{\left(1+\varepsilon_{1}\right)}(\xi)} e^{\left.-i\left(1+\varepsilon_{2}\right)_{\left(1+\varepsilon_{1}\right)}^{n \xi}\right\rangle_{L^{2}[0,2 \pi]}}\right. \tag{12}
\end{equation*}
$$

for any $\sum_{d=1}^{m} f\left(t_{d}\right)=\sum_{d=1}^{m}(\mathcal{J} F)\left(t_{d}\right) \in \sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$ and $\varepsilon_{1} \geq 0$. Then by (12) and the isomorphism \mathcal{J} from $L^{2}[0,2 \pi]$ onto $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$, the sampling expansion (10) is equivalent to

$$
F(\xi)=\sum_{\varepsilon_{1}=0}^{N} \sum_{n \in \mathbb{Z}}\left\langle F(\xi), \overline{g_{\left(1+\varepsilon_{1}\right)}(\xi)} e^{-i\left(1+\varepsilon_{2}\right)_{\left(1+\varepsilon_{1}\right)} n \xi}\right\rangle_{L^{2}[0,2 \pi]} S_{\left(1+\varepsilon_{1}\right), n}(\xi)
$$

$F(\xi) \in L^{2}[0,2 \pi]$, where $\left\{S_{\left(1+\varepsilon_{1}\right), n}(\xi): \varepsilon_{1} \geq 0, n \in \mathbb{Z}\right\}$ is a series of frames or a Riesz basis of $L^{2}[0,2 \pi]$. This observation leads us to consider the problem when is $\left\{\overline{g_{\left(1+\varepsilon_{1}\right)}(\xi)} e^{-i\left(1+\varepsilon_{2}\right){\left(1+\varepsilon_{1}\right)}^{n} \xi}: \varepsilon_{1} \geq 0, n \in \mathbb{Z}\right\}$ a series of frames or a Riesz basis of $L^{2}[0,2 \pi]$. Note that

$$
\begin{aligned}
& \left\{\overline{g_{\left(1+\varepsilon_{1}\right)}(\xi)} e^{-i\left(1+\varepsilon_{2}\right)_{\left(1+\varepsilon_{1}\right)} n \xi}: \varepsilon_{1} \geq 0, n \in \mathbb{Z}\right\}= \\
& \\
& \left\{\frac{\left(1+\varepsilon_{2}\right)}{g_{\left(1+\varepsilon_{1}\right), m_{\left(1+\varepsilon_{1}\right)}}(\xi)} e^{-i\left(1+\varepsilon_{2}\right) n \xi}: \varepsilon_{1} \geq 0,1 \leq m_{\left(1+\varepsilon_{1}\right)} \leq \frac{\left(1+\varepsilon_{2}\right)_{\left(1+\varepsilon_{1}\right)}}{(1)}\right\}
\end{aligned}
$$

where

$$
\left(1+\varepsilon_{2}\right)=\operatorname{lcm}\left\{\left(1+\varepsilon_{2}\right)_{\left(1+\varepsilon_{1}\right)}: \varepsilon_{1} \geq 0\right\}
$$

and $g_{\left(1+\varepsilon_{1}\right), m_{\left(1+\varepsilon_{1}\right)}}(\xi)=g_{\left(1+\varepsilon_{1}\right)}(\xi) e^{i\left(1+\varepsilon_{2}\right)\left(1+\varepsilon_{1}\right)\left(m_{\left(1+\varepsilon_{1}\right)}-1\right) \xi}$ for $\varepsilon_{1} \geq 0$. Let D be the unitary operator from $L^{2}[0,2 \pi]$ onto $L^{2}(I)^{\left(1+\varepsilon_{2}\right)}$, where $I=\left[0, \frac{2 \pi}{\left(1+\varepsilon_{2}\right)}\right]$, defined by
$D F=\left[F\left(\xi+(k-1) \frac{2 \pi}{\left(1+\varepsilon_{2}\right)}\right)\right]_{k=1}^{\left(1+\varepsilon_{2}\right)}, F(\xi) \in L^{2}[0,2 \pi]$. We also let
$G(\xi)=\left[D g_{1,1}(\xi), \ldots, D g_{1, \frac{\left(1+\varepsilon_{2}\right)}{\left(1+\varepsilon_{2}\right)}}(\xi), \ldots, D g_{N, 1}(\xi), \ldots, D g_{N, \frac{\left(1+\varepsilon_{2}\right)}{\left(1+\varepsilon_{2}\right)_{N}}}(\xi)\right]^{T}$
be a $\left(\sum_{\varepsilon_{1}=0}^{N} \frac{\left(1+\varepsilon_{2}\right)}{\left(1+\varepsilon_{2}\right)_{\left(1+\varepsilon_{1}\right)}}\right) \times\left(1+\varepsilon_{2}\right)$ matrix on I and $\lambda_{m}(\xi), \lambda_{M}(\xi)$
be the smallest and the largest eigenvalues of the positive semi-definite $\left(1+\varepsilon_{2}\right) \times\left(1+\varepsilon_{2}\right)$ matrix $G(\xi)$ * $G(\xi)$, respectively.
Lemma 3.2: Let $F(\xi) \in L^{1}(\mathbb{R})$ so that $f(t)=\mathcal{F}^{-1}[F](t) \in C(\mathbb{R})$ and $0 \leq \sigma<1$. Then

$$
\begin{align*}
& \sum_{n \in \mathbb{Z}} e^{i \sigma(\xi+2 n \pi)} F(\xi+2 n \pi) \text { converges absolutely in } L^{1}[0,2 \pi] \text { and } \\
& \sum_{n \in \mathbb{Z}} e^{i \sigma(\xi+2 n \pi)} F(\xi+2 n \pi) \sim \frac{1}{\sqrt{2 \pi}} Z_{f}(\sigma, \xi) \\
& \quad=\frac{1}{\sqrt{2 \pi}} \sum_{n \in \mathbb{Z}} f(\sigma+n) e^{-i n \xi} \tag{14}
\end{align*}
$$

which means that $\frac{1}{\sqrt{2 \pi}} Z_{f}(\sigma, \xi)$ is the Fourier series expansion of

$$
\sum_{n \in \mathbb{Z}} e^{i \sigma(\xi+2 n \pi)} F(\xi+2 n \pi) . \text { If moreover } \sum_{n \in Z} e^{\mathrm{i} \sigma(\xi+2 \mathrm{n} \pi)} F(\xi+2 \mathrm{n} \pi)
$$

converges in $L^{2}[0,2 \pi]$ or equivalently $\{f(\sigma+n)\}_{n \in \mathbb{Z}} \in l^{2}$, then

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} e^{i \sigma(\xi+2 n \pi)} F(\xi+2 n \pi)=\frac{1}{\sqrt{2 \pi}} Z_{f}(\sigma, \xi) \text { in } L^{2}[0,2 \pi] \tag{15}
\end{equation*}
$$

Proof: Assume that $(\xi) \in L^{1}(\mathbb{R})$. Then

$$
\begin{aligned}
\sum_{n \in \mathbb{Z}}\left\|e^{i \sigma(\xi+2 n \pi)} F(\xi+2 n \pi)\right\|_{L^{1}[0,2 \pi]} & =\sum_{n \in \mathbb{Z}} \int_{0}^{2 \pi}|F(\xi+2 n \pi)| d \xi \\
& =\sum_{n \in \mathbb{Z}} \int_{2 n \pi}^{2(n+1) \pi}|F(\xi)| d \xi=\int_{-\infty}^{+\infty}|F(\xi)| d \xi
\end{aligned}
$$

so that

$$
\sum_{n \in \mathbb{Z}} e^{i \sigma(\xi+2 n \pi)} F(\xi+2 n \pi) \text { converges absolutely in } L^{1}[0,2 \pi]
$$

Hence

$$
\begin{aligned}
& \sum_{n \in \mathbb{Z}} e^{i \sigma(\xi+2 n \pi)} F(\xi+2 n \pi) \\
& \sim \frac{1}{2 \pi} \sum_{k \in \mathbb{Z}}\left\langle\sum_{n \in \mathbb{Z}} e^{i \sigma(\xi+2 n \pi)} F(\xi+2 n \pi), e^{-i k \xi}\right\rangle_{L^{2}[0,2 \pi]} e^{-i k \xi}
\end{aligned}
$$

where

$$
\begin{aligned}
\left\langle\sum_{n \in \mathbb{Z}} e^{i \sigma(\xi+2 n \pi)} F(\xi+\right. & \left.2 n \pi), e^{-i k \xi}\right\rangle_{L^{2}[0,2 \pi]} \\
& =\int_{0}^{2 \pi} \sum_{n \in \mathbb{Z}} e^{i \sigma(\xi+2 n \pi)} F(\xi+2 n \pi) e^{i k \xi} d \xi \\
& =\sum_{n \in \mathbb{Z}}^{2 \pi} \int_{0}^{i \sigma(\xi+2 n \pi)} F(\xi+2 n \pi) e^{i k \xi} d \xi \\
& =\int_{-\infty}^{+\infty} F(\xi) e^{i(\sigma+k) \xi} d \xi=\sqrt{2 \pi} f(\sigma+k)
\end{aligned}
$$

by the Lebesgue dominated convergence theorem. Hence (14) holds. Now assume that $F(\xi) \in L^{1}(\mathbb{R})$ and $\sum_{n \in \mathbb{Z}} e^{i \sigma(\xi+2 n \pi)} F(\xi+2 n \pi)$ converges in $L^{2}[0,2 \pi]$. Then (15) becomes
an orthonormal basis expansion of $\sum_{n \in \mathbb{Z}} e^{i \sigma(\xi+2 n \pi)} F(\xi+2 n \pi)$ in $L^{2}[0,2 \pi]$
so that (15) holds.
Corollary 3.3: (see [3]). If $F(\xi)$ is measurable on \mathbb{R} and
$\sum_{n \in \mathbb{Z}} F(\xi+2 n \pi)$ converges absolutely in $L^{2}[0,2 \pi]$, then

$$
\sum_{n \in \mathbb{Z}} F(\xi+2 n \pi)=\frac{1}{\sqrt{2 \pi}} Z_{f}(0, \xi) \text { where } f(t)=\mathcal{F}^{-1}[F](t)
$$

Proof : Assume that $\sum_{n \in \mathbb{Z}}^{n \in \mathbb{Z}} F(\xi+2 n \pi)$ converges absolutely in $L^{2}[0,2 \pi]$. Then $\sum_{n \in \mathbb{Z}} F(\xi+2 n \pi)$ converges absolutely also in $L^{1}[0,2 \pi]$ so that $F(\xi) \in L^{1}[0,2 \pi]$ and $\sum_{n \in \mathbb{Z}} F(\xi+2 n \pi)$ converges in $L^{2}[0,2 \pi]$. Hence the conclusion follows from Lemma 3.1 for $\sigma=0$.
Example 3.4: (see [1],[19] and [15]). Let $\sum_{d=1}^{m} \varphi_{0}\left(t_{d}\right)=\sum_{d=1}^{m} \chi_{[0,1)}\left(t_{d}\right)$ and

$$
\sum_{d=1}^{m} \varphi_{n}\left(t_{d}\right)=\sum_{d=1}^{m} \varphi_{n-1}\left(t_{d}\right) * \varphi_{0}\left(t_{d}\right)=\int_{0}^{1} \sum_{d=1}^{m} \varphi_{n-1}\left(t_{d}-s\right) d s, n \geq 1, \sum_{d=1}^{m}\left(\varphi_{n}\left(t_{d}\right)=\sum_{d=1}^{m} B_{n+1}\left(t_{d}\right)\right)
$$

be the cardinal B-spline of degree n. Then
$\widehat{\varphi_{n}}(\xi)=\frac{1}{\sqrt{2 \pi}}\left(\frac{1-e^{-i \xi}}{i \xi}\right)^{n+1}$ and $|\hat{\varphi} n(\xi)|=\frac{1}{\sqrt{2 \pi}}\left|\operatorname{sinc} \frac{\xi}{2 \pi}\right|^{n+1}, n \geq 0$.
It is known in [5] that $\sum_{d=1}^{m} \varphi_{0}\left(t_{d}\right)$ are an orthonormals generators and $\sum_{d=1}^{m}\left(\varphi_{n}\left(t_{d}\right)\right.$ for $n \geq 1$ is a continuous Riesz generator. Moreover since $\sum_{d=1}^{m}\left(\varphi_{n}\left(t_{d}\right)\right.$ has compact support,

$$
\sup _{\mathbb{R}} \sum_{d=1}^{m} \Phi_{n}\left(t_{d}\right)=\sup _{\mathbb{R}} \sum_{k \in \mathbb{Z}} \sum_{d=1}^{m}\left|\varphi_{n}\left(t_{d}-k\right)\right|^{2}<\infty \text { so that } \sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right) \quad \text { is an RKHS for }
$$

$n \geq 0$. Since $\varphi_{0}(\sigma+n)=\delta_{0, n}$ for $n \in \mathbb{Z}$ and $0 \leq \sigma<1, Z_{\varphi_{0}}(\sigma, \xi)=1$
so that by Theorem 3.3 in [1], we have an orthonormal expansion

$$
\sum_{d=1}^{m} f\left(t_{d}\right)=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} f(\sigma+n) \varphi_{0}\left(t_{d}-n\right), f \in \sum_{d=1}^{m} V\left(\varphi_{0}\left(t_{d}\right)\right)
$$

which converges in $L^{2}(\mathbb{R})$ and uniformly on \mathbb{R} since

$$
\sum_{d=1}^{m} \Phi_{0}\left(t_{d}\right)=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m}\left|\varphi_{0}\left(t_{d}-n\right)\right|^{2}=1 \quad \text { on } \mathbb{R}
$$

For $\sum_{d=1}^{m} \varphi_{1}\left(t_{d}\right)=t \chi_{[0,1)}\left(t_{d}\right)+(2-t) \sum_{d=1}^{m} \chi_{[1,2)}\left(t_{d}\right)$, and $0 \leq \sigma<1, \varphi_{1}(t)=\sigma$, $\varphi_{1}(\sigma+1)=1-\sigma, \varphi_{1}(\sigma+n)=0$ for $n \neq 0,1 \quad$ so that $\quad Z_{\varphi_{1}}(\sigma, \xi)=\sigma+(1-\sigma) e^{-i \xi}$. Then $\left\|Z_{\varphi_{1}}(\sigma, \xi)\right\|_{0}=|2 \sigma-1|$ and $\left\|Z_{\varphi_{1}}(\sigma, \xi)\right\|_{\infty}=1$. Hence by Theorem 3.3 in [1], for any σ with
$0 \leq \sigma<1$ and $\sigma \neq \frac{1}{2}$,
we have a Riesz basis expansion

$$
\sum_{d=1}^{m} f\left(t_{d}\right)=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} f(\sigma+n) S\left(t_{d}-n\right), \quad f \in \sum_{d=1}^{m} V\left(\varphi_{1}\left(t_{d}\right)\right)
$$

which converges in $L^{2}(\mathbb{R})$ and uniformly on \mathbb{R}. For $\sum_{d=1}^{m} \varphi_{2}\left(t_{d}\right)=\frac{1}{2} t^{2} \sum_{d=1}^{m} \chi_{[1,2)}\left(t_{d}\right)+\frac{1}{t^{2} 2}(6 t-2-3) \sum_{d=1}^{m} \chi_{[1,2)}\left(t_{d}\right)+\frac{1}{2}(3-t)^{2} \sum_{d=1}^{m} \chi_{[1,2)}\left(t_{d}\right), \quad$ it \quad is known (see [1] and [11]) that $\left\|Z_{\varphi_{2}}(0, \xi)\right\|_{0}=0$ but $\frac{1}{2} \leq\left\|Z_{\varphi_{2}}\left(\frac{1}{2}, \xi\right)\right\|_{0}<\left\|Z_{\varphi_{2}}\left(\frac{1}{2}, \xi\right)\right\|_{\infty} \leq 1$ so that there is a Riesz basis expansion

$$
\begin{equation*}
\sum_{d=1}^{m} f\left(t_{d}\right)=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} f\left(\frac{1}{2}+n\right) S\left(t_{d}-n\right), f \in \sum_{d=1}^{m} V\left(\varphi_{2}\left(t_{d}\right)\right) \tag{16}
\end{equation*}
$$

which converges in $L^{2}(\mathbb{R})$ and uniformly on \mathbb{R}. Since the optimal upper Riesz bound of the Riesz sequence $\left\{\varphi_{2}\left(t_{d}-k\right): k, d \in \mathbb{Z}\right\}$ is 1 (see [5]), we have for the sampling series (16)

$$
\sum_{d=1}^{m}\left\|E_{n}(f)\left(t_{d}\right)\right\|_{L^{2}(\mathbb{R})}^{2} \leq 4 \sum_{|k|>n}\left|f\left(\frac{1}{2}+k\right)\right|^{2}, f \in \sum_{d=1}^{m} V\left(\varphi_{2}\left(t_{d}\right)\right)
$$

On the other hand, we have

$$
\begin{aligned}
H \varphi_{2}(\xi)=\sum_{k \in \mathbb{Z}}\left|\hat{\varphi}_{2}(\xi+2 k \pi)\right| & =\frac{1}{\sqrt{2 \pi}} \sum_{k \in \mathbb{Z}}\left|\operatorname{sinc}\left(\frac{\xi}{2 \pi}+k\right)\right|^{3} \\
& \leq \frac{1}{\sqrt{2 \pi}} \sum_{k \in \mathbb{Z}}\left|\operatorname{sinc}\left(\frac{\xi}{2 \pi}+k\right)\right|^{2}=\frac{1}{\sqrt{2 \pi}}
\end{aligned}
$$

Example 3.5: (See [1]) Let $\sum_{d=1}^{m} \varphi\left(t_{d}\right)=\prod_{d=1}^{m} e^{\frac{-t_{d}^{2}}{2}}$ be the Gauss kernel. Then $\hat{\varphi}(\xi)=e^{\frac{-\xi^{2}}{2}}$ and $0<\left\|G_{\varphi}(\xi)\right\|_{0}<\left\|G_{\varphi}(\xi)\right\|_{\infty}<\infty$ so that $\sum_{d=1}^{m} \varphi\left(t_{d}\right)$ is a continuous Riesz generator satisfying

$$
\sup _{\mathbb{R}} \sum_{d=1}^{m} \Phi\left(t_{d}\right)=\sup _{\mathbb{R}} \sum_{k \in \mathbb{Z}} \sum_{d=1}^{m}\left|\varphi\left(t_{d}-k\right)\right|^{2}<\infty . \text { Since } \hat{\varphi}(\xi) \in L^{1}(\mathbb{R})
$$

and $\{\varphi(n)\}_{n \in \mathbb{Z}} \in l^{1}$, we have by Lemma 3.1

$$
Z_{\varphi}(0, \xi)=\sqrt{2 \pi} \sum_{n \in \mathbb{Z}} e^{\frac{-1}{2}(\xi+2 \mathrm{n} \pi)^{2}} \text { so that } 0<\left\|Z_{\varphi}(\xi)\right\|_{0}<\left\|Z_{\varphi}(\xi)\right\|_{\infty}<\infty
$$

Hence by Theorem 3.3 in [1] , $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$ is an RKHS and there is a Riesz basis expansion

$$
\sum_{d=1}^{m} f\left(t_{d}\right)=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} f(n) S\left(t_{d}-n\right), f \in \sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)
$$

which converges in $L^{2}(\mathbb{R})$ and uniformly on \mathbb{R}.
Corollary 3.6. (Cf. Theorem 3.2 in [19].) Let $N=1$. Then there is a series of Riesz bases $\left\{\sum_{d=1}^{m} s_{n}\left(t_{d}\right): n \in\right.$ $\mathbb{Z}\}$ of $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$ such that

$$
\begin{equation*}
\sum_{d=1}^{m} f\left(t_{d}\right)=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} L[f]\left(\sigma+\left(1+\varepsilon_{2}\right) n\right) s_{n}\left(t_{d}\right), \sum_{d=1}^{m} f\left(t_{d}\right) \in \sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right) \tag{17}
\end{equation*}
$$

if and only if $\varepsilon_{2}=0$ and

$$
\begin{equation*}
0<\left\|Z_{\psi}(\sigma, \xi)\right\|_{0} \leq\left\|Z_{\psi}(\sigma, \xi)\right\|_{\infty} \tag{18}
\end{equation*}
$$

In this case, we also have
(i) $\sum_{d=1}^{m} s_{n}\left(t_{d}\right)=\sum_{d=1}^{m} s\left(t_{d}-n\right), n \in \mathbb{Z}$,
(ii) $\hat{s}(\xi)=\frac{\widehat{\varphi}(\xi)}{Z_{\psi}(\sigma, \xi)}$,
(iii) $L[s](\sigma+n)=\delta_{n, 0}, n \in \mathbb{Z}$.

Proof .Note that for $\varepsilon_{2}=0, G(\xi)=\frac{1}{2 \pi} Z_{\psi}(\sigma, \xi)$ and $\lambda_{m}(\xi)=\lambda_{M}(\xi)=\left(\frac{1}{2 \pi}\right)^{2}\left|Z_{\psi}(\sigma, \xi)\right|^{2}$ so that $0<\alpha_{G} \leq \beta_{G}<\infty$ if and only if (18) holds. Therefore, everything except (19) follows from Theorem 3.4 in [1]. Finally applying (17) to $\sum_{d=1}^{m} \varphi\left(t_{d}\right)$ gives $\sum_{d=1}^{m} \varphi\left(t_{d}\right)=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} \psi(\sigma+n) s\left(t_{d}-n\right)$
from which we have (19) by taking the Fourier transform. When $\sum_{d=1}^{m} l\left(t_{d}\right)=\sum_{d=1}^{m} \delta\left(t_{d}\right)$ so that $L[\cdot]$ is the identity operator, Corollary 3.6 reduces to a series of regular shifted sampling on $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right.$) (see Theorem 3.3 in [17]).
Corollary 3. 7. Suppose $Z_{\psi}\left(2-\varepsilon_{0}, \xi\right) \in L^{\infty}[0,2 \pi], 0 \leq \varepsilon_{1} \leq q-1$, then the following are all equivalent.
(i) There is a series of frames $\left\{\sum_{d=1}^{m} s_{n}\left(t_{d}\right): n \in \mathbb{Z}\right\}$ of $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$ for which

$$
\sum_{d=1}^{m} f\left(t_{d}\right)=\sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} L[f]\left(2-\varepsilon_{0}\right) s_{n}\left(t_{d}\right), \sum_{d=1}^{m} f\left(t_{d}\right) \in \sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)
$$

(ii) There is a series of frames $\left\{\sum_{d=1}^{m} s_{\left(1+\varepsilon_{1}\right)}\left(t_{d}-n\right): \varepsilon_{1}>0, n \in \mathbb{Z}\right\}$ of $\sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)$ for which

$$
\sum_{d=1}^{m} f\left(t_{d}\right)=\sum_{n \in \mathbb{Z}} \sum_{\varepsilon_{1} \geq 0} \sum_{d=1}^{m} L[f]\left(n-\varepsilon_{0}\right) s_{\left(1+\varepsilon_{1}\right)}\left(t_{d}-n\right), \sum_{d=1}^{m} f\left(t_{d}\right) \in \sum_{d=1}^{m} V\left(\varphi\left(t_{d}\right)\right)
$$

(iii) $\left\|\sum_{\varepsilon_{1} \geq 0}\left|Z_{\psi}\left(2-\varepsilon_{0}, \xi\right)\right|\right\|_{0}>0$.

Proof: Since
$\left\{L[f]\left(2-\varepsilon_{0}\right)\right\}=\left\{L[f]\left(n-\varepsilon_{0}\right): n \in \mathbb{Z}\right\}$. Now we have $\left\{L_{\left(1+\varepsilon_{1}\right)}[\cdot]: \varepsilon_{1}>0\right\}$ with
$L_{\left(1+\varepsilon_{1}\right)}[\cdot]=L[\cdot], \varepsilon_{1}>0$. Then $g_{\left(1+\varepsilon_{1}\right)}(\xi)=\frac{1}{2 \pi} Z_{\psi}\left(2-\varepsilon_{0}, \xi\right), \varepsilon_{1}>0$ and
$G(\xi)^{*} G(\xi)=\frac{1}{(2 \pi)^{2}} \sum_{\varepsilon_{1} \geq 0}\left|Z_{\psi}\left(2-\varepsilon_{0}, \xi\right)\right|^{2}$. There for $\alpha_{G}>0$ if and only if

$$
\left\|\sum_{\varepsilon_{1} \geq 0}\left|Z_{\psi}\left(2-\varepsilon_{0}, \xi\right)\right|\right\|_{0}>0 .
$$

References

[1]. Adam zakria , Ahmed Abdallatif , Yousif Abdeltuif [17] sampling expansion in a series of shift invariant spaces ISSN 2321 3361 © 2016 IJESC
[2]. O. Christensen, An Introduction to Frames and Riesz Bases (Birkhauser, 2003).
[3]. J. R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foundations (Oxford University Press, 1996).
[4]. G. G.Walter, A sampling theorem for wavelet subspaces, IEEE Trans. Inform. Theory 38 (1992) 881-884.
[5]. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2001.
[6]. I. Djokovic, P.P. Vaidyanathan, Generalized sampling theorems in multiresolution subspaces, IEEE
[7]. A.G. Garcia, M.A. Hern Undez-Medina, G. Pérez-Villalón, Oversampling and reconstruction functions with compact support, J. Comput. Appl. Math. 227(2009) 245-253.
[8]. A.G. Garcia, G. Pérez-Villalón, Dual frames in $L^{\wedge} 2(0,1)$ connected with generalized sampling in shift-invariant spaces, Appl. Comput. Harmon. Anal. 20(2006) 422-433.
[9]. A.G. Garcia, G. Pérez-Villalón, A. Portal, Riesz bases in $L^{\wedge} 2(0,1)$ related to sampling in shift-invariant spaces, J. Math. Anal. Appl. 308 (2005) 703-713.
[10]. Y.M. Hong, J.M. Kim, K.H. Kwon, E.H. Lee, Channeled sampling in shift invariant spaces, Int. J. Wavelets Multiresolut. Inf. Process. 5 (2007) 753-767.
[11]. A.J.E.M. Janssen, The Zak transform and sampling theorems for wavelet subspaces, IEEE Trans. Signal Process. 41 (1993) 33603364.
[12]. S. Kang , J.M. Kim, K.H. Kwon Asymmetric multi-channel sampling in shift invariant spaces J. Math. Anal. Appl. 367 (2010) 2028
[13]. X. Zhou and W. Sun, On the sampling theorem for wavelet subspaces, J. Fourier Anal. Appl. 5 (1999) 347-354.
[14]. A. Papoulis, Generalized sampling expansion, IEEE Trans. Circuits Syst. 24 (1977) 652-654.
[15]. L.J. Fogel, A note on the sampling theorem, IRE Trans. Inform.Theory IT-1(1995) 47-48.
[16]. C.E. Shannon, Communication in the presence of noise, Proc. Inst. Radio Eng. 37 (1949) 10-21.
[17]. J.M. Kim, K.H. Kwon, Sampling expansion in shift invariant spaces, Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008) 223-248.
[18]. Y. M. Hong, J. M. Kim, K. H. Kwon and E. H. Lee, Channeled sampling in shift invariant spaces, Int. J. Wavelets Multiresolut. Inf. Process. 5 (2007) 753-767.

