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Abstract: The magnetic field of many astrophysical bodies is generated in the flow of electrically conducting 

fluidconfirmed in a spherical shell, the flow is normally a threshold process, the dynamo requires motions of 

sufficientstrength to overcome the innate magnetic diffusion. With presence of an ambient field, the requirement 

ofstrength of motion is not needed, and the magnetic field could be generated even for relatively weak flowswe 

compute the non-axisymmetric magnetic field with imposed stationary and oscillatory external ambientmagnetic 

field similar to Darah and Sarson 2007 which studied the axisymmetric magnetic field. The criticalvalues of 𝑅𝛼  

do not needed to generate magnetic field. Many astrophysical objects exist within an externalmagnetic field of 

others, moons of Jupiter for example, lie within an external magnetic field of Jupiter Sarsonet al. 1999. In this 

paper, the consideration is for the generation of magnetic field on a spherical mean-field𝛼2𝜔 dynamo model 

and the effected of an axial ambient field through nonlinear calculations with 𝛼 - quenching 

feed back. 

Keywords: mean-field dynamo; non-axisymmetric; nonlinear; ambient field. 

 
I. Introduction 

After many years of consideration, it is understood that   the majority of astrophysical objects passe 

their magnetic field which is generated by hydromagneticdynamo (HMD) dynamo process, in this process, the 

motionof electrically inducting fluid in the presence of basic mechanisms generates an electrical current which 

produces the magnetic field in the core Levy 1979, Gubbins 2000. The basic mechanisms is responsible for such 

self-excited dynamo action Fearn 2004. The generative magnetic field is threshold process terms of the fluid 

velocity, so the magnetic field to be generated requires that the velocity exceeds some critical valuesLevy 1979. 

The generated magnetic fields could be axisymmetric in some objects as the field of the Earth, Saturn, 

non-axisymmetric as the field of the Sun or mixed of axisymmetric and non-axisymmetric field, Starchenko 

1993, which will be in future work.During the study, most work has focused on the axisymmetric magnetic 

field, the reason for that, may be, because it is easier to excite than the nonaxisymmetric field. There have been 

some studies on non-axisymmetric dynamo models. The possibility of non-axisymmetric modes has first been 

investigated by Stix 1971, Krause 1971, Roberts & Stix 1972 and Ruzmaikin et al. 1988 for 𝛼𝜔-dynamo. And 

R¨adler1975 for 𝛼2-dynamo Sarson et al. 1997, Moss 1999 obtained stable solutions that produced a small 

nonaxisymmetric field component. Bigazzi&Ruzmakin 2004 studied the generation of non-axisymmetric field 

and their coupling with axisymmetric solar magnetic field. 

Some of astrophysical objects exist within an external field of others. In our universe, many of moons 

lie within the field generated by the giant planets. The possibility of the Jovian field influencing the MHD 

processes of the Galilean moons Levy 1979. The larger moons of Saturn are also lie within the background field 

produced by Saturn, moons of Jupiter; Io, Europa,Ganymede and Callisto, lie within the magnetic field 

generated by the dynamo action of Jupiter Kivelson et al. 1996. Similar situations for stellar dynamo within 

binary system. Several authors studied galactic and accretion disc dynamos within external fields (e.g. Moss 

&Shukurov 2001, 2004. 

Data from Galileo orbiter indicated that, the two of Jupiter‘s moons; Io and Ganymede, have significant 

magnetic fields of internal, these fields are produced by some form of MHD processes, similar to the 

mechanismthought to be responsible for the magnetic field of the Earth and other terrestrial planets. However, 

that happiness within the magnetic field of Jupiter The ambient magnetic field that the Jovian moons 

experiencehas contributions from Jupiter‘s intrinsic field and from the field of a plasma sheet in the Jovian 

magnetosphere. 

In this case the generation of magnetic field does not need critical values of 𝜔 or 𝛼 -effects. The Jovian 

magnetic field is non-axisymmetric, it rotates with the planet in a time scale much faster than of the internal 

MHD processes and so the relevant contribution to the ambient field is the Jovian field time-averaged over a 

Jupiter rotation. 

Io and Ganymede have dipole moments of about equal strength; they lie, however, in ambient fields of 

different strength (Kivelson et. al.1996). It is possible that Io and Ganymede generate magnetic fields by their 

dynamo processes with ambient field of secondary. 
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The presence of the ambient field admits a second possibility, however; that the differing ratios of 

imposed field to intrinsic field are significant, and that the two moons operate in quite different MHD regimes, 

the MHD processes dominated by the ambient field, may be important in the case of Io (Schubert et. al. 1996). 

The intrinsic field of terrestrial planets producedwithin the core of object is much stronger than the ambient field 

but the relatively weak ambient field should help toward the generation of magnetic fields. Our investigation is 

concerned on the situation of the planets which effected with ambient fields as Jupiter‘s moons. 

We studied some cases of the generation of magnetic fields using different values of 𝑅𝜔  and 𝑅𝛼effects. 

The work presented here is similar to Darah and Sarson 2007, but this work is focusing on the nonaxisymmetric 

mean field dynamo within an axial external field (either constant, or harmonically oscillating), we consider 

different regimes of interaction between simple dynamo systems and a fluctuating external field of varying 

strength. We consider a sphericalshell geometry, similar to that of the Earth, but the conclusion will not be 

widely different for Earth-like problems. 

We assume the fluid motion (and 𝛼 -effect) is symmetric (antisymmetric) about the equatorial plane. 

The magnetic field may then also be of ‗pure‘ symmetry — either dipole (antisymmetric) or quadrupole 

(symmetric) about the equator — or of ‗mixed‘ symmetry (see, e.g. Gubbins& Zhang 1994). Here we consider 

the 

possibility of solutions of each symmetry type; indeed, the possibility of the (dipole) external field influencing 

the solution symmetry is one of the most interesting aspects of the problem, from the theoretical viewpoint. 

 

II. Model 
Most of studies have been done, so far, were concerned with the axisymmetric model, Barenghi 1993, 

Hollerbach& Jones 1993 however, the magnetic field occurring in physical systems is not necessarily to be 

axisymmetric but may well be non-axisymmetric with respect to the rotation axis. And it can be symmetric or 

antisymmetric about the equatorial plane. The first investigations of non-axisymmetric 𝛼𝜔 dynamos were by 

Krause 1971, who pointed out that symmetric fields in the non-axisymmetric model have smaller eigenvalues 

than the antisymmetric fields on the α-effect dynamo, and also studied by Roberts & Stix 1972. So 

this paper will be concerned with non-axisymmetric magnetic fields. We will consider the induction 

equation for a single non-axisymmetric wave-number in our spherical shell model; first, with no ambient 

magnetic field, and then with an ambient magnetic field of nonaxisymmetric geometry in the form of an 

equatorial dipole. 

The system consists of an electrically conducting fluid contained in a  spherical shell, and the region interior to 

the fluid is finitely conducting, and is of the same conductivity as the fluid itself. 

𝑼, 𝒃𝑖  and 𝒃𝑜  are fluid flow and inner and outer core magnetic fields respectively, and 𝒃1 is an ambient magnetic 

field. 

The non-axisymmetric equations are 
𝝏𝒃𝒊

𝝏𝒕
= 𝛁𝟐𝒃𝒊,        (1) 

∇ ∙ 𝒃𝑖 = 0,                        (2) 
 

for inner core magnetic field 𝑏𝑖; and 
𝜕𝒃𝑜

𝜕𝑡
= ∇ ×  𝑼 ×  𝒃𝑜 + 𝒃1 + ∇ × 𝛼(𝒃𝑜 + 𝒃1) + ∇2𝒃𝑜 ,           (3) 

∇ ∙ 𝒃𝑜 = 0.                 (4) 

for outer core magnetic field 𝒃𝑜 , e.g., Hollerbach& Jones (1993). The decomposition of the 

nonaxisymmetricfield into toroidal and poloidal parts is 

 

𝑏 = ∇ ×  𝑔𝒆 𝒓 + ∇ × ∇ ×  ℎ𝒆 𝒓           (5) 

 

The flow 𝑼 and α-effect are axisymmetric, we assumed,as e.g., Brandenburg et al. (1989), a functional formfor 

α given by 

 

𝛼 =
𝛼0 cos 𝜃

1+𝒃2 ,           (6) 

 

Where𝛼0 is a constant. 

The equations are non-dimensionalised using thelength-scale of the shell, ℒ = 𝑟𝑜 − 𝑟𝑖 , where 𝑟𝑜  and𝑟𝑖  are the 

outer and inner core radii, and the magneticdiffusion time-scale, 𝒯 = ℒ2/𝜂 where 𝜂is the magneticdiffusivity. 

This leaves the mean-field equationsgoverned by the non-dimensional parameters 
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𝑅𝜔 =
𝜔0ℒ2

𝜂
,         𝑅𝛼 =

𝛼0ℒ2

𝜂
.           (7) 

 

In the following, we will fix 𝑅𝜔 , and treat 𝑅𝛼  as ourcontrol parameter. The radius ratio
𝑟𝑖

𝑟𝑜
= 1/3 isadopted. (This 

value is approximately that applicableto the Earth, here considered a model for other terrestrialplanets.) 

The variables g, h, are expanded in the outer core,e.g., Jones et al. 1995, as 

𝑔𝑜 =   𝑔𝑛𝑙
𝑜 𝑇𝑙−1 𝑥𝑜 𝑃𝑗

 𝑚 
(cos 𝜃)𝑒𝑖𝑚𝜙𝑀+2

𝑙=1
𝑁
𝑛=1 , (8) 

ℎ𝑜 =   ℎ𝑛𝑙
𝑜 𝑇𝑙−1 𝑥𝑜 𝑃𝑗

 𝑚 
(cos 𝜃)𝑒𝑖𝑚𝜙𝑀+2

𝑙=1
𝑁
𝑛=1 , (9) 

 

and in the inner core as 

𝑔𝑖 =   𝑔𝑛𝑙
𝑖 𝑇2𝑙−1 𝑥𝑖 𝑃𝑗

 𝑚 
(cos 𝜃)𝑒𝑖𝑚𝜙

𝑀

2
+1

𝑙=1
𝑁
𝑛=1 ,(10) 

ℎ𝑖 =   ℎ𝑛𝑙
𝑖 𝑇2𝑙−1 𝑥𝑖 𝑃𝑗

 𝑚 
(cos 𝜃)𝑒𝑖𝑚𝜙

𝑀

2
+1

𝑙=1
𝑁
𝑛=1 ,(11) 

 

where 𝑥𝑜 = 2 𝑟 − 𝑟𝑖 − 1 is the radial coordinate normalizedto (−1,1), and 𝑥𝑖 = 𝑟/𝑟𝑖 . 𝑘1 = 2, 𝑘1 = 1for even 

𝑚 and 𝑘1 = 1, 𝑘2 = 2 for odd 𝑚 to obtainthe dipole components; and 𝑘1 = 1, 𝑘2 = 2for even𝑚and 𝑘1 = 2, 

𝑘2 = 1 for odd m for the quadrupolecomponents. 

𝑃𝑛
𝑚 (cos 𝜃) are the associated Legendre functions,𝑇𝑙 𝑥  are Chebyshev polynomials. The truncationwhich has 

been used in this work is 𝑀 = 12 and 𝑁 = 6.Some checks of the system have been made at a higher 

truncations (𝑀 = 16, 20 and 𝑁 = 8, 10, respectively)figure1, however. 

𝑗 is replaced by (2𝑛 + 𝑚 − 2) in the equations (8)and (10), and by  

(2𝑛 + 𝑚 − 1) in the equations (9) and(11) to obtain the dipole model. For the quadrupolemodel j will be 

replaced by(2𝑛 + 𝑚 − 1) in equations(8) and (10) and by(2𝑛 + 𝑚 − 2)in equations (9) and(11). The mixed 

system 𝑗 includes both dipole andquadrupole components. In this work we consider onlythe case 𝑚 = 1, 

however. 

 

 
Figure 1: The magnetic field for truncations (N=6, M=12) solid line and (N=8, M=16) dashed line. 

 

The ambient magnetic field 𝒃1 can be written as 

 

𝒃1 = ∇ × ∇ × (ℎ1𝒓 ),    (12) 

 

where 

ℎ1 = 𝑏1ℎ1(𝑟)𝑃1
1(cos 𝜃)𝑒𝑖𝜙 ,         (13) 

 

and 

ℎ1 𝑟 = −
1

2
𝑟2.                              (14) 

Within the code, ℎ1 𝑟  is expanded as a Chebyshevseries, as 

ℎ1 𝑟 =  ℎ1𝑙
𝑜 𝑇𝑙−1 𝑥𝑜 

3
𝑙=1 ,             (15) 

in the outer core, with 

 



Non-axisymmetric field generation within an ambient field 

DOI: 10.9790/5728-1206018498                                          www.iosrjournals.org                                   87 | Page 

ℎ1,1
𝑜 = −9/16, ℎ1,2

𝑜 = −1/2, and ℎ1,3
𝑜 = −1/16, and as 

ℎ1 𝑟 = ℎ1,1
𝑖 𝑥𝑖𝑇2𝑙−1 𝑥𝑖 ,                (16) 

 

in the inner core, with 

ℎ1,1
𝑖 = −1/8. 

The boundary conditions on the magnetic field arederived from matching the outer and inner fields at𝑟 = 𝑟𝑖  and 

matching the outer field to the field in aninsulator at 𝑟 = 𝑟𝑜 . 

This gives, for the poloidal field: 

 

ℎ𝑖 = ℎ𝑜 ,  
𝜕ℎ 𝑖

𝜕𝑟
=

𝜕ℎ𝑜

𝜕𝑟
,    at     𝑟 = 𝑟𝑖(17) 

 

and the toroidal field: 

 

𝑔𝑖 = 𝑔𝑜 ,  
𝜕𝑔𝑖

𝜕𝑟
=

𝜕𝑔𝑜

𝜕𝑟
,    at     𝑟 = 𝑟𝑖(18) 

𝑔𝑜 = 0,     at𝑟 = 𝑟𝑜 (19) 

 

The coefficients for the model quantities are all complexwith the physical variables being the real part ofthe 

quantity, e.g. 

 

ℜ ℎ𝑒𝑖𝑚𝜙  = ℜ ℎ cos 𝑚𝜙 − ℑ(ℎ) sin 𝑚𝜙.    (20) 

 

The background field will be allowed to vary in time,in the form of a rotating equatorial dipole. This thentakes 

the form 

 

ℎ1 = 𝑏1ℎ1(𝑟)𝑃1
1(cos 𝜃)𝑒𝑖𝜙𝑒𝑖𝜈1𝑡 ,    (21) 

 

= 𝑏1ℎ1(𝑟)𝑃1
1(cos 𝜃)𝑒𝑖(𝜙+𝜈1𝑡),       (22) 

 

with the physical field being given by the real part,as before. Here, 𝜈1 is the rotation frequency of theimposed 

field. 

 

III. Results 
In presenting the non-axisymmetric results, we treat the solutions in three categories. First the 

calculation with no background magnetic field (𝑏1 = 0, 𝜈1 = 0).Then, the results with a constant ambient 

magnetic field (𝑏1 ≠ 0, (constant) and 𝜈1 = 0). Finally, the results with an oscillating external magnetic field 

(𝑏1 ≠ 0, 𝜈1 ≠ 0). 

The description of the solutions types illustrated in the table 1. 

 
Code Solution Code Solution 

D Dipole S Stationary 

Q Quadrupole O Oscillatory 

M Mixed R S. En. & O. Fi 

Table 1: Codes for the different types of solutions of magnetic Energy and magnetic Field 

 

By testing the system for different values of 𝑅𝜔 , it‘s appeared that the more interesting values are accured at 

𝑅𝜔 > 20, and according to the paper (Darah & Sarson), which studied the axisymmetric magnetic field 

generation within an ambient field at 𝑅𝜔 = 25, 50 𝑎𝑛𝑑 100, so we carried out the calculation with the same 

values of 𝑅𝜔 . 

 

2.1 No ambient field (𝒃𝟏 = 𝟎) 

Firstly, we fix 𝑅𝜔 = 25 and vary 𝑅𝛼 . The onset of dynamo action is at 𝑅𝛼𝑐 ≅ 7, where the solution is 

SD. At a bifurcation value 𝑅𝛼𝑏 ≥ 8.3, it becomes OM with two frequencies for the magnetic field and also two 

frequencies for the magnetic energy, and remains the same up to 𝑅𝛼𝑐 ≅ 38 where it becomes RQ (Figure 2). For 

example, at 𝑅𝛼 = 20, the solution has an oscillatory magnetic energy frequencies 15 and 36 and magnetic field 

behaviour with frequencies 18 and 33 (Figure 3), whereas at 𝑅𝛼 = 60 — where the solution has a stationary 

energy behavior— the magneticfield has an oscillatory behaviour with a frequency 20 (Figure 4),  

corresponding to rotation of internal field. These solutions are illustrated in figure 5. 
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Figure 2: The total energy SD (open circles) for 𝑅∝< 8.3, OM (closed circles) for 8.3 <𝑅∝< 38 and SQ (squares) 

for 𝑅∝> 38 of the non-axisymmetric solutions for 𝑅𝜔 = 25 and 𝑏1 = 0. 

 

 
Figure 3: The total magnetic energy and its corresponding Fourier  transform (the first and second rows) 

respectively 
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Figure 4: The total magnetic energy (top) and the total magnetic field and its corresponding Fourier transform 

(the middle and bottom) respectively of the nonaxisymmetric solution at 𝑅𝜔 = 25, 𝑅𝛼 = 60 and 𝑏1 = 0.0 

 

And the magnetic field and its corresponding Fourier  transform (the third and fourth rows) respectively, of the 

non-axisymmetric solution at 𝑅𝜔 = 25, 𝑅𝛼 = 20 and 𝑏1 = 0.0. 

 

 
Figure 5: The behavior of the magnetic field at 𝑧 = 0.0 (first column), ∅ = 0 (second column) and ∅ = 90 

(third column) for the nonaxisymmetric magnetic field at 𝑅𝜔 = 25, 𝑏1 = 0.0 and 𝑅𝛼 = 7.6 (first row), 𝑅𝛼 = 20 

(second row) and 𝑅𝛼 = 60 (third row). The contours in the second and third columns show azimuthal field 𝐵∅. 
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Secondly, for 𝑅𝜔 = 50, there are actually two solution branches: the first is an OD, it starts to act as a dynamo 

at 𝑅𝛼 ≅ 9. The second branch is an OM, it appears at 𝑅𝛼 ≅ 15, the solutions at 𝑅𝛼 ≅ 10 for example, has an 

OD behaviour with a magnetic field frequency 18, and another solutionappears at 𝑅𝛼 = 20, the solution has an 

OMbehaviour with a magnetic field  frequency 29 (Figure 6). At 𝑅𝛼 = 30, both solutions become chaotic. 

 

 
Figure 6: The magnetic energy of the dipole solution (squared line) and the mixed solution (circle line) for non-

axisymmetric solutions at 𝑅𝜔 = 50 and 𝑏1 = 0. 

 

Finally, for 𝑅𝜔 = 100 the solution has a consistent OQ behaviour, with an  onset value for dynamo action at 

𝑅𝛼 ≅ 10 (Figure 7) see also (Figure 8).  

At 𝑅𝛼 ≅ 50, the solution has an oscillatory magnetic field behavior with a frequency 55. Table (2) summarises 

the critical values 𝑅(𝛼𝑐 ,𝑏) for the various values of 𝑅𝜔 . 

 

 

 

 

 

 

 

 

Table 2:𝑅𝜔  and the corresponding  𝑅(𝛼𝑐 ,𝑏)critical an bifurcations values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The quadrupole oscillatory solution of the magnetic energy for 𝑅𝜔 = 100 and 𝑏1 = 0b1 = 0 

 

2.1 Constant ambient field (𝒃𝟏 ≠ 𝟎 and 𝝊𝟏 = 𝟎) 

From the preceding section we can see that the more interesting solution occurs at 𝑅𝜔 = 25. At this 

value we could not only more than one solution behaviour, but also the solutions seem to be consistent 

OQevenfor𝑅∝ ≅ 100. So we carry out the calculations with an ambient magnetic field present for this value of 

𝑅𝜔 . 

Fields are now generated even at 𝑅∝ = 0, and the critical values of 𝑅∝ are not needed in this situation. 

For ambient magnetic fields with 𝑏1 = 0.1 and 1.0, the solutions start as SQ with energy values 0.0225 and 2.25 

respectively. This energy corresponds to the constant energy of the ambient magnetic field, throughout the 

spherical shell and inner core. In fact, the magnetic energy 𝐸𝑚  could be calculated as 

𝐸𝑚 ≅
1

2
𝑏1

2  𝑑𝑉
𝑉

(23) 

𝑅𝜔  𝑅(𝛼𝑐 ,𝑏) Behaviour 

25 7 SD 

25 8.3 OM 

25 38 SQ 

50 9 OD 

50 15 OM 

50 10 OQ 
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≅
1

2
𝑏1

2(
4

3
𝜋𝑟𝑜

2)(24) 

where V is the spherical volume. 

At 𝑅∝𝑏 ≅ 7 the solution with 𝑏1 = 0.1becomes OQ, whereas the solution with 𝑏1 = 1.0 becomes OQ at the 

bifurcation point 𝑅∝𝑏 ≅ 11.5 (Figure 10). At larger values of 𝑅𝛼 , the solution with 𝑏1 = 0.1 becomes stronger 

than with 𝑏1 = 1.0, the ambient field acts somewhat to hinder dynamo action. At 𝑅𝛼 = 20, they have oscillatory 

solutions. The solution with 𝑏1 = 0.1 hasmagnetic field frequencies 18 and 33 and magnetic energy frequencies 

15 and 30 whereas, the solution with b1 = 1.0 has 18 and 36 for both the magnetic energy and the magnetic field 

frequencies (Figure 9). Here thefrequency 𝜐1 = 18 is the natural frequency 𝜐𝑛  in this case, we use this value in 

the following sections. It has a negative sign corresponding to clockwise direction rotation. 

 

2.2 Rotating ambient field (𝒃𝟏 ≠ 𝟎 and 𝝊𝟏 ≠ 𝟎) 

The calculations in this section are concerned with the system with 𝑅𝜔 = 25 and 𝑏1 = 1.0. From the 

previous, the model with 𝜐1 = 0 has two solution types: stationary at 𝑅𝛼 < 11.5, and oscillatory at 𝑅𝛼 > 11.5. 

So we considered the two values 𝑅𝛼 = 10,20. For the former value, the solution is ―stationary‖, for the latter 

value the solution is ―oscillatory‖. First, we fix 𝑅𝜔 = 25, 𝑅𝛼 = 20, 𝑏1 = 1.0 and vary 𝜐 > 0. We know from 

the preceding section that the model with 𝜐1 = 0 has an OQ with a natural frequency𝜐𝑛 ≅ 18. The calculation 

shows that the solutions have similar OQbehaviour even for 𝜐1 ≫ 𝜐𝑛 . The effect of increasing𝜐1 is that the 

magnetic energy frequency (𝜐) increases with 𝜐1and it equals 𝜐 = 𝜐1 + 𝜐1. Table 3 shows some values of the _1 

and the corresponding solution frequencies 𝜐 = 𝜐1 + 𝜐1. 

Figure 11 and 13 show the behaviour of three solutions: magnetic energy is plotted vs time and, figure 12 and 14 

vs the corresponding frequency respectively. 

The behaviours seem to be similar OQ, but the frequency increases with 𝜐1. 

The frequency components of the magnetic energy can be understood by considering the interaction oftwo 

frequencies of rotation, 𝜐1 and 𝜐𝑛 . Then 

𝑏𝑥 = 𝑏1 cos(𝜐1𝑡) + 𝑏2 cos(𝜐𝑛𝑡 + 𝜓),                (25) 

𝑏𝑦 = −𝑏1 sin(𝜐1𝑡) − 𝑏2 sin(𝜐𝑛𝑡 + 𝜓),              (26) 

for some phase difference  , where 𝑏1 and 𝑏2 are real.The energy then goes as 

𝐸𝑚 = 𝑏1
2 + 𝑏2

2 + 𝑏1𝑏2 cos[ 𝜐1 − 𝜐𝑛 𝑡 − 𝜓].                (27) 
So the signal in the time series of the energy have frequency 𝜐1 − 𝜐𝑛 . 

 
𝜐1 𝜐𝑛  

0 18 

1 19 

15 33 

30 48 

100 118 

Table 3:𝜐1 and the corresponding magnetic energy frequencies 𝜐 at 𝑅𝜔 = 25, 𝑅𝛼 = 20 and 𝑏1 = 1.0. 

 

Another interesting type of solutions occur, however, if 𝜐1 is further increased (𝜐1 ≫ 𝜐𝑛 ). At 𝜐1 = 100 

for instance, the solution has two types of behaviour: an internal magnetic field and a skin magnetic field. Figure 

15 shows the two types rotate at different speeds; between 15(A) and 15(C), the skin field has done one rotation 

in time 𝑡 ≅ 𝑇1, and from 15(A) to 15(D) the interior field has done half a rotation in time 𝑡 ≅ 𝑇𝑛 , where 

𝑇𝑘 = 2𝜋/𝜐𝑘  is period associated with the relevant frequency. Secondly, for 𝑅𝜔 = 25, 𝑅𝛼 = 10 and 𝑏1 = 1.0, 

the model at these parameters with 𝜐1 = 0 has a SQ solution. At 𝜐1 = 1 the magnetic energy is still stationary, 

but the magnetic field has an oscillatory behaviour with a frequency 1, and the solution has internal rotation in 

the 𝜙 direction; ie, the solution is RQ. By slightly increasing 𝜐1, the magnetic energy becomes OQ at𝜐1 ≅ 5 

with a magnetic field frequency 5. This frequency increases with 𝜐1. Figure 16 shows the magnetic energy vs 

time. The top solution is stationary (𝜐1 = 1), whereas the next two solutions are similar (oscillations), they are at 

𝜐1 = 10 and 100 and their magnetic energy frequencies are 28 and 108 respectively(Figure 17). At high value of 

𝜐1 = 100, the solution has a similar behavior to the solution at 𝑅∝ =R_ = 20 (Figure 18). 

Figure 18 presents magnetic field behavior of the non-axisymmetric solution at 𝑅𝜔 = 25, 𝑅𝛼 = 10 and 𝑏1 = 1.0 

and 𝜐1 = 100 at times 𝑡 = 10.36, 10.42, 10.72 (from top to bottom). The field has a double rotation behavior; 

the internal and boundary fieldsrotate at different speeds. The outer field has doneone rotation in time 𝛿𝑡 ≅ 𝑇1  

(between first and secondrows), whereas the inner field has done half a rotationin time 𝛿𝑡 ≅ 𝑇𝑛/2 (between first 

and third rows). 
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Figure 8: The behavior of the magnetic field at 𝑧 = 0.0 (first column), ∅ = 0 (second column) and ∅ = 90 

(third column) for 𝑏1 = 0.0. the first and second rows illustrate the dipole and mixed solutions at 𝑅𝜔 = 50 for 

𝑅𝛼 = 10 and 20, respectively, the third row is the quadrupole solution at 𝑅𝜔 = 100 (𝑅𝛼 = 20). 

 

IV. Concluding Remarks 
Three values of𝑅𝜔  have been used in our calculations for the non-axisymmetric system: 𝑅𝜔 = 25, 50  

and 100. The system has critical values of dynamo numbers. 

The solutions start as stationary (at 𝑅𝜔 = 25) or oscillatory (at 𝑅𝜔 = 50 and 100). The solution at 𝑅𝜔 = 50 has 

two branches (OD and OM) with differentcritical 𝑅𝛼  values, at 𝑅𝛼 = 30 both become chaotic. 

At 𝑅𝜔 = 100, the system has consistent (OQ) solution with critical value of 𝑅𝛼 = 10. The more 

interestingsolution occurs at 𝑅𝜔 = 25 where it has threetypes of solution behaviors: SD, OM and RQ, withthree 

transition values. Each of these solutions hasoscillatory magnetic energy and magnetic field, correspondingto a 

rotation in the ∅ direction, except thecase at 𝑅𝜔 = 25and 7 ≤ 𝑅𝛼< 8.3, where the solutionis SD. 

For the system with an ambient field (𝑏1 ≠ 0), the more interesting  solution occurs at 𝑅𝜔 = 25 and 𝑅𝜔 = 100. 

Since field is generated even at 𝑅𝛼 = 0, the solutions start as stationary or rotating until the first bifurcation 

point of 𝑅𝛼 , where the solutions becomes (OQ). These bifurcation values increases with the external field 𝑏1 

value. For 𝑅𝛼> 7 the magnetic energyat 𝑏1 = 0.1 becomes larger  than at 𝑏1 = 1.0 as the ambient field inhibits 

the internal generation. Both solutions have their own magnetic energy and magnetic field frequencies. 
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Figure 9: The magnetic energy and its Fourier transforms energy (top), and the magnetic field and its Fourier 

transforms (bottom) of the non-axisymmetric solution at 𝑅𝜔 = 25, 𝑅∝ = 20 and 𝑏1 = 1.0. 
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Figure 10: The magnetic energy of the quadrupole oscillatory solution for 𝑅𝜔 = 25. At 𝑏1 = 0.1, stationary 

(squared line) then oscillatory (stared line) solutions are shown; at 𝑏1 = 1.0, stationary (dotted line) then 

oscillatory (circle line) solutions occur. 

 
Figure 11: The magnetic energy of the nonaxisymmetric solution for 𝑅𝜔 = 25, 𝑅𝛼 = 20, 𝑏1 = 1.0 and 

𝜈1 = 1, 18 and 100(right to left) 
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Figure 12: The Fourier transforms of the nonaxisymmetric solutionat 𝑅𝜔 = 25, 𝑅𝛼 = 20, 𝑏1 = 1.0 and 

𝜐1 = 1, 18 and 100 (top to bottom). 

 

 
Figure 13: The magnetic fields of the nonaxisymmetric system and their Fourier transforms at 𝑅𝜔 = 25, 

𝑅𝛼 = 20, 𝑏1 = 1.0 and 𝜐1 = 1, 18 and 100 (top to bottom). 
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Figure 14: The Fourier transforms of the nonaxisymmetric system at 𝑅𝜔 = 25, 𝑅𝛼 = 20, 𝑏1 = 1.0 and 

𝜐1 = 1, 18 and 100 (top to bottom). 

 

 
Figure 15: The rotation behaviour of the magnetic field at 𝑅𝜔 = 25, 𝑅𝛼 = 20, 𝑏1 = 1.0 and 𝜐1 = 100for the 

non-axisymmetric magnetic field in  ∅ = 0first row) and ∅ = 90 (second row) direction at times 𝑡 =
0.01, 0.03, 0.6 and 0.16 (for A, B, C and D respectively). 
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Figure 16: The non-axisymmetric magnetic energy at 𝑅𝜔 = 25, 𝑅𝛼 = 10, 𝑏1 = 1.0 and 𝜐1 = 1.0, 10 and 

100(top to bottom). 

 

 
Figure 17: The Fourier transform of the magnetic energy for the nonaxisymmetric solutions at 𝑅𝜔 = 25, 

𝑅𝛼 = 10, 𝑏1 = 1.0 and 𝜐1 = 10 (top) and 100(bottom). 
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Figure 18: The rotation behaviour of the magnetic field at 𝑅𝜔 = 25, 𝑅𝛼 = 10, 𝑏1 = 1.0 and 𝜐1 = 100, for the 

non-axisymmetric magnetic field in ∅ = 0 (A) and ∅ = 90 (B)at times 𝑡 = 10, .36, 10,42 and 10,72 (top to 

bottom). 


