Rank of Product of Certain Algebraic Classes

Udoaka, O. G. And David. E. E., Asibong-Ibe U. I

University of Port Harcourt, Nigeria.

Abstract: The properties of rank of a finite semigroup were presented by Howie in [1], and this properties is more general in algebraic system such as semigroup, or indeed even a group. We use this concept (properties) to compute the upper rank and the intermediate rank of direct product of a distinct monoid and the quotient group.

Keywords: Monoid, Independent set, Quotient group and Cyclic group.

I. Introduction And Preliminaries

Many authors have studied the rank properties in the context of general algebras since the work of Marczewski in [2]. This property is similar to the concept of dimension in linear algebra. Howie and Ribeiro in [1] considered the following definition of rank for a finite semigroup.

1. \(r_1(S) = \max \{ k : \text{every subset } U \text{ of cardinality } k \text{ in } S \text{ is independent} \} \), this is called the small rank
2. \(r_2(S) = \min \{ |U| : U \subseteq S, (U)=S \} \) This is called the lower rank
3. \(r_3(S) = \min \{ |U| : U \subseteq S, U \text{ is independent} \} \). This is called the intermediate rank
4. \(r_4(S) = \max \{ |U| : U \subseteq S, U \text{ is independent} \} \). This is called the upper rank
5. \(r_5(S) = \min \{ k : \text{every subset } U \text{ of cardinality } k \text{ in } S \text{ generate } S \} \). This is called the larger rank.

1.1 Definition (independent subset)

A subset \(U \) of a semigroup \(S \) is said to be independent if for all element \(a \) belonging to \(U \), \(a \) does not belong to the generating subset \(U \setminus \{ a \} \) of \(S \). That is

\[(\forall a \in U) \ a \notin (U \setminus \{a\})\]

1.2 All the five ranks coincide in certain semigroups. However, there exist semigroups for which all these ranks are distinct.

In this work, we adopt the notations and definition given in [1] and [3]. A monoid is a semigroup with identity element. We shall in section 2 compute the intermediate rank and the upper rank of the direct product of monoid. In section 3, we compute that of the quotient group. Throughout this work, our semigroup \(S \) is a monoid.

1.3 REMARK

As the definition of different rank implies, lower intermediate and upper ranks, it has been shown that \(r_2(S) \leq r_3(S) \leq r_4(S) \).

SECTION 2

We present in this section the result of the rank of the direct and subdirect product of the monoid. Our intermediate rank \(r_3(S) \) is denoted by \(r(S) \), and the upper rank \(r_4(S) \) by \(R(S) \), except otherwise stated.

Theorem 2.1

Let A, B be monoids, then \(R(A \times B) \geq R(A) + R(B) \)

Proof

If \(a_1, a_2, ..., a_k \) and \(b_1, b_2, ..., b_l \) are maximal sets in A and B, respectively, then

\((a_1, 1), (a_2, 1), ..., (a_k, 1), (1, b_1), (1, b_2), ..., (1, b_l)\)

are independent in \(A \times B \). Also ,

\{\((a_1, 1), (a_2, 1), ..., (a_k, 1), (1, b_1), (1, b_2), ..., (1, b_l) \) \}

are independent in \(A \times B \). Then \(R(A \times B) \geq R(A) + R(B) \).

Similarly, for monoids A, B, C, we have that for independent sets \((c_1, c_2, ..., c_t) \) in C and C is not a subset of A or B, we would have

\{\((a_1, 1, 1), (a_2, 1, 1), ..., (a_k, 1, 1), (1, b_1, 1), (1, b_2, 1), ..., (1, b_l, 1) \) \}

is independent in \(A \times B \). Moreover, From product set, we have \(R(A \times B \times C) \geq R(A) + R(B) + R(C) \).

Corollary 2.2

If our monoids is distinct, then \(R(B \times A) > R(B) + R(A_{K+1}) \)

Proof
Let \(A_1, A_2, \ldots, A_m \) be distinct monoids, then a typical element in \(A_1 \times A_2 \times \ldots \times A_m \) is \((a_1, a_2, \ldots, a_m)\), \(a_i \in A_i\). An independent set in \(A_\nu \) is \((a_{\nu 1}, a_{\nu 2}, \ldots, a_{\nu r})\). Also, for the subdirect product
\[
\{(a_{\nu 1}, 1, \ldots, 1), (1, a_{\nu 2}, 1, \ldots, 1), \ldots, (1, 1, \ldots, 1, a_{\nu r})\}
\]
is independent set in \((A_1 \times A_2 \times \ldots \times A_m) \).

Let \(m=k \)
\[
R(A_1 \times A_2 \times \ldots \times A_k) \geq R(A_1) + R(A_2) + \ldots + R(A_k)
\]
For \(m=k+1 \)
\[
R(A_1 \times A_2 \times \ldots \times A_{k+1}) \geq R(A_1) + R(A_2) + \ldots + R(A_{k+1})
\]
Let \(A_1 \times A_2 \times \ldots \times A_k \) be \(B \)
Then \(R(B \times A) \geq R(B) + R(A_{k+1}) \)

Theorem 2.3

Then intermediate rank \(\rho \) is given by
\[
R(B \times A) \geq R(B) + R(A_{k+1})
\]

Proof
The proof is straightforward from theorem (2.2) for the same distinct monoid.

SECTION 3

The collection of all cosets of normal subgroups form a group usually referred to as quotient group. We now compute the rank of this quotient group in this section.

REMARK 3.1

The notion of a quotient group is fundamental for group theory and indeed is one of the most important concepts in mathematics. We therefore repeat some of the relevant points:

1. The elements of \(G/N \) \((G \) is a group and \(N \) is a normal subgroup) are the distinct coset of \(N \), the law of composition being multiplication of subset (or addition of cosets when \(G \) is written additively.)

2. The identity (neutral) element in the group \(N \), regarded as one of the cosets.

3. It is immaterial whether we use right or left coset since \(Nt=\operatorname{Nt} \), because \(N \) is normal for \(t \in G \).

4. Recall that the representative of a particular coset is not unique.

Theorem 3.2

For any quotient group \(G/N \) \((the \ group \ G \ is \ finite) \) where \(G_1 \) and \(G_2 \) are distinct in \(G/N \),
\[
R(G_1 \times G_2) \geq R(G_1) \times R(G_2)
\]
and
\[
\rho(G_1 \times G_2) \geq \rho(G_1) \times \rho(G_2)
\]

Proof

Let \(G \) be a group and \(N \subseteq G \), then \(G/N \) is a group,
\[
G/N = \{N_{x_0}, N_{x_1}, \ldots, N_{x_t}\}
\]

Put \(N_{x_0} \equiv N \) \((i.e \ x_{0} \equiv \epsilon)\)
\[
G/N \cong G^* \{g_{0}, g_{1}, \ldots, g_{t}\}.
\]

Let \(t \) be the minimum rank of independent set of \(G^* \)
By Lagranges theorem, It is well known that
\[
[G^*] = \frac{|G|}{|N|}
\]

Thus, the rank of any quotient group \(G^* < \text{rank of } G \).

If for \(G^*_1, G^*_2, \ldots, G^*_t \) is a set of respective quotients group of \(G \) modulo \(N_1, \ldots, N_t \) respectively, we have
\[
G^*_1 \times G^*_2 \times \ldots \times G^*_t = \frac{G_1}{N_1} \times \frac{G_2}{N_2} \times \ldots \times \frac{G_t}{N_t}
\]
\[
R(G^*_1 \times G^*_2 \times \ldots \times G^*_t) = R\left(\frac{G_1}{N_1} \times \frac{G_2}{N_2} \times \ldots \times \frac{G_t}{N_t}\right)
\]
\[
\rho(G^*_1 \times G^*_2 \times \ldots \times G^*_t) \leq R(G^*_1 \times G^*_2 \times \ldots \times G^*_t)
\]

Each \(G^* = H(G) \) \(\cong Q(G) \)
Rewriting this for intermediate rank we have
\[
\rho(H(G)) \leq \rho(G)
\]

The notions of independence in Abelian group \(G \) is compare to that of subsemigroup of a group \(G \). We make use of the definition in \([6]\)

Corollary 3.3

For a cyclic group \(H \) of order \(\prod q_i \)
The rank \(R(K_{n_1}) \geq R(H_1) + R(H_2) + \ldots + R(H_k) \)

Proof

Let \(n = p_1^{a_1} \cdots p_k^{a_k} = n_1 n_2 \cdots n_k \). Where \(n_i = p_i^{a_i} \) and \(q_i = \frac{a_i}{p_i^{a_i}} \)

DOI: 10.9790/5728-120601123125
$K_a = H_1 \times H_2 \times \ldots \times H_k = \langle a^{q_i} \rangle$

$H_i = \langle a^{q_i} \rangle$ is a cyclic group of order $P_i^{\alpha_i}$.

$$R(K_a) = R(H_1 \times H_2 \times \ldots \times H_k) \geq R(H_1) + R(H_2) + \ldots + R(H_k)$$

Rank $r(H_i) = r(\langle a^{q_i} \rangle) = R(K_a) \geq R(H_1) + R(H_2) + \ldots + R(H_k) \geq r(H_1) + r(H_2) + \ldots + r(H_k) = K$.

$R(H_i)$ is the lower rank of the cyclic group H.

REMARK 3.4

1. For any commutative semigroup S and T, the rank $R(S \times T) = \text{rank}(S) + \text{rank}(T)$ [5]
2. The rank of the direct product of any algebraic classes is computed based on the defining structure as shown above.

References