On the Diophantine equation $5\left(x^{2}+y^{2}\right)-9 x y=35 z^{2}$

M.A.Gopalan ${ }^{1}$, Nirmala Rebecca Paul ${ }^{2}$, P. Suganya ${ }^{3}$
${ }^{1}$ Professor, Department of Mathematics, Shrimati Inddira Gandhi College, Trichy, Tamil Nadu, India
${ }^{2}$ Department of Mathematics, Lady Doak College, Madurai, Tamil Nadu, India
${ }^{3}$ Department of Mathematics, Lady Doak College, Madurai, Tamil Nadu, India

Abstract: The ternary quadratic Diophantine equation $5\left(x^{2}+y^{2}\right)-9 x y=35 z^{2}$ representing cone is analyzed for its non-zero distinct integer points on it.
Keywords: Ternary quadratic, integral solutions, homogeneous cone. Mathematics Subject classification: 11 D09

I. Introduction

The ternary quadratic Diophantine equations offer an unlimited field for research by reason of their variety $[1,2,3]$. In particular, one may refer [4-12] for finding points in integers on some specific three dimensional surfaces. This communication concern with yet another ternary quadratic Diophantine equation $5\left(x^{2}+y^{2}\right)-9 x y=35 z^{2}$ representing cone for determining its infinitely many integer solutions.

II. Method of Analysis

Consider the equation
$5\left(x^{2}+y^{2}\right)-9 x y=35 z^{2}$
The transformed equation of (1) after using the linear transformations
$x=u+v, y=u-v(u \neq v \neq 0)$
is $u^{2}+19 v^{2}=35 z^{2}$
The above equation is solved through different methods and employing (2), different sets of distinct integer solutions to (1) are obtained which are illustrated below:

Method: 1

Write 35 as $35=(4+i \sqrt{19})(4-i \sqrt{19})$
Assume $z=a^{2}+19 b^{2}$
where a and b are non zero distinct integers
Using (4) \& (5) in (3) and employing the method of factorization, define

$$
u+i \sqrt{19} v=(4+i \sqrt{19})(a+i \sqrt{19} b)^{2}
$$

from which, on equating the real and imaginary parts
$u=4\left(a^{2}-19 b^{2}\right)-38 a b$
$v=\left(a^{2}-19 b^{2}\right)+8 a b$
Substituting the above values of u and v in (2), the values of x and y are given by
$x=5\left(a^{2}-19 b^{2}\right)-30 a b$
$y=3\left(a^{2}-19 b^{2}\right)-46 a b$
Thus, (5), (6) and (7) represent non zero distinct integer solutions to (1) in two parameters.
Note: In addition to (4), one may write 35 as $35=\frac{(11+i \sqrt{19})(11-i \sqrt{19})}{4}$
For this choice, the corresponding integer solutions to (1) are given by
$x=6\left(a^{2}-19 b^{2}\right)-8 a b$
$y=5\left(a^{2}-19 b^{2}\right)-30 a b$
$z=a^{2}+19 b^{2}$

Method: 2

Consider (3) as $u^{2}-16 z^{2}=19\left(z^{2}-v^{2}\right)$
Write (8) in the form of ratio as

$$
\frac{u+4 z}{z-v}=\frac{19(z+v)}{u-4 z}=\frac{a}{b}, b>0
$$

Which is equivalent to the system of double equations

$$
\begin{aligned}
& (a-4 b) z-a v-b u=0 \\
& (-4 a-19 b) z-19 b v+a u=0
\end{aligned}
$$

Applying the method of cross multiplication to the above equations, we have

$$
\begin{align*}
& u=4\left(a^{2}-19 b^{2}\right)+38 a b \\
& v=\left(a^{2}-19 b^{2}\right)-8 a b \\
& z=a^{2}+19 b^{2} \tag{9}
\end{align*}
$$

Substituting the above values of u and v in (2), the values of x and y are given by

$$
\begin{align*}
& x=5\left(a^{2}-19 b^{2}\right)+30 a b \\
& y=3\left(a^{2}-19 b^{2}\right)+46 a b \tag{10}
\end{align*}
$$

Thus, (9) and (10) represent non zero distinct integer solutions to (1) in two parameters.
Note: (8) can also be expressed in the form of ratio in three different ways as follows:
(i) $\frac{u+4 z}{19(z-v)}=\frac{(z+v)}{u-4 z}=\frac{a}{b}, b>0$
(ii) $\frac{u+4 z}{19(z+v)}=\frac{(z-v)}{u-4 z}=\frac{a}{b}, b>0$
(iii) $\frac{u+4 z}{z+v}=\frac{19(z-v)}{u-4 z}=\frac{a}{b}, b>0$

Repeating the analysis as above, we get three different sets of integer solutions to (1) and they are presented below:
Solutions of (i):
$x=95 a^{2}-5 b^{2}+30 a b$
$y=57 a^{2}-3 b^{2}+46 a b$
$z=19 a^{2}+b^{2}$
Solutions of (ii):
$x=-57 a^{2}+3 b^{2}-46 a b$
$y=-95 a^{2}+5 b^{2}-30 a b$
$z=-a^{2}-19 b^{2}$
Solutions of (iii):
$x=-3 a^{2}+57 b^{2}-46 a b$
$y=-5 a^{2}+95 b^{2}-30 a b$
$z=-a^{2}-19 b^{2}$

Method: 3

Write (3) as $19 v^{2}=35 z^{2}-u^{2}$
Write 19 as $19=(\sqrt{35}+4)(\sqrt{35}-4)$
Assume $v=35 a^{2}-b^{2}$
Where a and b are non zero distinct integers
Using (12) \& (13) in (11) and employing the method of factorization, define

$$
\sqrt{35} z+u=(\sqrt{35}+4)(\sqrt{35} a+b)^{2}
$$

Equating the rational and irrational parts, we get

$$
\begin{align*}
& u=4\left(35 a^{2}+b^{2}\right)+70 a b \tag{14}\\
& z=\left(35 a^{2}+b^{2}\right)+8 a b
\end{align*}
$$

Substituting the above values of u and v in (2), the values of x and y are obtained as
$x=175 a^{2}+3 b^{2}+70 a b$
$y=105 a^{2}+5 b^{2}+70 a b$
Thus, (14) and (15) represent the integer solutions of (1).

Method: 3

Introducing the linear transformations

$$
\begin{equation*}
z=\alpha \pm 19 \beta, v=\alpha \pm 35 \beta, u=4 U \tag{16}
\end{equation*}
$$

in (3), it leads to $\alpha^{2}=U^{2}+665 \beta^{2}$
which is satisfied by $\beta=2 p q, U=665 p^{2}-q^{2}, \alpha=665 p^{2}+q^{2}$
Substituting the above values of α, β, U in (16) and (2), the corresponding non-zero integer solutions to (1) are given by

$$
\begin{aligned}
& x=3325 p^{2}-3 q^{2} \pm 70 p q \\
& y=1995 p^{2}-5 q^{2} \mp 70 p q \\
& z=665 p^{2}+q^{2} \pm 38 p q
\end{aligned}
$$

It is worth to mention here that, (17) may be expressed as the system of double equations as shown in the table below:

Table 1: system of equations

system	1	2	3	4	5	6	7	8	9	10	11	12
$\alpha+U$	β^{2}	$5 \beta^{2}$	$7 \beta^{2}$	$19 \beta^{2}$	$35 \beta^{2}$	$95 \beta^{2}$	$133 \beta^{2}$	$665 \beta^{2}$	35β	95β	133β	665β
$\alpha-U$	665	133	95	35	19	7	5	1	19β	7β	5β	β

Solving each of the above system for α, β, U and using (16) and (2), the corresponding non-zero integer solutions satisfying (1) are exhibited in the table below:

Table 2: integer solutions

system	x	y	z
1	$10 k^{2}+80 k-960$	$6 k^{2}-64 k-1696$	$2 k^{2}+40 k+352$
	$10 k^{2}-60 k-1030$	$6 k^{2}+76 k-1626$	$2 k^{2}-36 k+314$
2	$50 k^{2}+120 k-152$	$30 k^{2}-40 k-360$	$10 k^{2}+48 k+88$
	$50 k^{2}-20 k-222$	$30 k^{2}+100 k-290$	$10 k^{2}-28 k+50$
3	$70 k^{2}+140 k-90$	$42 k^{2}-28 k-262$	$14 k^{2}+52 k+70$
	$70 k^{2}-160$	$42 k^{2}+112 k-192$	$14 k^{2}-24 k+32$
4	$190 k^{2}+260 k+30$	$114 k^{2}+44 k-94$	$38 k^{2}+76 k+46$
	$190 k^{2}+120 k-40$	$114 k^{2}+184 k-24$	$38 k^{2}+8$
5	$350 k^{2}+420 k+30$	$210 k^{2}+140 k-94$	$70 k^{2}+108 k+46$
	$350 k^{2}+280 k-40$	$210 k^{2}+280 k-24$	$70 k^{2}+32 k+8$
6	$950 k^{2}+1020 k+262$	$570 k^{2}+500 k+90$	$190 k^{2}+228 k+70$
	$950 k^{2}+880+192$	$570 k^{2}+640 k+160$	$190 k^{2}+152 k+32$

7	$1330 k^{2}+1400 k+360$	$798 k^{2}+728 k+152$	$266 k^{2}+304 k+88$
	$1330 k^{2}+1260 k+290$	$798 k^{2}+868 k+222$	$266 k^{2}+228 k+50$
8	$6650 k^{2}+6720 k+1696$	$3990 k^{2}+3920 k+960$	$1330 k^{2}+1368 k+352$
	$6650 k^{2}+6580 k+1626$	$3990 k^{2}+4060 k+1030$	$1330 k^{2}+1292 k+314$
9	$94 \beta, 24 \beta$	$-30 \beta, 40 \beta$	$46 \beta, 8 \beta$
${ }^{10}$	$262 \beta, 292 \beta$	$90 \beta, 160 \beta$	$70 \beta, 32 \beta$
${ }^{11}$	$360 \beta, 290 \beta$	$152 \beta, 222 \beta$	$88 \beta, 50 \beta$
${ }^{12}$	$1696 \beta, 1626 \beta$	$960 \beta, 1030 \beta$	$352 \beta, 314 \beta$

Method: 5
Consider (3) as $u^{2}+19 v^{2}=35 z^{2} * 1$
Write 1 as $1=\frac{(5+i 3 \sqrt{19})(5-i 3 \sqrt{19})}{14^{2}}$
Using (4) , (5) and (19) in (18) and employing the method of factorization, define

$$
u+i \sqrt{19} v=(4+i \sqrt{19})(a+i \sqrt{19} b)^{2} \frac{(5+i 3 \sqrt{19})}{14}
$$

Equating the real and imaginary parts, we have
$u=\frac{1}{14}\left[-37\left(a^{2}-19 b^{2}\right)-646 a b\right]$
$v=\frac{1}{14}\left[17\left(a^{2}-19 b^{2}\right)-74 a b\right]$
Substituting the above values of u and v in (2), the values of x and y are given by
$x=\frac{1}{7}\left[10\left(a^{2}-19 b^{2}\right)+360 a b\right]$
$y=\frac{1}{7}\left[27\left(a^{2}-19 b^{2}\right)+286 a b\right]$
Replacing a by 7A and b by 7B in (20) and (5), the corresponding non-zero integer solutions to (1) are given by
$x=-\left[70\left(A^{2}-19 B^{2}\right)+2520 A B\right]$
$y=-\left[189\left(A^{2}-19 B^{2}\right)+2002 A B\right]$
$z=49\left(A^{2}+19 B^{2}\right)$
Note: In addition to (19), one may write 1 as $1=\frac{(3+i 5 \sqrt{19})(3-i 5 \sqrt{19})}{484}$
For this choice, a different set of solutions to (1) are obtained.

III. Generation of solutions

Illustration 1:

Let $\left(x_{0}, y_{0}, z_{0}\right)$ be the given initial solution of (1). $x_{1}=10 x_{0}-3 h, y_{1}=10 y_{0}, z_{1}=10 z_{0}+h$
be the second solution of (1) where h is any non-zero integer to be determined.
Substituting (21) in (1) and simplifying, we have $h=30 x_{0}-27 y_{0}+70 z_{0}$
Therefore, the second solution $\left(x_{1}, y_{1}, z_{1}\right)$ of (1) expressed in the matrix form is

$$
\left(x_{1}, y_{1}, z_{1}\right)^{t}=M\left(x_{0}, y_{0}, z_{0}\right)^{t} \text { Where }=M=\left(\begin{array}{ccc}
-80 & 81 & -210 \\
0 & 10 & 0 \\
30 & -27 & 80
\end{array}\right)
$$

The repletion of the above process leads to the general solution of (1) represented as follows:

$$
\begin{aligned}
& \left(x_{2 n-1}, y_{2 n-1}, z_{2 n-1}\right)^{t}=10^{2(n-1)} M\left(x_{0}, y_{0}, z_{0}\right)^{t} \\
& \left(x_{2 n}, y_{2 n}, z_{2 n}\right)^{t}=10^{2 n} M\left(x_{0}, y_{0}, z_{0}\right)^{t}
\end{aligned}
$$

Illustration 2:

Let $\left(u_{0}, v_{0}, z_{0}\right)$ be the given initial solution of (3).
Let $u_{1}=6 h-u_{0}, v_{1}=v_{0} \quad z_{1}=z_{0}+h$
be the second solution of (3) where h is any non-zero integer to be determined.
Substituting (22) in (3) and simplifying, we get $h=12 u_{0}+70 z_{0}$
Therefore, the second solution $\left(x_{1}, y_{1}, z_{1}\right)$ of (3) expressed in the matrix form is

$$
\left(u_{1}, z_{1}\right)^{t}=M\left(u_{0}, z_{0}\right)^{t}, v_{1}=v_{0} \text { Where }=M=\left(\begin{array}{cc}
71 & 420 \\
12 & 71
\end{array}\right)
$$

Repeating the above process, we have, in general

$$
\left(u_{n}, z_{n}\right)^{t}=M^{n}\left(u_{0}, z_{0}\right)^{t}, v_{n}=v_{0}
$$

It is known that $M^{n}=\frac{\alpha^{n}}{\alpha-\beta}(M-\beta I)+\frac{\beta^{n}}{\beta-\alpha}(M-\alpha I)$
where α, β are the Eigen values of M and I is a 2×2 unit matrix. For our problem, we have, after simplification,

$$
M^{n}=\left(\begin{array}{cc}
\frac{\alpha^{n}+\beta^{n}}{2} & \frac{\sqrt{35}\left(\alpha^{n}-\beta^{n}\right)}{2} \\
\left(\frac{\alpha^{n}-\beta^{n}}{2 \sqrt{35}}\right) & \frac{\alpha^{n}+\beta^{n}}{2}
\end{array}\right)
$$

in which α, β are the Eigen values of M given by $\alpha=71+12 \sqrt{35,} \beta=71-12 \sqrt{35}$
In view of (2), the general solution $\left(x_{n}, y_{n}, z_{n}\right)$ of (1) is given by
$x_{n}=\left(\frac{\alpha^{n}+\beta^{n}}{2}\right) u_{0}+\frac{\sqrt{35}}{2}\left(\alpha^{n}-\beta^{n}\right) z_{0}+v_{0}$
$y_{n}=\left(\frac{\alpha^{n}+\beta^{n}}{2}\right) u_{0}+\frac{\sqrt{35}}{2}\left(\alpha^{n}-\beta^{n}\right) z_{0}-v_{0}$
$z_{n}=\frac{1}{2 \sqrt{35}}\left(\alpha^{n}-\beta^{n}\right) u_{0}+\frac{1}{2}\left(\alpha^{n}+\beta^{n}\right) z_{0}$

Illustration3:

Let $u_{1}=8 u_{0}, v_{1}=8 v_{0}+h, z_{1}=h-8 z_{0}$ be the second solution of (3).
Following the analysis presented above, the corresponding integer solutions to (1) are given by
$x_{n}=8^{n} u_{0}+\left(\frac{\alpha^{n}+\beta^{n}}{2}\right) v_{0}+\frac{\sqrt{35}}{2 \sqrt{19}}\left(\alpha^{n}-\beta^{n}\right) z_{0}$
$y_{n}=8^{n} u_{0}-\left(\frac{\alpha^{n}+\beta^{n}}{2}\right) v_{0}-\frac{\sqrt{35}}{2 \sqrt{19}}\left(\alpha^{n}-\beta^{n}\right) z_{0}$
$z_{n}=\frac{\sqrt{19}}{2 \sqrt{35}}\left(\alpha^{n}-\beta^{n}\right) v_{0}+\frac{1}{2}\left(\alpha^{n}+\beta^{n}\right) z_{0}$
where $\alpha=27+\sqrt{665,} \beta=27-\sqrt{665}$

IV. Conclusion

To conclude, one may search for other patterns of general solutions to ternary quadratic Diophantine equation in the title and obtain their corresponding properties.

References

[1]. Mordell L.J., Diophantine Equations, Academic press, London (1969).
[2]. Carmichael.R.D.,The theory of numbers and Diophantine Analysis,
[3]. NewYork, Dover,1959.
[4]. Gopalan M.A., Manju Somanath and V.Sangeetha,On the Ternary Quadratic Equation $5\left(x^{2}+y^{2}\right)-9 x y=19 z^{2}$,IJIRSET,Vol 2, Issue 6,2008-2010,June 2013.
[5]. Gopalan M.A., S.Vidhyalakshmi and S.Nivethitha, On the ternary quadratic equation $4\left(x^{2}+y^{2}\right)-7 x y=31 z^{2}$, Diophantus J.Math., 3(1), 1-7, 2014.
[6]. Shanthi. J., Gopalan M.A., and S.Vidhyalakshmi , Lattice points on the homogeneous cone $8\left(x^{2}+y^{2}\right)-15 x y=56 z^{2}$, Sch. J. Phys. Math. Stat., Vol1(1), jun-aug,29-32, 2014.
[7]. K. Meena., Gopalan M.A., S.Vidhyalakshmi and I. Krithna priya., Integral points on the cone $3\left(x^{2}+y^{2}\right)-5 x y=47 z^{2}$., Bulletin of Mathematics and statistics Research, Vol 2(1), 65-70, 2014.
[8]. Gopalan M.A., S.Vidhyalakshmi and J.Umarani ., On the Ternary quadratic Diophantine equation $6\left(x^{2}+y^{2}\right)-8 x y=21 z^{2}$, Sch. J. Eng. Tech, 2(2A), 108-112, 2014.
[9]. Gopalan M.A., S.Vidhyalakshmi, A.Kavitha and D.Mary Madona, On the ternary quadratic Diophantine equation $3\left(\boldsymbol{x}^{\mathbf{2}}+\boldsymbol{y}^{\mathbf{2}}\right)-\mathbf{2} \boldsymbol{x y}=\mathbf{4 z}^{\mathbf{2}}$ International journal of Engineering sciences and Management, Vol:5(2), 11-18, 2015.
[10]. Gopalan M.A., S.Vidhyalakshmi, S. Devibala and J.Umavathy., On the ternary quadratic Diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y=60 z^{2}$ International journal of Applied research, 1(5), 234-238, 2015.
[11]. M.A.Gopalan, D. Maheswari and J. Maheswari, On the Ternary quadratic Diophantine equation $2\left(x^{2}+y^{2}\right)-3 x y=43 z^{2}$, JP journal of Mathematical sciences, Vol 12, issue $1 \& 2,9-23,2015$.
[12]. K.Meena, S.Vidhyalakshmi, E.Bhuuvaneswari and R.Presenna., On the Ternary quadratic Diophantine equation $5\left(x^{2}+y^{2}\right)-6 x y=20 z^{2}$, International journal of Advanced scientific Research, Vol1(2), 59-61, 2016.

