Sampling Expansion with Symmetric Multi-Channel Sampling in a series of Shift-Invariant Spaces

Adam zakria¹, Yousif Abdeltuif², Ahmed Abdallatif³

¹University of Kordofan, Faculty of Science, Department of Mathematics, Sudan ²Dalanj University, College of Education, Department of Mathematics, Sudan ³University of Zalingei, Faculty of Education, Department of Mathematics, Sudan

Abstract: We find necessary and sufficient conditions under which a regular shifted sampling expansion hold on $\sum_{d=1}^{m} V(\varphi(t_d))$ and obtain truncation error estimates of the sampling series. We also find a sufficient condition for a function in $L^2(\mathbb{R})$ that belongs to a sampling subspace of $L^2(\mathbb{R})$. We use Fourier duality between $\sum_{d=1}^{m} V(\varphi(t_d))$ and $L^2[0,2\pi]$ to find conditions under which there is a stable asymmetric multi-channel sampling formula on $\sum_{d=1}^{m} V(\varphi(t_d))$.

Keywords: Shift invariant space, sampling expansion, Multi-channel sampling, Frame Riesz basis.

Introduction

Let $\sum_{d=1}^{m} \varphi(t_d)$ in $L^2(\mathbb{R})$, let $\sum_{d=1}^{m} V(\varphi(t_d)) = \operatorname{span}\{\sum_{d=1}^{m} \varphi(t_d - n) : n \in \mathbb{Z}\}$ be the closed subspace of $L^2(\mathbb{R})$ spanned by integer translates $\{\sum_{d=1}^{m} \varphi(t_d - n) : n \in \mathbb{Z}\}$ of $\sum_{d=1}^{m} \varphi(t_d)$. We call $\sum_{d=1}^{m} V(\varphi(t_d))$ the series of shift invariant space generated by $\sum_{d=1}^{m} \varphi(t_d)$ and $\sum_{d=1}^{m} \varphi(t_d)$ a frame or a Riesz or an orthonormal generator if $\{\sum_{d=1}^{m} \varphi(t_d - n) : n \in \mathbb{Z}\}$ is a frame or a Riesz basis or an orthonormal basis of $\sum_{d=1}^{m} V(\varphi(t_d))$. The multi-channel sampling method goes back to the works of Shannon [16] and Fogel [15], where reconstruction of a band-limited signal from samples of the signal and its derivatives was found. Generalized sampling expansion using arbitrary multi-channel sampling on the Paley–Wiener space was introduced first by Papoulis [14].

Adam zakria , Ahmed Abdallatif 'Yousif Abdeltuif [1] and S. Kang , J.M. Kim, K.H. Kwon [12] considered sampling expansion in a series of shift invariant spaces and symmetric multi-channel sampling in shift-invariant spaces space $V(\varphi)$ with a suitable Riesz generator $\varphi(t)$, where each channeled signal is sampled with a uniform but distinct rate. Using Fourier duality between $\sum_{d=1}^{m} V(\varphi(t_d))$ and $L^2[0,2\pi]$ [7,8,9,12], we derive under the same considerations a stable series of shifted asymmetric multi-channel sampling formula in $\sum_{d=1}^{m} V(\varphi(t_d))$. For example, Walter considered a real-valued continuous orthonormal generator satisfying $\sum_{d=1}^{m} \varphi(t_d) = O((1 + \sum_{d=1}^{m} |t_d|)^{-s})$ with s > 1, Chen, Itoh, and Shiki considered a continuous Riesz generator satisfying $\sum_{d=1}^{m} \varphi(t_d) = O((1 + \sum_{d=1}^{m} |t_d|)^{-s})$ with s > 1, Chen, Itoh, and Zhou and Sun considered a continuous frame generator $\sum_{d=1}^{m} \varphi(t_d)$ satisfying $sup_{\mathbb{R}} \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} |\varphi(t_d - n)|^2 < \infty$. We find necessary and sufficient conditions under which an irregular sampling expansion and a regular shifted sampling expansion hold on $\sum_{d=1}^{m} V(\varphi(t_d))$. We give an illustrative examples (see[6, 12]).

II. Preliminaries

We consider the notations and formulas in [6, 12]. Take { $\varphi n : n \in \mathbb{Z}$ } be a sequence of elements of a separable Hilbert space H with the inner product (,) and $V = \overline{span} \{ \varphi n : n \in \mathbb{Z} \}$ the closed subspace of H spanned by { $\varphi_n : n \in \mathbb{Z}$ }. Then { $\varphi_n : n \in \mathbb{Z}$ } is called

- a Bessel sequence (with a Bessel bound B) if there is a constant $A + \varepsilon_0 > 0$ such that $\sum_{n \in \mathbb{Z}} |\langle \varphi, \varphi_n \rangle|^2 \le (A + \varepsilon_0) ||\varphi||^2, \varphi \in H$ (or equivalently $\varphi \in V$),
- a frame sequence (with frame bounds $(A, A + \varepsilon_0)$) if there are constants $A, A + \varepsilon_0 > 0$ such that $A||\varphi||^2 \le \sum_{n \in \mathbb{Z}} |\langle \varphi, \varphi_n \rangle|^2 \le (A + \varepsilon_0)||\varphi||^2$, $\varphi \in V$, a Riesz sequence (with Riesz bounds $(A, A + \varepsilon_0)$) if there are constants $A + \varepsilon_0, A > 0$

$$A\|c\|^{2} \leq \left\|\sum_{n \in \mathbb{Z}} c(n) \varphi_{n}\right\|^{2} \leq (A + \varepsilon_{0})\|c\|^{2}, c = \{c(n)\}_{n \in \mathbb{Z}} \in l^{2}$$

where $||c||^2 = \sum_{n \in \mathbb{Z}} |c(n)|^2$, an orthonormal sequence if $(\varphi_m, \varphi_n) = \delta_{m,n}$ for all m and n in \mathbb{Z} .

If $\{\varphi_n : n \in \mathbb{Z}\}$ is a frame sequence or a Riesz sequence or an orthonormal sequence in H, then we say that $\{\varphi_n : n \in \mathbb{Z}\}$ is a frame or a Riesz basis or an orthonormal basis of the Hilbert subspace V in H. On $L^2(\mathbb{R}) \cap$ $L^1(\mathbb{R})$, we take the Fourier transform to be normalized as

$$\mathcal{F}[\varphi](\xi) = \hat{\varphi}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \varphi(t) e^{-it\xi} dt, \varphi(t) \in L^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})$$

so that $\mathcal{F}[\cdot]$ becomes a unitary operator from $L^2(\mathbb{R})$ onto $L^2(\mathbb{R})$. For any $\sum_{d=1}^{m} \varphi(t_d) \in L^2(\mathbb{R})$, let $\sum_{d=1}^{m} \Phi(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} |\varphi(t_d - n)|^2$, $G_{\varphi}(\xi) = \sum_{n \in \mathbb{Z}} |\varphi(\xi + 2n\pi)|^2$. Then $\Phi(t) = \Phi(t + 1) \in L^1[0, 1]$, $G_{\varphi}(\xi) = G_{\varphi}(\xi + 2\pi) \in L^{1}[0, 2\pi]$ and

 $||\sum_{d=1}^{m} \varphi(t_d)||^2_{L^2(\mathbb{R})} = ||\sum_{d=1}^{m} \Phi(t_d)||_{L^1[0,1]} = ||G_{\varphi}(\xi)||_{L^1[0,1]}.$ The normalized Fourier transform is

$$\mathcal{F}[\varphi](\xi) = \hat{\varphi}(\xi) = \int_{-\infty}^{\infty} \sum_{d=1}^{m} \varphi(t_d) \prod_{d=1}^{m} e^{-it_d\xi} dt_d, \sum_{d=1}^{m} \varphi(t_d) \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$$

so that $\frac{1}{\sqrt{2\pi}} \mathcal{F}[\cdot]$ extends to a unitary operator from $L^2(\mathbb{R})$ onto $L^2(\mathbb{R})$. For each $\sum_{d=1}^m \varphi(t_d) \in L^2(\mathbb{R})$, let

$$\sum_{d=1}^m C_{\varphi}(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^m |\varphi(t_d + n)|^2 \text{ and } G_{\varphi}(\xi) = \sum_{n \in \mathbb{Z}} |\widehat{\varphi}(\xi + 2n\pi)|^2.$$

Hence

$$\sum_{d=1}^{m} C_{\varphi}(t_d) = \sum_{d=1}^{m} C_{\varphi}(t_d+1) \in L^1[0,1], G_{\varphi}(\xi) = G_{\varphi}(\xi+2\pi) \in L^2[0,2\pi]$$

and

$$\left\|\sum_{d=1}^{m} \varphi(t_d)\right\|_{L^{2}(\mathbb{R})}^{2} = \left\|\sum_{d=1}^{m} C_{\varphi}(t_d)\right\|_{L^{1}[0,1]} = \frac{1}{2\pi} \left\|G_{\varphi}(\xi)\right\|_{L^{1}[0,2\pi]}^{2}$$

In particular,
$$\sum_{d=1}^{m} C_{\varphi}(t_d) < \infty$$
 for a.e. $\sum_{d=1}^{m} t_d \in \mathbb{R}$. We also let

$$\sum_{d=1}^{m} Z_{\varphi}(t_d,\xi) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} \varphi(t_d + n) e^{-in\xi}$$

be the Zak transform [11] of $\sum_{d=1}^{m} \tilde{\varphi}(t_d)$ in $L^2(\mathbb{R})$. Then $\sum_{d=1}^{m} Z_{\varphi}(t_d, \xi)$ is well defined a.e. on \mathbb{R}^2 and is quasiperiodic in the sense that

 $\sum_{d=1}^{m} Z_{\varphi}(t_{d}+1,\xi) = e^{i\xi} \sum_{d=1}^{m} Z_{\varphi}(t_{d},\xi) \text{ and } \sum_{d=1}^{m} Z_{\varphi}(t_{d},\xi+2\pi) = \sum_{d=1}^{m} Z_{\varphi}(t_{d},\xi).$

A Hilbert space H consisting of complex valued functions on a set E is called a reproducing kernel Hilbert space (RKHS in short) if there is a series of a functions $\sum_{d=1}^{m} q(s, t_d)$ on $E \times E$, called the reproducing kernel of H, satisfying

(i) $\sum_{d=1}^{m} q(., t_d) \in H$ for each $\sum_{d=1}^{m} t_d \in E$,

(ii) $\langle f(s), \sum_{d=1}^{m} q(s, t_d) \rangle = \sum_{d=1}^{m} f(t_d), f \in H.$ In an RKHS *H*, any norm converging sequence also converges uniformly on any subset of *E*, on which $\|\sum_{d=1}^{m} q(., t_d)\|_{H}^{2} = \sum_{d=1}^{m} q(t_d, t_d)$ is bounded.

A sequence $\{\varphi_n : n \in \mathbb{Z}\}$ of vectors in a separable Hilbert space *H* is

(i) a Bessel sequence with a bound
$$A + \varepsilon_0 : \varepsilon_0 > 0$$
 if

$$\sum_{n \in \mathbb{Z}} |\langle \varphi, \varphi_n \rangle|^2 \leq (A + \varepsilon_0) ||\varphi||^2, \varphi \in H, \varepsilon_0 > 0,$$

(ii) a frame of *H* with bounds $A + \varepsilon_0 \ge A : \varepsilon_0 > 0$ if

$$A\|\varphi\|^{2} \leq \sum_{n \in \mathbb{Z}} |\langle \varphi, \varphi_{n} \rangle|^{2} \leq (A + \varepsilon_{0}) \|\varphi\|^{2}, \varphi \in H, \varepsilon_{0} > 0,$$

(iii) a Riesz basis of H with bounds $A + \varepsilon_0 \ge A : \varepsilon_0 > 0$ if it is complete in H and

$$A \|\boldsymbol{c}\|^{2} \leq \left\| \sum_{n \in \mathbb{Z}} c(n) \varphi_{n} \right\|^{2} \leq (A + \varepsilon_{0}) \|\boldsymbol{c}\|^{2}, \boldsymbol{c} = \{c(n)\}_{n \in \mathbb{Z}} \in l^{2}, \varepsilon_{0} > 0,$$
$$= \sum_{n \in \mathbb{Z}} |c(n)|^{2} \quad .$$

where $\|c\|^2 =$

We let $\sum_{d=1}^{m} V(\varphi(t_d))$ be the series of the shift invariant spaces, where $\sum_{d=1}^{m} \varphi(t_d)$ is a series of a Riesz generators, that is, $\{\sum_{d=1}^{m} \varphi(t_d - n) : n \in \mathbb{Z}\}$ is a series of a Riesz bases of $\sum_{d=1}^{m} V(\varphi(t_d))$. Then

$$\sum_{d=1}^{m} V\left(\varphi(t_d)\right) = \left\{\sum_{d=1}^{m} (c * \varphi)(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} c(n)\varphi(t_d - n) : C = \{c(n)\}_{n \in \mathbb{Z}} \in l^2\right\}.$$

It is well known see [5] that $\sum_{d=1}^{m} \varphi(t_d)$ is a series of a Riesz generators if and only if there are constant A such that $A \leq G_{\varphi}(\xi) \leq A + \varepsilon_0$ a.e. on $[0, 2\pi]$. In this case, $\{\sum_{d=1}^{m} \varphi(t_d - n) : n \in \mathbb{Z}\}$ is a series of a Riesz bases of $\sum_{d=1}^{m} V(\varphi(t_d))$ with bound $\varepsilon_0 > 0$. For any $c = \{c(n)\}_{n \in \mathbb{Z}}$ and $d = \{d(n)\}_{n \in \mathbb{Z}}$ in l^2 , the discrete convolution product of c and d is defined by

 $c * d = \{(c * d)(n) = \sum_{n \in \mathbb{Z}} c(k)d(n - k)\}$. Then $\hat{c}^*(\xi) \hat{d}^*(\xi)$ belongs to $L^1[0, 2\pi]$ and its Fourier series is $(c * d)(n)e^{-in\xi}$ so that

$$\int_{0}^{2\pi} \left| \hat{c}^{*} \left(\xi \right) \hat{d}^{*} (\xi) \right|^{2} d\xi = 2 \pi ||c * d||^{2}.$$
(1)

Proposition 2.1: Let $\sum_{d=1}^{m} \varphi(t_d) \in L^2(\mathbb{R})$ and A > 0. Then (a) $\{\sum_{d=1}^{m} \varphi(t_d - n) : n \in \mathbb{Z}\}$ is a Bessel sequence with a Bessel bound $A + \varepsilon_0$ if and only if $2 \pi G_{\varphi}$ $(\xi) \leq A + \varepsilon_0$ a.e. on $[0, 2\pi]$,

(b) {
$$\sum_{d=1}^{m} \varphi(t_d - n)$$
 : $n \in \mathbb{Z}$ } is a frame sequence with frame bounds $(A, A + \varepsilon_0)$ if and only if $A \leq 2 \pi G_{\varphi}$ (ξ) $\leq A + \varepsilon_0 a.e. \text{ on } E_{\varphi}$, (2)

(c) { $\sum_{d=1}^{m} \varphi(t_d - n) : n \in \mathbb{Z}$ } is a Riesz sequence with Riesz bounds

 $(A, A + \varepsilon_0)$ if and only if $A \le 2 \pi G_{\varphi}(\xi) \cdot (A + \varepsilon_0)$ a.e. on $[0, 2 \pi]$,

(d) { $\sum_{d=1}^{m} \varphi(t_d - n) : n \in \mathbb{Z}$ } is an orthonormal sequence if and only if

$$2 \pi G_{\varphi} (\xi) = 1$$
 a.e. on $[0, 2 \pi]$.

Proof: (See [6]) For each $\sum_{d=1}^{m} \varphi(t_d) \in L^2(\mathbb{R})$ and $c = \{c(n)\}_{n \in \mathbb{Z}} \in l^2$, let

 $T(c) = (c * \varphi)(t) = \sum_{k \in \mathbb{Z}} \sum_{d=1}^{m} c(k) \varphi(t_d - k)$ be the semi-discrete convolution product of c and $\sum_{d=1}^{m} \varphi(t_d)$, which may or may not converge in $L^2(\mathbb{R})$. In terms of the operator T, called the pre-frame operator of $\{\sum_{d=1}^{m} \varphi(t_d - n) : n \in \mathbb{Z}\}$, (see [6]): $\{\sum_{d=1}^{m} \varphi(t_d - n) : n \in \mathbb{Z}\}$ a Bessel sequence with a Bessel bound B if and only if T is a bounded linear operator from l^2 into $\sum_{d=1}^{m} V(\varphi(t_d))$ and $||T(c)||^2_{L^2(\mathbb{R})} \leq A + \varepsilon_0 ||c||^2$, $c \in l^2$, $\{\sum_{d=1}^{m} \varphi(t_d - n) : n \in \mathbb{Z}\}$ is a frame sequence with frame bounds $(A, A + \varepsilon_0)$ if and only if T is a bounded linear operator from l^2 onto $\sum_{d=1}^{m} V(\varphi(t_d))$ and

$$A||c||^{2} \leq ||T(c)||^{2}_{L^{2}(\mathbb{R})} \leq (A + \varepsilon_{0})||c||^{2}, c \in N(T)^{\perp},$$
(3)

where $N(T) = Ker T = \{c \in l^2 : T(c) = 0\}$ and $N(T)^{\perp}$ is the orthogonal complement of N(T) in l^2 , $\{\sum_{d=1}^{m} \varphi(t_d - n) : n \in \mathbb{Z}\}$ is a Riesz sequence with Riesz bounds $(A, A + \varepsilon_0)$ if and only if T is an isomorphism from l^2 onto $\sum_{d=1}^{m} V(\varphi(t_d))$ and

 $A||\boldsymbol{c}||^2 \leq ||\boldsymbol{T}(\boldsymbol{c})||^2_{L^2(\mathbb{R})} \leq (A + \varepsilon_0)||\boldsymbol{c}||^2, \boldsymbol{c} \in l^2, \{\sum_{d=1}^m \varphi(t_d - n) : \boldsymbol{n} \in \mathbb{Z}\}$ is an orthonormal sequence if and only if T is a unitary operator from l^2 onto $\sum_{d=1}^m V(\varphi(t_d))$.

Lemma 2.2: Let $\sum_{d=1}^{m} \varphi(t_d) \in L^2(\mathbb{R})$. If $\{\sum_{d=1}^{m} \varphi(t_d - n) : n \in \mathbb{Z}\}$ is a Bessel sequence, then for any $c = \{c(n)\}_{n \in \mathbb{Z}}$ in $l^2, \widehat{c * \varphi}(\xi) = \hat{c}^*(\xi)\hat{\varphi}(\xi)$ (4)

so that

$$\|(c * \varphi)(t)\|_{L^{2}(\mathbb{R})}^{2} = \int_{-\infty}^{\infty} |\hat{c}^{*}(\xi)\hat{\varphi}(\xi)|^{2} d\xi$$
$$= \int_{0}^{2\pi} |\hat{c}^{*}(\xi)|^{2} G_{\varphi}(\xi) d\xi.$$
(5)

Proof: See [2,18]. Let $\sum_{d=1}^{m} \varphi(t_d)$ be a frame or a Riesz generator. Then *T* is an isomorphism from $N(T)^{\perp}$ onto $\sum_{d=1}^{m} V(\varphi(t_d))$ so that

$$\sum_{d=1}^{m} V(\varphi(t_d)) = \left\{ \sum_{d=1}^{m} (c * \varphi)(t_d) : c \in l^2 \right\} = \left\{ \sum_{d=1}^{m} (c * \varphi)(t_d) : c \in N(T)^{\perp} \right\},$$

where $\sum_{d=1}^{m} f(t_d) = \sum_{d=1}^{m} (c * \varphi)(t_d)$ is the L^2 -limit of $\sum_{k \in \mathbb{Z}} \sum_{d=1}^{m} c(k) \varphi(t_d - k)$. Applying (5), we have $N(T) = \{c \in l^2 : \hat{c}^*(\xi) = 0 \text{ a.e. on } E_{\varphi}\}$ so that

$$N(T)^{\perp} = \{ c \in l^2 : \hat{c}^*(\xi) = 0 \ a. e. \ on \ N_{\varphi} \}.$$
(6)

Proposition 2.3: putting $\sum_{d=1}^{m} \varphi(t_d) \in L^2(\mathbb{R})$ be a frame generator and $\sum_{d=1}^{m} f(t_d) = \sum_{d=1}^{m} (c * \varphi)(t_d) \in \sum_{d=1}^{m} V(\varphi(t_d))$ hence $c \in l^2$. Then $c \in N(T)^{\perp}$ if and only if $c(k) = \sum_{d=1}^{m} V(\varphi(t_d))$

 $\sum_{d=1}^{m} f(t_d) = \sum_{d=1}^{m} (c * \varphi)(t_d) \in \sum_{d=1}^{m} v(\varphi(t_d)) \text{ hence } c \in t^-. \text{ If ence } c \in N(T)^- \text{ if and only if } c(k) = \langle f(t_d), \psi(t_d - k) \rangle_{L^2(\mathbb{R})}, k \in \mathbb{Z}, 1 \le d \le m \text{ , hence } \{\sum_{d=1}^{m} \psi(t_d - k) : k \in \mathbb{Z}\} \text{ is the canonical dual frame of } \{\sum_{d=1}^{m} \varphi(t_d - k) : k \in \mathbb{Z}\}.$

Proof: Applying (4) for any $\sum_{d=1}^{m} f(t_d) = (c * \varphi)(t) \in \sum_{d=1}^{m} V(\varphi(t_d))$,

$$\begin{split} \sum_{d=1}^{2} \langle f(t_d), \psi(t_d - k) \rangle_{L^2(\mathbb{R})} &= \langle \hat{c}^*(\xi) \hat{\varphi}(\xi), e^{-ik \,\xi} \, \hat{\psi}(\xi) \rangle_{L^2(\mathbb{R})} \\ &= \langle \hat{c}^*(\xi) \, \hat{\varphi}(\xi), \frac{\hat{\varphi}(\xi)}{2\pi G_{\varphi}(\xi)} \chi supp \, G_{\varphi}(\xi) e^{-ik \,\xi} \, \rangle_{L^2(\mathbb{R})} \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \hat{c}^*(\xi) \, \chi_{E_{\varphi}}(\xi) e^{ik \,\xi} \, d \, \xi, k \in \mathbb{Z} \end{split}$$

since $\hat{\psi}(\xi) = \frac{\hat{\varphi}(\xi)}{2\pi G_{\varphi}(\xi)} \chi supp G_{\varphi}(\xi)$ (see [13]), where $\chi_E(\xi)$ is the characteristic function of a subset *E* of \mathbb{R} . Hence

$$\sum_{d=1}^{m} \sum_{k \in \mathbb{Z}} \langle f(t_d), \psi(t_d - k) \rangle_{L^2(\mathbb{R})} e^{-ik\xi} = \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \left(\int_{0}^{2\pi} \hat{c}^* \left(\xi \right) \chi_{E_{\varphi}} \left(\xi \right) e^{ik\xi} d\xi \right)$$
$$= \hat{c}^*(\xi) \chi_{E_{\varphi}} \left(\xi \right).$$

Now, $c \in N(T)^{\perp}$ if and only if $\hat{c}^* (\xi) = 0$ a.e. on N_{φ} (see (6)).

That is, $\hat{c}^*(\xi) = \hat{c}^*(\xi) \chi_{E_{\varphi}}(\xi)$ a.e. on $[0, 2\pi]$. Hence the conclusion follows. A Hilbert space H consisting of complex-valued functions on a set *E* is called a reproducing kernel Hilbert space (RKHS in short) if the point evaluation $l_t(f) = f(t)$ is a bounded linear functional on H for each t in *E*. In an RKHS *H*, there is a function k(s, t) on $E \times E$, called the reproducing kernel of *H* satisfying

- (i) $k(\cdot, s) \in H$ for each s in E,
- (ii) $\langle f(t), k(t,s) \rangle = f(s), f \in H$.

Moreover, any norm converging sequence in an RKHS H converges also uniformly on any subset of E, on which k(t, t) is bounded (see [4]).

If a series of shift invariant space $\sum_{d=1}^{m} V(\varphi(t_d))$ with a frame generator $\sum_{d=1}^{m} \varphi(t_d)$ is an RKHS, then its reproducing kernel is given by

$$\sum_{d=1}^{m} k(t_d, s) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} \varphi(t_d - n) \overline{\varphi(s - n)} = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} \varphi(t_d - n) \overline{\varphi(s - n)}$$
(7)

where $\{\sum_{d=1}^{m} \psi(t_d - n) : n \in \mathbb{Z}\}$ is the canonical dual frame of $\{\sum_{d=1}^{m} \varphi(t_d - n) : n \in \mathbb{Z}\}$. We now find conditions on the generator $\sum_{d=1}^{m} \varphi(t_d)$ under which $\sum_{d=1}^{m} V(\varphi(t_d))$ can be recognized as an RKHS. Since all functions in an RKHS must be pointwise well defined, we only consider generators $\sum_{d=1}^{m} \varphi(t_d)$ satisfying $\sum_{d=1}^{m} \varphi(t_d)$ is a complex valued square integrable

function well defined every where on \mathbb{R} . (8)

If $\sum_{d=1}^{m} V(\varphi(t_d))$ is recognizable as an RKHS with the reproducing kernel $\sum_{d=1}^{m} k(t_d, s)$ as in (7), where $\sum_{d=1}^{m} \varphi(t_d)$ is a frame generator satisfying (8), hence

$$\Phi(s) = \sum_{n \in \mathbb{Z}} |\varphi (s - n)|^2 = \sum_{n \in \mathbb{Z}} \sum_{d=1}^m |\langle (k(t_d, s), \varphi (t_d - n) \rangle_{L^2(\mathbb{R})} |^2 \le (A + \varepsilon_0) ||K(\cdot, s)||^2_{L^2(\mathbb{R})} = (A + \varepsilon_0) k(s, s), s \in \mathbb{R},$$

therefore $A + \varepsilon_0$ is an upper frame bound of $\{\sum_{d=1}^m \varphi(t_d - n) : n \in \mathbb{Z}\}$. Hence

$$\sum_{d=1}^{m} \Phi(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} |\varphi(t_d - n)|^2 < \infty \text{ for any } t \text{ in } \mathbb{R} .$$
(9)

Conversely, we have:

III. Asymmetric multi-channel sampling Lemmas

The aim of this paper is as follows (see [11]). Let $\{L_{(1+\varepsilon_1)} [\cdot] : \varepsilon_1 \ge 0\}$ be N LTI (linear time-invariant) systems with impulse responses $\{\sum_{d=1}^{m} L_{(1+\varepsilon_1)}(t_d): \varepsilon_1 \ge 0\}$. Develop a stable series of shifted multi-channel sampling formula for any signal $\sum_{d=1}^{m} f(t_d) \in \sum_{d=1}^{m} V(\varphi(t_d))$ using discrete sample values from $\{\sum_{d=1}^{m} L_{(1+\varepsilon_1)}(t_d): \varepsilon_1 \ge 0\}$, where each channeled signal $\sum_{d=1}^{m} L_{(1+\varepsilon_1)}[f](t_d)$ for $\varepsilon_1 \ge 0$ is assigned with a distinct sampling rate

$$\sum_{d=1}^{m} f(t_{d}) = \sum_{\epsilon_{1}=0}^{N} \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} L_{(1+\epsilon_{1})} [f] (\sigma_{(1+\epsilon_{1})} + (1+\epsilon_{2})_{(1+\epsilon_{1})}n) s_{d}_{(1+\epsilon_{1}),n} (t_{d}),$$

$$\sum_{d=1}^{m} f(t_{d}) \in \sum_{d=1}^{m} V(\varphi(t_{d})), \quad (10)$$

where $\left\{\sum_{d=1}^{m} s_{d(1+\varepsilon_1),n}(t_d): \varepsilon_1 \ge 0, n \in \mathbb{Z}\right\}$ is a series of frames or a Riesz basis of $\sum_{d=1}^{m} V(\varphi(t_d))$,

 $\{(1 + \varepsilon_2)_{(1+\varepsilon_1)} : \varepsilon_1 \ge 0\}$ are positive integers, and $\{\sigma_{(1+\varepsilon_1)} : \varepsilon_1 \ge 0\}$ are real constants. Note that the series of shifting of sampling instants is unavoidable in some uniform sampling [11] and arises naturally when we allow rational sampling periods in (10). Here, we assume that each $L_{(1+\varepsilon_1)}$ [·] is one of the following three types: the impulse response $\sum_{d=1}^{m} l(t_d)$ of an LTI system is such that (i) $\sum_{d=1}^{m} l(t_d) = \sum_{d=1}^{m} \delta(t_d + a)$, $a \in \mathbb{R}$ or

(ii) $\sum_{d=1}^{m} l(t_d) \in L^2(\mathbb{R})$ or

(iii) $\hat{l}(\xi) \in L^{\infty}(\mathbb{R}) \cup L^{2}(\mathbb{R})$ when

 $H_{\varphi}(\xi) = \sum_{n \in \mathbb{Z}} |\hat{\varphi}(\xi + 2n\pi)| \in L^2[0, 2\pi]$. For type (i),

 $\sum_{d=1}^{m} L[f](t_d) = \sum_{d=1}^{m} f(t_d + a), f \in L^2(\mathbb{R})$ so that $L[\cdot]: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ is an isomorphism. In particular, for any $\sum_{d=1}^{m} f(t_d) = \sum_{d=1}^{m} (\boldsymbol{c} * \varphi)(t_d) \in \sum_{d=1}^{m} V(\varphi(t_d))$, $\sum_{d=1}^{m} L[$

$$f](t_d) = \sum_{d=1}^{m} (\mathbf{c} * \psi)(t_d) \text{ converges absolutely on } \mathbb{R} \text{ since}$$

$$\sum_{d=1}^{m} C_{\psi}(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} |\psi(t_d + n)|^2 < \infty, \sum_{d=1}^{m} t_d \in \mathbb{R} \text{ , where}$$

 $\sum_{d=1}^{m} \psi(t_d) = \sum_{d=1}^{m} L[\varphi](t_d) = \sum_{d=1}^{m} \varphi(t_d + a)$. For types (ii) and (iii), we have the following results (see [11]):

Lemma 3.1. Putting $L[\cdot]$ be an LTI system with the impulse response $\sum_{d=1}^{m} l(t_d)$ of the type (ii) or (iii) as above and $-\Sigma^m I[a](t) - \Sigma^1 (a + b)(t)$ T

$$\sum_{d=1}^{m} \psi(t_d) = \sum_{d=1}^{m} L[\varphi](t_d) = \sum_{d=1}^{m} (\varphi * l)(t_d) \text{ Then}$$
(a)
$$\sum_{d=1}^{m} \psi(t_d) \in C_{\infty}(\mathbb{R}) = \left\{ \sum_{d=1}^{m} u(t_d) \in C(\mathbb{R}) : \lim_{\sum_{d=1}^{m} |t_d| \to \infty} \sum_{d=1}^{m} u(t_d) = 0 \right\},$$
(b)
$$\sup_{\mathbb{R}} \sum_{d=1}^{m} C_{\psi}(t_d) < \infty;$$

(c) for each $\sum_{d=1}^{m} f(t_d) = \sum_{d=1}^{m} (\boldsymbol{c} * \varphi)(t_d) \in \sum_{d=1}^{m} V(\varphi(t_d))$, $\sum_{d=1}^{m} L[f](t_d) = \sum_{d=1}^{m} (\boldsymbol{c} * \boldsymbol{\psi})(t_d)$ converges absolutely and uniformly on \mathbb{R} . Hence $\sum_{d=1}^{m} L[f](t_d) \in C(\mathbb{R}).$

Proof .Suppose that $\sum_{d=1}^{m} l(t_d) \in L^2(\mathbb{R})$. Then $\sum_{d=1}^{m} \psi(t_d) \in C_{\infty}(\mathbb{R})$ by the Riemann-Lebesgue lemma since $\hat{\psi}(\xi) = \hat{\varphi}(\xi)\hat{l}(\xi) \in L^1(\mathbb{R})$. Since

$$\sum_{n \in \mathbb{Z}} |\hat{\psi}(\xi + 2n\pi)| \le G_{\varphi}(\xi)^{\frac{1}{2}} G_{l}(\xi)^{\frac{1}{2}} ,$$

$$\left\| \sum_{n \in \mathbb{Z}} |\hat{\psi}(\xi - 2n\pi)| \right\|^{2} = \sum_{n \in \mathbb{Z}} |\hat{\psi}(\xi - 2n\pi)| \|\hat{\psi}(\xi - 2n\pi)\|^{2} + \sum_{n \in \mathbb{Z}} |\hat{\psi}(\xi - 2n\pi)|^{2} + \sum_{n \in \mathbb{Z}} |\hat{\psi}(\xi - 2$$

$$\left\|\sum_{n\in\mathbb{Z}} \left|\hat{\psi}(\xi+2n\pi)\right|\right\|_{L^{2}[0,2\pi]}^{2} \leq \int_{0}^{\infty} G_{\varphi}(\xi) G_{l}(\xi) d\xi \leq 2\pi \left\|G_{\varphi}(\xi)\right\|_{L^{\infty}(\mathbb{R})} \left\|l\right\|_{L^{2}(\mathbb{R})}^{2}.$$

Thus for any $\sum_{d=1}^{m} t_d$ in \mathbb{R} , we have by the Poisson summation formula (se [1])

$$\sum_{\substack{n \in \mathbb{Z} \\ d=1}} \hat{\psi}(\xi + 2n\pi) \prod_{d=1}^{m} e^{it_d(\xi + 2n\pi)} = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} \psi(t_d + n) e^{-in\xi} \text{ in } L^2 [0, 2\pi]$$

Therefore any \sum

$$\sum_{d=1}^{m} C_{\psi}(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} |\psi(t_d + n)|^2 = \frac{1}{2\pi} \left\| \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} \psi(t_d + n) e^{-in\xi} \right\|_{L^2[0,2\pi]}^2$$

Sampling Expansion with Symmetric Multi-Channel Sampling in a series of Shift-Invariant Spaces

$$= \frac{1}{2\pi} \left\| \sum_{n \in \mathbb{Z}} \hat{\psi}(\xi + 2n\pi) \prod_{d=1}^{m} e^{it_{d}(\xi + 2n\pi)} \right\|_{L^{2}[0, 2\pi]}^{2}$$

$$\leq \left\| G_{\varphi}(\xi) \right\|_{L^{\infty}(\mathbb{R})} \| l \|_{L^{2}(\mathbb{R})}^{2}.$$

By Young's inequality on the convolution product, $||L[f]||_{L^{\infty}(\mathbb{R})} \leq ||f||_{L^{2}(\mathbb{R})} ||l||_{L^{2}(\mathbb{R})}$ so that $L[\cdot] : L^{2}(\mathbb{R}) \to L^{\infty}(\mathbb{R})$ is a bounded linear operator. Where

$$\sum_{d=1}^{m} f(t_d) = \sum_{d=1}^{m} (c * \varphi)(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} c(n)\varphi(t_d - n) \in \sum_{d=1}^{m} V(\varphi(t_d))$$

$$\sum_{d=1}^{m} L[f](t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} c(n)L[\varphi(t_d - n)] = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} c(n)\psi(t_d - n),$$

which converges absolutely and uniformly on R by (b). Now assume that $H_{\varphi}(\xi) \in L^2[0,2\pi]$. The case $\hat{l}(\xi) \in L^2(\mathbb{R})$ is reduced to type (ii). So let $\hat{l}(\xi) \in L^{\infty}(\mathbb{R})$. Then $\hat{\varphi}(\xi) \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ so that $\hat{\psi}(\xi) = \hat{\varphi}(\xi)\hat{l}(\xi) \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ and so $\psi(\xi) \in C_{\infty}(R) \cap L^2(\mathbb{R})$. Since $\sum |\hat{\psi}(\xi + 2n\pi)| \leq ||l||_{L^{\infty}(\mathbb{R})} H_{\varphi}(\xi)$, we have again

by the Poisson summation formula $n \in \mathbb{Z}$

$$\sum_{d=1}^{m} C_{\psi}(t_{d}) = \frac{1}{2\pi} \left\| \sum_{n \in \mathbb{Z}} \hat{\psi}(\xi + 2n\pi) \prod_{d=1}^{m} e^{it_{d}(\xi + 2n\pi)} \right\|_{L^{2}[0,2\pi]}^{2} \\ \leq \|l\|_{L^{\infty}(\mathbb{R})}^{2} \|H_{\varphi}(\xi)\|_{L^{2}[0,2\pi]}^{2}$$

so that $\sup_{\mathbb{R}} \sum_{d=1}^{m} C_{\psi}(t_d) < \infty$. For any $f \in L^2(\mathbb{R})$,

$$\sum_{d=1}^{m} \|L[f](t_{d})\|_{L^{2}(\mathbb{R})} = \|f * l\|_{L^{2}(\mathbb{R})} = \frac{1}{\sqrt{2\pi}} \|\hat{f}(\xi)\hat{l}(\xi)\|_{L^{2}(\mathbb{R})}$$
$$\leq \|\hat{l}\|_{L^{\infty}(\mathbb{R})} \|f\|_{L^{2}(\mathbb{R})}.$$

Hence $L[\cdot] : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ is a bounded linear operator so that for any

 $\sum_{d=1}^{m} f(t_d) = \sum_{d=1}^{m} (\boldsymbol{c} * \boldsymbol{\varphi})(t_d) \in \sum_{d=1}^{m} V(\boldsymbol{\varphi}(t_d)), \sum_{d=1}^{m} L[f](t_d) = \sum_{d=1}^{m} (\boldsymbol{c} * \boldsymbol{\psi})(t_d) \text{ converges in } L^2(\mathbb{R}).$ By (b), $\sum_{d=1}^{m} (\boldsymbol{c} * \boldsymbol{\psi})(t_d) \text{ also converges absolutely and uniformly on } \mathbb{R}.$

By Lemma 3.2(b), $\sum_{d=1}^{m} \psi(t_d) \in L^2(\mathbb{R})$. However, $\sum_{d=1}^{m} (\boldsymbol{c} * \psi)(t_d)$ may not converge in $L^2(\mathbb{R})$ unless $\{\sum_{d=1}^{m} \psi(t_d - n) : n \in \mathbb{Z}\}$ is a Bessel sequence.

Lemma 3.2(b) improves Lemma 1 in [9], in which the proof uses $\sum_{d=1}^{m} l(t_d) \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$,

 $sup_{\mathbb{R}} \sum_{d=1}^{m} C_{\varphi}(t_d) < \infty$, and the integral version of Minkowski inequality. Note that the condition $H_{\varphi}(\xi) \in L^2[0, 2\pi]$ implies $\sum_{d=1}^{m} \varphi(t_d) \in L^2(\mathbb{R}) \cap C_{\infty}((\mathbb{R})$ and $sup_{\mathbb{R}} \sum_{d=1}^{m} C_{\varphi}(t_d) < \infty$. (see [1]). Note also that $H_{\varphi}(\xi) \in L^2[0, 2\pi]$ if $\hat{\varphi}(\xi) = O((1 + |\xi|)^{-(1+\varepsilon_2)}), (1 + \varepsilon_2)_{(1+\varepsilon_1)} > 1, \varepsilon_1 \ge 0$, which holds e.g. for $\sum_{d=1}^{m} \varphi_n(t_d) = \sum_{d=1}^{m} (\varphi_0 * \varphi_{n-1})(t_d)$ the cardinal B-spline of degree $n \ge 1$, where $\varphi_0 = \sum_{d=1}^{m} \chi_{[0,1)}(t_d)$. We have as a consequence of Lemma 3.2: Let $L[\cdot]$ be an LTI system with impulse

 $\varphi_0 = \sum_{d=1}^m \chi_{[0,1)}(t_d)$. We have as a consequence of Lemma 3.2: Let $L[\cdot]$ be an LTI system with impulse response $\sum_{d=1}^m l(t_d)$ of type (i) or (ii) or (iii) as above and $\sum_{d=1}^m \psi(t_d) = \sum_{d=1}^m L[\varphi](t_d)$. Then for any $\sum_{d=1}^m f(t_d) = \sum_{d=1}^m (\mathcal{J}F)(t_d) \in \sum_{d=1}^m V(\varphi(t_d)), F(\xi) \in L^2[0,2\pi]$

$$\sum_{d=1}^{m} L[f](t_d) = \sum_{d=1}^{m} \langle (\xi), \frac{1}{2\pi} \overline{Z_{\psi}(t_d, \xi)} \rangle_{L^2[0, 2\pi]}$$
(11)

since $L[\cdot]$ is a bounded linear operator from $L^{2}(\mathbb{R})$ into $L^{2}(\mathbb{R})$ or $L^{\infty}(\mathbb{R})$ and $\{\sum_{d=1}^{m} \psi(t_{d} - n) : n \in \mathbb{Z}\} \in l^{2}$, $\sum_{d=1}^{m} t_{d} \in \mathbb{R}$. Let $\sum_{d=1}^{m} \psi_{(1+\varepsilon_{1})}(t_{d}) = \sum_{d=1}^{m} L_{(1+\varepsilon_{1})}[\varphi](t_{d})$ and $g_{(1+\varepsilon_{1})}(\xi) = \frac{1}{2\pi} Z_{\psi_{(1+\varepsilon_{1})}}(\sigma_{(1+\varepsilon_{1})}, \xi), \varepsilon_{1} \ge 0$. Then we have by (11) $L_{(1+\varepsilon_{1})}[f](\sigma_{(1+\varepsilon_{1})} + (1+\varepsilon_{2})_{(1+\varepsilon_{1})}n) = \langle F(\xi), \frac{1}{2\pi} Z_{\psi_{(1+\varepsilon_{1})}}(\sigma_{(1+\varepsilon_{1})} + (1+\varepsilon_{2})_{(1+\varepsilon_{1})}n, \xi) \rangle_{L^{2}[0,2\pi]}$

$$= \langle F\left(\xi\right), \overline{g_{(1+\varepsilon_1)}\left(\xi\right)} e^{-i(1+\varepsilon_2)_{(1+\varepsilon_1)}n\,\xi} \rangle_{L^2\left[0,2\pi\right]}$$
(12)

for any $\sum_{d=1}^{m} f(t_d) = \sum_{d=1}^{m} (\mathcal{J} F)(t_d) \in \sum_{d=1}^{m} V(\varphi(t_d))$ and $\varepsilon_1 \ge 0$. Then by (12) and the isomorphism \mathcal{J} from L^2 [0,2 π] onto $\sum_{d=1}^{m} V(\varphi(t_d))$, the sampling expansion (10) is equivalent to

$$F(\xi) = \sum_{\varepsilon_1=0}^{N} \sum_{n \in \mathbb{Z}} \langle F(\xi), \overline{g_{(1+\varepsilon_1)}(\xi)} e^{-i(1+\varepsilon_2)_{(1+\varepsilon_1)}n\xi} \rangle_{L^2[0,2\pi]} S_{(1+\varepsilon_1),n}(\xi),$$

 $F(\xi) \in L^2[0,2\pi]$, where $\{S_{(1+\varepsilon_1),n}(\xi): \varepsilon_1 \ge 0, n \in \mathbb{Z}\}$ is a series of frames or a Riesz basis of $L^2[0,2\pi]$. This observation leads us to consider the problem when is $\{\overline{g_{(1+\varepsilon_1)}(\xi)}, e^{-i(1+\varepsilon_2)(1+\varepsilon_1)n\xi}: \varepsilon_1 \ge 0, n \in \mathbb{Z}\}$ a series of frames or a Riesz basis of L^2 [0,2 π]. Note that

$$\left\{ \begin{array}{l} \overline{g_{(1+\varepsilon_1)}\left(\xi\right)}e^{-i(1+\varepsilon_2)_{(1+\varepsilon_1)}n\,\xi} \colon \varepsilon_1 \ge 0 \,, n \in \mathbb{Z} \right\} = \\ \left\{ \overline{g_{(1+\varepsilon_1),m_{(1+\varepsilon_1)}}\left(\xi\right)}e^{-i(1+\varepsilon_2)n\xi} \colon \varepsilon_1 \ge 0, 1 \le m_{(1+\varepsilon_1)} \le \frac{(1+\varepsilon_2)}{(1+\varepsilon_2)_{(1+\varepsilon_1)}} \,, n \in \mathbb{Z} \right\}$$

where $(1 + \varepsilon_2) = lcm\{(1 + \varepsilon_2)_{(1+\varepsilon_1)} : \varepsilon_1 \ge 0\}$ and $g_{(1+\varepsilon_1),m_{(1+\varepsilon_1)}}(\xi) = g_{(1+\varepsilon_1)}(\xi)e^{i(1+\varepsilon_2)_{(1+\varepsilon_1)}(m_{(1+\varepsilon_1)} - 1)\xi}$ for $\varepsilon_1 \ge 0$. Let *D* be the unitary operator from L^2 [0,2 π] onto $L^2(I)^{(1+\varepsilon_2)}$, where $I = [0, \frac{2\pi}{(1+\varepsilon_2)}]$, defined by

$$DF = \left[F\left(\xi + (k-1)\frac{2\pi}{(1+\varepsilon_2)}\right)\right]_{k=1}^{(1+\varepsilon_2)}, F\left(\xi\right) \in L^2[0,2\pi]. \text{ We also let}$$

$$G(\xi) = \left[Dg_{1,1}(\xi), \dots, Dg_{1,\frac{(1+\varepsilon_2)}{(1+\varepsilon_2)_1}}(\xi), \dots, Dg_{N,1}(\xi), \dots, Dg_{N,\frac{(1+\varepsilon_2)}{(1+\varepsilon_2)_N}}(\xi)\right]^T$$
(13)
$$be a\left(\sum_{\varepsilon_1=0}^N \frac{(1+\varepsilon_2)}{(1+\varepsilon_2)_{(1+\varepsilon_1)}}\right) \times (1+\varepsilon_2) \text{ matrix on } I \text{ and } \lambda_m(\xi), \lambda_M(\xi)$$

be the smallest and the largest eigenvalues of the positive semi-definite $(1 + \varepsilon_2) \times (1 + \varepsilon_2)$ matrix $G(\xi) *$ $G(\xi)$, respectively. Lei

mma 3.2: Let
$$F(\xi) \in L^{1}(\mathbb{R})$$
 so that $f(t) = \mathcal{F}^{-1}[F](t) \in C(\mathbb{R})$ and $0 \leq \sigma < 1$. Then

$$\sum_{n \in \mathbb{Z}} e^{i\sigma(\xi + 2n\pi)} F(\xi + 2n\pi) \text{ converges absolutely in } L^{1}[0, 2\pi] \text{ and}$$

$$\sum_{n \in \mathbb{Z}} e^{i\sigma(\xi + 2n\pi)} F(\xi + 2n\pi) \sim \frac{1}{\sqrt{2\pi}} Z_{f}(\sigma, \xi)$$

$$= \frac{1}{\sqrt{2\pi}} \sum_{n \in \mathbb{Z}} f(\sigma + n) e^{-in\xi}$$
(14)

which means that $\frac{1}{\sqrt{2\pi}} Z_f(\sigma, \xi)$ is the Fourier series expansion of $\sum_{n \in \mathbb{Z}} e^{i\sigma(\xi + 2n\pi)} F(\xi + 2n\pi) \text{. If moreover} \sum_{n \in \mathbb{Z}} e^{i\sigma(\xi + 2n\pi)} F(\xi + 2n\pi)$ converges in $L^2[0, 2\pi]$ or equivalently $\{f(\sigma + n)\}_{n \in \mathbb{Z}} \in l^2$, then

$$\sum_{\in\mathbb{Z}} e^{i\sigma(\xi + 2n\pi)} F(\xi + 2n\pi) = \frac{1}{\sqrt{2\pi}} Z_f(\sigma, \xi) \text{ in } L^2[0, 2\pi].$$
(15)

Proof: Assume that $(\xi) \in L^1(\mathbb{R})$. Then

$$\sum_{n \in \mathbb{Z}} \left\| e^{i\sigma(\xi + 2n\pi)} F(\xi + 2n\pi) \right\|_{L^{1}[0,2\pi]} = \sum_{n \in \mathbb{Z}} \int_{0}^{2\pi} |F(\xi + 2n\pi)| d\xi$$
$$= \sum_{n \in \mathbb{Z}} \int_{2n\pi}^{2(n+1)\pi} |F(\xi)| d\xi = \int_{-\infty}^{+\infty} |F(\xi)| d\xi$$

so that

$$\sum_{n \in \mathbb{Z}} e^{i\sigma(\xi + 2n\pi)} F(\xi + 2n\pi) \text{ converges absolutely in } L^1[0, 2\pi]$$

Hence

$$\sum_{n\in\mathbb{Z}} e^{i\sigma(\xi+2n\pi)} F(\xi+2n\pi)$$

$$\sim \frac{1}{2\pi} \sum_{k\in\mathbb{Z}} \left\langle \sum_{n\in\mathbb{Z}} e^{i\sigma(\xi+2n\pi)} F(\xi+2n\pi), e^{-ik\xi} \right\rangle_{L^2[0,2\pi]} e^{-ik\xi},$$

where

$$\langle \sum_{n \in \mathbb{Z}} e^{i\sigma(\xi + 2n\pi)} F(\xi + 2n\pi), e^{-ik\xi} \rangle_{L^{2}[0,2\pi]}$$

$$= \int_{0}^{2\pi} \sum_{n \in \mathbb{Z}} e^{i\sigma(\xi + 2n\pi)} F(\xi + 2n\pi) e^{ik\xi} d\xi$$

$$= \sum_{n \in \mathbb{Z}} \int_{0}^{2\pi} e^{i\sigma(\xi + 2n\pi)} F(\xi + 2n\pi) e^{ik\xi} d\xi$$

$$= \int_{-\infty}^{+\infty} F(\xi) e^{i(\sigma+k)\xi} d\xi = \sqrt{2\pi} f(\sigma + k)$$

by the Lebesgue dominated convergence theorem. Hence (14) holds. Now assume that $F(\xi) \in L^1(\mathbb{R})$ and $\sum_{n \in \mathbb{Z}} e^{i\sigma(\xi + 2n\pi)} F(\xi + 2n\pi) \text{ converges in } L^2[0, 2\pi]. \text{ Then (15) becomes}$

an orthonormal basis expansion of $\sum_{n \in \mathbb{Z}} e^{i\sigma(\xi + 2n\pi)} F(\xi + 2n\pi) \text{ in } L^2[0, 2\pi]$

so that (15) holds.

Corollary 3.3: (see [3]). If $F(\xi)$ is measurable on \mathbb{R} and $\sum_{n \in \mathbb{Z}} F(\xi + 2n \pi)$ converges absolutely in $L^2[0, 2\pi]$, then

$$\sum_{n=1}^{\infty} F(\xi + 2n\pi) = \frac{1}{\sqrt{2\pi}} Z_f(0,\xi) \text{ where } f(t) = \mathcal{F}^{-1}[F](t).$$

Proof : Assume that $\sum_{n \in \mathbb{Z}}^{n \in \mathbb{Z}} F(\xi + 2n\pi)$ converges absolutely in $L^2[0, 2\pi]$. Then

$$\sum_{n \in \mathbb{Z}} F(\xi + 2n\pi) \text{ converges absolutely also in } L^1[0, 2\pi] \text{ so that } F(\xi) \in L^1[0, 2\pi]$$

and $\sum_{n \in \mathbb{Z}} F(\xi + 2n\pi)$ converges in $L^2[0, 2\pi]$. Hence the conclusion follows from Lemma 3.1 for $\sigma = 0$. **Example 3.4**: (see [1],[19] and [15]). Let $\sum_{d=1}^{m} \varphi_0(t_d) = \sum_{d=1}^{m} \chi_{[0,1)}(t_d)$ and

$$\sum_{d=1}^{m} \varphi_n(t_d) = \sum_{d=1}^{m} \varphi_{n-1}(t_d) * \varphi_0(t_d) = \int_0^1 \sum_{d=1}^{m} \varphi_{n-1}(t_d - s) ds, n \ge 1, \sum_{d=1}^{m} (\varphi_n(t_d) = \sum_{d=1}^{m} B_{n+1}(t_d))$$

be the cardinal B-spline of degree n. Then

$$\widehat{\varphi_n}(\xi) = \frac{1}{\sqrt{2\pi}} \left(\frac{1 - e^{-i\xi}}{i\xi} \right)^{n+1}$$
 and $|\widehat{\varphi}n(\xi)| = \frac{1}{\sqrt{2\pi}} \left| \operatorname{sinc} \frac{\xi}{2\pi} \right|^{n+1}$, $n \ge 0$.
It is known in [5] that $\sum_{i=1}^m \varphi_n(t_i)$ are an orthonormals generators and

It is known in [5] that $\sum_{d=1}^{m} \varphi_0(t_d)$ are an orthonormals generators and $\sum_{d=1}^{m} (\varphi_n(t_d) \text{ for } n \ge 1 \text{ is a continuous}$ Riesz generator. Moreover since $\sum_{d=1}^{m} (\varphi_n(t_d) \text{ has compact support,}$

$$sup_{\mathbb{R}} \sum_{d=1}^{m} \Phi_n(t_d) = sup_{\mathbb{R}} \sum_{k \in \mathbb{Z}} \sum_{d=1}^{m} |\varphi_n(t_d - k)|^2 < \infty \text{ so that } \sum_{d=1}^{m} V(\varphi(t_d)) \text{ is an RKHS for}$$

to 0. Since $\varphi_0(\sigma + n) = \delta_{0,n}$ for $n \in \mathbb{Z}$ and $0 \le \sigma < 1$, $Z_{a_0}(\sigma, \xi) = 1$

 $n \ge 0$. Since $\varphi_0(\sigma + n) = \delta_{0,n}$ for $n \in \mathbb{Z}$ and $0 \le \sigma < 1$, $Z_{\varphi_0}(\sigma, \xi) =$ so that by Theorem 3.3 in [1], we have an orthonormal expansion

$$\sum_{d=1}^{m} f(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} f(\sigma + n) \varphi_0(t_d - n) \quad , \ f \in \sum_{d=1}^{m} V(\varphi_0(t_d))$$

which converges in $L^2(\mathbb{R})$ and uniformly on \mathbb{R} since

$$\sum_{d=1}^{m} \Phi_0(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} |\varphi_0(t_d - n)|^2 = 1 \quad \text{on } \mathbb{R}.$$

For $\sum_{d=1}^{m} \varphi_1(t_d) = t \chi_{[0,1)}(t_d) + (2 - t) \sum_{d=1}^{m} \chi_{[1,2)}(t_d)$, and $0 \le \sigma < 1$, $\varphi_1(t) = \sigma$, $\varphi_1(\sigma + 1) = 1 - \sigma$, $\varphi_1(\sigma + n) = 0$ for $n \ne 0, 1$ so that $Z_{\varphi_1}(\sigma, \xi) = \sigma + (1 - \sigma)e^{-i\xi}$. Then $\|Z_{\varphi_1}(\sigma, \xi)\|_0 = |2\sigma - 1|$ and $\|Z_{\varphi_1}(\sigma, \xi)\|_{\infty} = 1$. Hence by Theorem 3.3 in [1], for any σ with

 $0 \le \sigma < 1$ and $\sigma \ne \frac{1}{2}$, we have a Riesz basis expansion

$$\sum_{d=1}^{m} f(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} f(\sigma + n) S(t_d - n) , \quad f \in \sum_{d=1}^{m} V(\varphi_1(t_d))$$

 $L^2(\mathbb{R}) \text{ and uniformly on } \mathbb{R} . For$

which converges in $L^2(\mathbb{R})$ and uniformly on \mathbb{R} . For $\sum_{d=1}^{m} \varphi_2(t_d) = \frac{1}{2}t^2 \sum_{d=1}^{m} \chi_{[1,2)}(t_d) + \frac{1}{t^{2}2}(6t - 2 - 3) \sum_{d=1}^{m} \chi_{[1,2)}(t_d) + \frac{1}{2}(3 - t)^2 \sum_{d=1}^{m} \chi_{[1,2)}(t_d), \quad \text{it is known (see [1] and [11]) that}$

 $\left\|Z_{\varphi_2}(0,\xi)\right\|_0 = 0 \text{ but } \frac{1}{2} \le \left\|Z_{\varphi_2}\left(\frac{1}{2},\xi\right)\right\|_0 < \left\|Z_{\varphi_2}\left(\frac{1}{2},\xi\right)\right\|_\infty \le 1 \text{ so that there is a Riesz basis expansion}$

$$\sum_{d=1}^{m} f(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} f\left(\frac{1}{2} + n\right) S(t_d - n), f \in \sum_{d=1}^{m} V\left(\varphi_2\left(t_d\right)\right)$$
(16)

which converges in $L^2(\mathbb{R})$ and uniformly on \mathbb{R} . Since the optimal upper Riesz bound of the Riesz sequence $\{\varphi_2(t_d - k) : k, d \in \mathbb{Z}\}$ is 1 (see [5]), we have for the sampling series (16)

$$\sum_{d=1}^{m} \|E_n(f)(t_d)\|_{L^2(\mathbb{R})}^2 \leq 4 \sum_{|k| > n} \left| f\left(\frac{1}{2} + k\right) \right|^2, f \in \sum_{d=1}^{m} V\left(\varphi_2\left(t_d\right)\right).$$
we have

On the other hand, we have

$$\begin{aligned} H\varphi_2\left(\xi\right) &= \sum_{k \in \mathbb{Z}} \left| \hat{\varphi}_2\left(\xi + 2k\pi\right) \right| = \frac{1}{\sqrt{2\pi}} \sum_{k \in \mathbb{Z}} \left| \operatorname{sinc}\left(\frac{\xi}{2\pi} + k\right) \right|^3 \\ &\leq \frac{1}{\sqrt{2\pi}} \sum_{k \in \mathbb{Z}} \left| \operatorname{sinc}\left(\frac{\xi}{2\pi} + k\right) \right|^2 = \frac{1}{\sqrt{2\pi}}. \end{aligned}$$

Example 3.5: (See [1]) Let $\sum_{d=1}^{m} \varphi(t_d) = \prod_{d=1}^{m} e^{\frac{-a}{2}}$ be the Gauss kernel. Then

 $\hat{\varphi}(\xi) = e^{-\frac{\xi^2}{2}}$ and $0 < \|G_{\varphi}(\xi)\|_0 < \|G_{\varphi}(\xi)\|_{\infty} < \infty$ so that $\sum_{d=1}^m \varphi(t_d)$ is a continuous Riesz generator satisfying

$$sup_{\mathbb{R}}\sum_{d=1}^{m} \Phi(t_{d}) = sup_{\mathbb{R}}\sum_{k\in\mathbb{Z}}\sum_{d=1}^{m} |\varphi(t_{d}-k)|^{2} < \infty. \text{ Since } \hat{\varphi}(\xi) \in L^{1}(\mathbb{R})$$

and $\{\varphi(n)\}_{n\in\mathbb{Z}} \in l^{1}, \text{ we have by Lemma 3.1}$

$$Z_{\varphi}(0,\xi) = \sqrt{2\pi} \sum_{n \in \mathbb{Z}} e^{\frac{-1}{2}(\xi + 2n\pi)^2} \text{ so that } 0 < \|Z_{\varphi}(\xi)\|_0 < \|Z_{\varphi}(\xi)\|_{\infty} < \infty.$$

Hence by Theorem 3.3 in [1], $\sum_{d=1}^{m} V(\varphi(t_d))$ is an RKHS and there is a Riesz basis expansion

$$\sum_{d=1}^{m} f(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} f(n) S(t_d - n), f \in \sum_{d=1}^{m} V(\varphi(t_d))$$

which converges in $L^2(\mathbb{R})$ and uniformly on \mathbb{R} .

Corollary 3.6. (Cf. Theorem 3.2 in [19].) Let N = 1. Then there is a series of Riesz bases $\{\sum_{d=1}^{m} s_n(t_d) : n \in \mathbb{Z}\}$ of $\sum_{d=1}^{m} V(\varphi(t_d))$ such that

$$\sum_{d=1}^{m} f(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{m} L[f](\sigma + (1 + \varepsilon_2)n) s_n(t_d), \sum_{d=1}^{m} f(t_d) \in \sum_{d=1}^{m} V(\varphi(t_d))$$
(17)

if and only if $\varepsilon_2 = 0$ and

$$0 < \left\| Z_{\psi}(\sigma,\xi) \right\|_{0} \le \left\| Z_{\psi}(\sigma,\xi) \right\|_{\infty} .$$

$$(18)$$

In this case, we also have (i) $\sum_{d=1}^{m} s_n(t_d) = \sum_{d=1}^{m} s(t_d - n), n \in \mathbb{Z}$, (ii) $\hat{s}(\xi) = \frac{\hat{\varphi}(\xi)}{\hat{\varphi}(\xi)}$

(ii)
$$\hat{s}(\xi) = \frac{1}{Z_{\psi}(\sigma,\xi)},$$

(iii) $L[s](\sigma + n) = \delta_{n,0}, n \in \mathbb{Z}.$ (19)

Proof .Note that for $\varepsilon_2 = 0$, $G(\xi) = \frac{1}{2\pi} Z_{\psi}(\sigma, \xi)$ and $\lambda_m(\xi) = \lambda_M(\xi) = \left(\frac{1}{2\pi}\right)^2 |Z_{\psi}(\sigma, \xi)|^2$ so that $0 < \alpha_G \le \beta_G < \infty$ if and only if (18) holds. Therefore, everything except (19) follows from Theorem 3.4 in [1]. Finally applying (17) to $\sum_{d=1}^m \varphi(t_d)$ gives $\sum_{d=1}^m \varphi(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^m \psi(\sigma + n)s(t_d - n)$ from which we have (19) by taking the Fourier transform. When $\sum_{d=1}^m l(t_d) = \sum_{d=1}^m \delta(t_d)$ so that $L[\cdot]$ is the identity operator, Corollary 3.6 reduces to a series of regular shifted sampling on $\sum_{d=1}^m V(\varphi(t_d))$ (see

Theorem 3.3 in [17]).

Corollary 3.7. Suppose $Z_{\psi}(2 - \varepsilon_0, \xi) \in L^{\infty}[0, 2\pi], 0 \le \varepsilon_1 \le q - 1$, then the following are all equivalent. (i) There is a series of frames $\{\sum_{d=1}^{m} s_n(t_d) : n \in \mathbb{Z}\}$ of $\sum_{d=1}^{m} V(\varphi(t_d))$ for which

$$\sum_{d=1}^{\infty} f(t_d) = \sum_{n \in \mathbb{Z}} \sum_{d=1}^{\infty} L[f] (2 - \varepsilon_0) s_n(t_d), \sum_{d=1}^{\infty} f(t_d) \in \sum_{d=1}^{\infty} V(\varphi(t_d)).$$

lies of frames $\{\sum_{d=1}^m s_{(1+\varepsilon_1)}(t_d - n): \varepsilon_1 > 0, n \in \mathbb{Z}\}$ of $\sum_{d=1}^m V(\varphi(t_d))$ for

$$\sum_{d=1}^{m} f(t_d) = \sum_{n \in \mathbb{Z}} \sum_{\varepsilon_1 \ge 0} \sum_{d=1}^{m} L[f](n - \varepsilon_0) s_{(1+\varepsilon_1)}(t_d - n), \sum_{d=1}^{m} f(t_d) \in \sum_{d=1}^{m} V(\varphi(t_d)).$$
(iii)
$$\left\| \sum_{\varepsilon_1 \ge 0} |Z_{\psi}(2 - \varepsilon_0, \xi)| \right\|_{0} > 0.$$

Proof: Since

(ii) There is a ser

 $\{L[f](2-\varepsilon_0)\} = \{L[f](n-\varepsilon_0): n \in \mathbb{Z}\} \text{ . Now we have } \{L_{(1+\varepsilon_1)} [\cdot]: \varepsilon_1 > 0\} \text{ with } n \in \mathbb{Z}\}$ $L_{(1+\varepsilon_1)} [\cdot] = L[\cdot], \varepsilon_1 > 0 \quad \text{. Then } g_{(1+\varepsilon_1)}(\xi) = \frac{1}{2\pi} Z_{\psi} (2 - \varepsilon_0, \xi), \varepsilon_1 > 0 \text{ and}$ $G(\xi)^* G(\xi) = \frac{1}{(2\pi)^2} \sum_{\varepsilon_1 \ge 0} |Z_{\psi} (2 - \varepsilon_0, \xi)|^2 \text{ . There for } \alpha_G > 0 \text{ if and only if}$ $\left\|\sum_{\alpha \to 0} |Z_{\psi}(2-\varepsilon_0,\xi)|\right\|_0 > 0.$

References

- Adam zakria , Ahmed Abdallatif , Yousif Abdeltuif [17] sampling expansion in a series of shift invariant spaces ISSN 2321 [1]. 3361 © 2016 UESC
- O. Christensen, An Introduction to Frames and Riesz Bases (Birkh"auser, 2003). [2].
- [3]. J. R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foundations (Oxford University Press, 1996).
- [4]. G. G.Walter, A sampling theorem for wavelet subspaces, IEEE Trans. Inform. Theory 38 (1992) 881-884.
- [5]. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2001.
- [6]. I. Djokovic, P.P. Vaidyanathan, Generalized sampling theorems in multiresolution subspaces, IEEE
- A.G. Garcia, M.A. Hern Indez-Medina, G. Pérez-Villalón, Oversampling and reconstruction functions with compact support, J. [7]. Comput. Appl. Math. 227(2009) 245-253.
- A.G. Garcia, G. Pérez-Villalón, Dual frames in L^2 (0,1) connected with generalized sampling in shift-invariant spaces, Appl. [8]. Comput. Harmon. Anal. 20(2006) 422-433.
- [9]. A.G. Garcia, G. Pérez-Villalón, A. Portal, Riesz bases in L² (0,1) related to sampling in shift-invariant spaces, J. Math. Anal. Appl. 308 (2005) 703-713.
- [10]. Y.M. Hong, J.M. Kim, K.H. Kwon, E.H. Lee, Channeled sampling in shift invariant spaces, Int. J. Wavelets Multiresolut. Inf. Process. 5 (2007) 753-767.
- A.J.E.M. Janssen, The Zak transform and sampling theorems for wavelet subspaces, IEEE Trans. Signal Process. 41 (1993) 3360-[11]. 3364.
- [12]. S. Kang, J.M. Kim, K.H. Kwon Asymmetric multi-channel sampling in shift invariant spaces J. Math. Anal. Appl. 367 (2010) 20-28
- X. Zhou and W. Sun, On the sampling theorem for wavelet subspaces, J. Fourier Anal. Appl. 5 (1999) 347-354. [13].
- A. Papoulis, Generalized sampling expansion, IEEE Trans. Circuits Syst. 24 (1977) 652-654. [14].
- [15]. L.J. Fogel, A note on the sampling theorem, IRE Trans. Inform. Theory IT-1(1995) 47-48.
- C.E. Shannon, Communication in the presence of noise, Proc. Inst. Radio Eng. 37 (1949) 10-21. [16].
- [17]. J.M. Kim, K.H. Kwon, Sampling expansion in shift invariant spaces, Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008) 223-248.
- [18]. Y. M. Hong, J. M. Kim, K. H. Kwon and E. H. Lee, Channeled sampling in shift invariant spaces, Int. J. Wavelets Multiresolut. Inf. Process. 5 (2007) 753-767.

which