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Abstract: A numerical algorithm from Maximum Likelihood (ML) and Improved Analytical (IA) was developed. 

This was used to estimate the parameters of the two-parameter Weibull distribution, namely scale and shape 

parameters. Since the Maximum Likelihood Estimators of the Weibull distribution do not have closed form 

solutions, the profile likelihood of the two-parameter Weibull distribution was considered for the purpose.Real 

life data were used in the study and data were also simulated for the distribution with sample sizes (10, 100, 

1000 and 10000) and numerical approach was adopted to obtained the estimate of the distribution. The 

standard errors were computed and a 5% wald-confidence interval was constructed for the estimates of the 

distribution. The results of this study show that the profile likelihood constructed by the combination of MLE 

and Newton Raphson’s method provides an efficient means of estimating parameters from intractable 

probability distribution model (two-parameter Weibull distribution) in both simulation and real life data. 
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I. Introduction 

The Weibull distribution is an important distribution in reliability and maintenance analysis, variables 

such as wind speed can easily and effectively be modeled using the Weibull distribution. It is of great 

importance as it fully characterizes with only two parameters, the shape and moments of the distribution of the 

wind speed. This distribution is broadly used in the wind energy sector to produce maps of wind energy 

potential. There are several methods which can be used for the estimation of the parameters of Weibull 

distribution, for example, the method of least square, method of moment, and maximum likelihood estimation 

(MLE) method.In this study, we focus on the application of maximum likelihood method. Maximum-likelihood 

method (MLE) is used extensively for the estimation of the parameters of a statistical model, but with more 

complicated models, maximum likelihood alone may not result in a closed form solution, as it does not perform 

well in complex models. In the MLE-based methods, since the basic estimating equationsin complex models are 

not in closed form, the equations can only be solved numerically. There are several typical MLE-based methods 

for solving such equations, these include the secant method, the bisection method and the Newton-Raphson 

method. However, in both the secant and bisection methods, the convergence rates are very low. TheNewton-

Raphson method however converges very fast even as it computes both the basic estimating function and its 

derivative at each iterative step. This study used both MLE and Newton Raphson Methods jointly due to the 

inability of the maximum likelihood method alone to obtain parameter estimates from two-parameter Weibull 

distribution.  

 

II.  Review of Related Literature 

The likelihood function tells us how likely the observed sample is a function of the possible parameter 

values. Thus, maximizing the likelihood function for the data gives the parameter values for which the observed 

sample is most likely to have been generated, that is, the parameter values that ‘’agree most closely’’ with the 

observed data (Fisher,1920). 

Modern applied statistics deals with many settings in which the point wise evaluation of the likelihood 

function is impossible or computationally difficult. Examples of such are common in the areas of financial 

modelling, genetics, geostatistics, neurophysiology and stochastic dynamical systems (Pritchard et al., 1999). It 

is then consequently difficult to perform any inference (classical or Bayesian) about the parameters of the 

model. 

Various approaches to overcome this difficulty have been developed and used by several authors; Cox 

and Reid (2004) used composite likelihood methods for approximating the likelihood function, and Pritchard et 

al., 1999; Beaumont et al., 2002, applied Approximate Bayesian Computational methods for approximating the 

posterior distribution for obtaining estimates of the parameters.However, the ABC produces approximation of 

the posterior distribution in which there exist a deterministic error in addition to Monte Carlo 

variability(Beaumont et al., 2002). The quality of the approximation to the posterior and theoretical properties of 

the estimators obtained with ABC have been studied in Wilkinson (2008); Marin et al., (2011); Dean et al., 
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(2011) and Fearnhead and Prangle (2012), where Didelotet al., (2011) and Robert et al., (2011)used the ABC 

method for model comparisons. Using the sample approximation to characterize the mode of the posterior 

would in principle allow (approximate) maximum a posteriori (MAP) estimation. Furthermore, using a uniform 

prior distributionfor the parameters of interest over any set which contains the MLE will lead to a MAP estimate 

which coincides with the MLE. In low-dimensional problems, samples from the posterior distribution of the 

parameterscan be used to estimate its mode by using either nonparametric estimators of the density or another 

mode seeking technique such as the mean-shift algorithm (Fukunaga and Hostetler, 1975). Although Marjoram 

et al., (2003) noted that (ABC) can also be used in frequentist applications for maximum-likelihood estimation, 

this approach did not receive much attention. Alternative nonparametric density estimators within the AMLE 

context have been proposed (Culeet al., 2010; Jing et al., 2012).Cheng and Amin (1983) suggest the maximum 

product of spacing (MPS) method which can be applied to any univariate distribution. However, Cheng and 

Traylor (1995) point out that the drawbacks of the MPS method is the effects of tied observations in ordering 

when explanatory variables are involved in the model. Atkinson, Pericchiet al., (1991) apply the grouped-data 

likelihood approach to the shifted power transformation model of Box and Cox (1964).  

 

III. Materials and Methods 

This research work employed the use of MLE and Numerical method (Newton Raphson method) jointly to 

obtain the estimates, profile-likelihood, standard errors and Wald interval of the two-parameter Weibull 

distributionusing simulation studies and real life data.  

 

3.1 Model Specification 
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IV. Implementing the Iterative Method for theWeibull Probability Distibution 
Consider the Weibull Distribution with PDF 
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equating the derivatives to zero and solving the equations is again difficult, making direct  

analytically solutions intractable. 
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4.2   The Numerical Method (Simulation Study) 

4.2.1 Weibull Probability Distribution 

The log-likelihood is given in equation (3.4) while the score function is given in equation (3.6) and (3.7) 

.Differentiating further is given as: 
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Figure 4.1: Loglikelihood graph of a weibull distribution. 

 

4.2.2 Weibull Probability Distribution 

Table 4.1: Weibull Probability Distribution 
N 𝜶  𝒎𝒍𝒆 𝜷  𝒎𝒍𝒆 S.E(𝜶  ) S.E(𝜷  ) Wald C.I for 𝜶   Wald C.I for 𝜷   

10 1.9840354 0.3097679 0.52335695 0.05180851 1.460678,  2.035844 -0.2135891, 0.3615764 

100 1.9840325 0.3097673 0.16549983 0.001638327 1.818533,  2.000416 0.1442674,  0.3261505 

1000 1.9840375 0.3097673 0.052335643 0.005180843 1.931697,  1.9899213 0.2574316,  0.319481 

10000 1.9840325 0.309767 0.016549983 1.985671 1.967483,  1.985671 0.2932173,  0.3114056 

 

4.2.3 Profile Likelihood for Weibull Distribution 

         From equation (3.6)  
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          Substituting (3.12) in (3.4) gives 
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Differentiating equation (3.13) with respect to 𝛽 to obtain the score function 
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Differentiating equation (3.15) gives 
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4.2.4 Profile Likelihood of Weibull Distribution 

 
Figure 4.2: Profile Log-likelihood graph of a Weibull distribution. 
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Table 4.2: Profile Likelihood of Weibull Distribution Result Table 
N 𝜷  𝒎𝒍𝒆 S.E(𝜷  ) Wald C.I for 𝜷   

10 1.984034 0.523429 1.460605,  2.502463 

100 1.984034 0.1655228 1.818512,  2.149557 

1000 1.984034 0.05234289 1.931691,  2.036377 

10000 1.984034 0.01655228 1.967482,  2.000587 

 

4.3      The Numerical Method ( Real Life Data) 

4.3.1 Weibull Probability Distribution 

 
Figure 4.3: Loglikelihood graph of a Weibull distribution 

 

Table 4.3: Weibull Probability Distribution 
∝ 𝒎𝒍𝒆 𝑺. 𝑬(∝ ) Wald CI 𝜷 𝒎𝒍𝒆 𝑺. 𝑬(𝜷 ) Wald CI 

0.9218841 0.176140 0.7457409,   1.0980280 17.2019258 4.951544 17.02579,   22.15347 

   

4.3.2 Profile Likelihood of Weibull Distribution 

 
Figure 4.4: Profile Log-likelihood graph of a Weibull distribution. 

 

Table 4.4: Profile Likelihood of Weibull Distribution Result Table 

𝜷 𝒎𝒍𝒆 𝑺. 𝑬(𝜷 ) Wald C.I for 𝜷  

0.9218845 0.1761436 0.7457409,1.0980280 

 

V. Discussion 
From the iterations obtained by applying Newton Raphson method in obtaining maximum likelihood 

estimates for Weibull probability distribution, a total of 10 iterations were performed. The solution converge at 

the 9
th

iteration returning -5487.188 as the value of the log-likelihood and the values of the estimate which 

maximizes the function was 1.9840325 and 0.3097673 with gradient 6.234337 × 10
−5

 and −1.095032 × 10
−6

 

respectively. The hessian matrix which was the value of the second derivative is  

=  
4013.616 −12187.75

−12187.75 409571.80
  

Table 4.2 shows the estimate which maximizes the likelihood function of the Weibull probability distribution for 

different sizes which ranges between (1.9840325 and 1.9840325) and (0.3097673 and 0.3097679) with standard 

error decreasing as the sample size increases (0.52335695 to 0.016549983) and (0.05180851 to 0.001638326). 

In the application of Newton Raphson method to obtain the maximum likelihood estimates for profile 

Weibull probability likelihood function, 9 iterations were performed to obtain the maximum likelihood estimate. 

Convergence was achieved at the 8
th

iteration returning -5487.088 as the value of the log-likelihood and the 
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value of the estimate which maximizes the function is 1.984034 with gradient 8.067959 × 10
−5

. The variance 

which was the value of the second derivative is 3.649.93. 

Table 4.6 shows the estimate which maximizes the likelihood function of profile Weibull likelihood 

function for different sample sizes which was between 1.984034 and 1.984034 with standard error reducing as 

the sample size increases (0.523429 to 0.001655228). 

Applying the Newton Raphson method on the real life data, 43 iterations were performed to obtain the 

maximum likelihood estimates for Weibull probability distribution. The solution converged at the 40
th

iteration 

returning 62.09617 as the value of the log-likelihood and the value of the estimate which maximizes the 

function was 0.9218841 and 17.2019258 with gradient -3.417711× 10
−8

 and −1.095032 × 10
−6

. The hessian 

matrix which was the value of the second derivative is  

                        =  
36.3005931 −0.43232478

−0.43232478 0.04593551
  

Table 4.8 shows the estimate which maximizes the likelihood function of Weibull probability 

distribution was (0.9218841 and 1.72019258) with standard error of (0.176140 and 4.951544). 

Using the Newton Raphson method to obtain the maximum likelihood estimates for the profile Weibull 

probability likelihood function, 5 iterations were performed and convergence was reached at the 4
th

iteration 

returning 62.09617and the value of the estimate which maximizes the function is 0.9218845 with gradient 

2.714273×10
−06

. The variance which is the value of the second derivative was 0.1761436. 

 

VI.  Conclusion 
Parameter estimates from intractable likelihood functions can easily be obtained using the 

Maximum Likelihood Estimation jointly with numerical (Newton Raphson) methods. Comparing Tables 4.1 and 

4.2 it can be concluded that the estimate values of β that maximizes weibull probability distribution and profile 

likelihood weilbull function are not significantly different. Also comparing Tables 4.3 and 4.4,we can conclude 

that the estimated values of β that maximizes weibull probability distribution and profile likelihood weilbull 

function are also not significantly different. It was observed that as the sizes of the sample increases, the 

standard error reduces which obey the law of large numbers.It can also be concluded that the profile likelihood 

constructed by the combination of MLE and Newton Raphson’s method provides an efficient means of 

estimating parameters from intractable probability distribution model (two-parameter Weibull distribution) in 

both simulation and real life data. 

 

VII. Recommendation 
Based on the results drawn from this study, the following recommendation was made: 

 Parameter estimates from the two-parameter Weibull distribution should be obtained using Maximum 

Likelihood Estimation jointly with Newton Raphson Method 
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