On Power Associativity of Prime Assosymmetric Rings

P. Rahira ${ }^{1}$, Dr. G. Ramabhupal Reddy ${ }^{2}$, Dr. K. Suvarna ${ }^{2}$
${ }^{I}$ Gurunanak Institute of Technology, Hyderabad
${ }^{2}$ Sri Krishnadevaraya University, Anantapur

Abstract: In this paper we show that a2-and 3-divisible prime assosymmetric ring R is power associative, that is, $(x, x, x)=0$.
Keywords: non-associative rings, power associative, commutator, associator, assosymmetric ring

I. Introduction

E. Kleinfeld [1] introduced a class of non-associative rings called as assosymmetric rings in which the associator $(x, y, z)=(x y) z-x(y z)$ has the property $(x, y, z)=(p(x), p(y), p(z))$ for each permutation p of x, y and z. These rings are neither flexible nor power associative. In [1] it is proved that the commutator and the associator are in the nucleus of this ring. In 2000, K. Suvarna and G.R.B. Reddy[3] proved that a non-associative 2- ad 3divisile prime assosymmetric ring is flexible. By using these properties A 2- and 3- divisible prime assosymmetric ring R is power associative, that is, $(\mathrm{x}, \mathrm{x}, \mathrm{x})=0$.

II. Preliminaries

Throughout this paper R will denote a non-associative 2 - and 3- divisible assosymmetric ring. The commutator (x, y) of two elements x and y in a ring is defined by (x, y) $=x y-y x$. The nucleus N in R is the set of elements $n \in R$ such that $(n, x, y)=(x, n, y)=(x, y, n)=0$ for all x, y in R. The center C of R is the set of elements $c \in N$ such that $(c, x)=0$ for all x, y in R. A non-associative ring R is called flexible if $(x, y, x)=0$ for all x, y in R. A ring is said to be power-associative if every subring of it generated by a single element is associative if every subring of it generated by a single element is associative Let I be the associator ideal of R. I consists of the smallest ideal which contains all associators. R is called k-divisible if $k x=0$ implies $x=0, x \in R$ and k is a natural number.
In an arbitrary ring the following identities hold :
(1) $\quad(w x, y, z)-(w, x y, z)+(w, x, y z)=w(x, y, z)+(w, x, y) z$
$f(w, z, y, z)=(w x, y, z)-x(w, y, z)-(x, y, z) w$
and
(2) $\quad(x y, z)-x(y, z)-(x, z) y=(x, y, z)-(x, z, y)+(z, x, y)$.

In any assosymetric ring (2) becomes
(3) $\quad(x y, z)-x(y, z)-(x, z) y=(x, y, z)$

It is proved in [1] that in a 2- and 3-divisible assosymmetric ring R
the following identities hold for all $\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}$ in R
(4) $f(w, x, y, z)=0$, that is, $(w x, y, z)=x(w, y, z)+(x, y, z) w$,
(5) $\quad((w, x), y, z)=0$
and
(6) $\quad((\mathrm{w}, \mathrm{x}, \mathrm{y}), \mathrm{z}, \mathrm{t})=0$

That is, every commutator and associator is in the nucleus N .
From (3), (5) and (6), we obtain
(7) $x(y, z)+(x, z) y \subset N$.

Suppose that $\mathrm{n} \in \mathrm{N}$. Then with $\mathrm{w}=\mathrm{n}$ in (1) we get $(\mathrm{nx}, \mathrm{y}, \mathrm{z})=\mathrm{n}(\mathrm{x}, \mathrm{y}, \mathrm{z})$.
Combining this with (5) yields.
(8) $\quad(\mathrm{nx}, \mathrm{y}, \mathrm{z})=\mathrm{n}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{xn}, \mathrm{y}, \mathrm{z})$

From (7) and (8) we obtain
(9) $(y, z)(x, r, s)=-(x, z)(y, r, s)$.

III. Main results.

Lemma 1. Let $S=\{s \in N / s(R, R, R)=0\}$. Then S is an ideal of R and $S(R, R, R)=0$
Proof. By substituting s for n in (8), we have ($\mathrm{sx}, \mathrm{y}, \mathrm{z})=\mathrm{s}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{xs}, \mathrm{y}, \mathrm{z})=0$. Thus $\mathrm{sR} \subset \mathrm{N}$ and $\mathrm{Rs} \subset \mathrm{N}$. From (6), $\operatorname{sw}(x, y, z)=s w(x, y, z)=s . w(x, y z)$. But (1) multiplied on the left by s yields $s . w(x, y, z)=-s(w, x, y) z=-$ $\mathrm{s}(\mathrm{w}, \mathrm{x}, \mathrm{y}) . \mathrm{z}=0$. Thus sw. $(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$, From (9), we have ($\mathrm{s}, \mathrm{w})(\mathrm{x}, \mathrm{y}, \mathrm{z})=-(\mathrm{x}, \mathrm{w})(\mathrm{s}, \mathrm{y}, \mathrm{z})=0$. Combining this with
sw. $(x, y, z)=0$, we obtain ws. $(x, y, z)=0$. Thus S is an ideal of R. The rest is obvious. This completes the proof of the lemma.

Lemma 2. ($\mathrm{x}, \mathrm{y}, \mathrm{x}$) $\in \mathrm{S}$.

Proof. By forming the associators of both sides of (1) with u and v, and using (6), we obtain
(10) $\quad(\mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z}), \mathrm{u}, \mathrm{v})+((\mathrm{w}, \mathrm{x}, \mathrm{y}) \mathrm{z}, \mathrm{u}, \mathrm{v})=0$

Interchanging y and x in (10) and subtracting the result from (10), we get
(11) $\quad((w, x, y) z, u, v)=((w, x, z) y, u, v)$.

But $((w, x, z) y, u, v)=(y(w, x, z), u, v)$, because of (5). So that
(12) $\quad((w, x, y) z, u, v)=(y(w, x, z), u, v)$, as result of (11).

Also by permuting w and y in (10), we obtain $(y(w, x, z), u, v)+((w, x, y) z, u, v)=0$.
This identity with (12) yields $2((\mathrm{w}, \mathrm{x}, \mathrm{y}) \mathrm{z}, \mathrm{u}, \mathrm{v})=0$ Thus
(13) $\quad((\mathrm{w}, \mathrm{x}, \mathrm{y}) \mathrm{z}, \mathrm{u}, \mathrm{v})=0$.

From (6) we have (x, y, x) $\subset N$. Using (13) and (8),
we get $0=((x, y, x) z, u, v)=(x, y, x)(z, u, v)$ for all x, y, z, u, v in R. Hence $(x, y, z) \in S$. This complete the proof of the lemma.
Lemma 3. In an assosymmetric ring $\mathrm{R},((\mathrm{a}, \mathrm{b}, \mathrm{c}), \mathrm{d}) \in \mathrm{S}$.
Proof. Using (9) we see that ((a,b,c),d) (x,y,z)=-(x, d) ((a,b,c),y,z)=0 because (6). Hence $((a, b, c), d) \in S$
Lemma 4. If R is a non-associative 2- and 3-divisible prime assosymmetric ring then R is a Thedy ring.
Proof_: Using lemma 1 and the identity (1) we establish $S . V=0$. Since R is prime, either $S=0$ or $V=0$. If $V=$ $0, R$ is associative. But we have assumed that R is not associative. Therefore $V \neq 0$. Hence $S=0$. From lemma $3,((a, b, c), d) \in S$. Thus
(14) $\quad((a, b, c), d)=0$
and R is a Thedy ring.
Theorem 1: If R is a non-associative 2-and 3-divisible prime assosymmetric ring, then R is flexible.
Proof: Using lemma 1 and the identity (1) we establish that S.I $=0$. Since R is prime, either
$S=0$ or $I=0$. If $I=0, R$ is associative. But we have assumed that R is not associative. Therefore $I \neq 0$. Hence $S=0$. From lemma $2,(x, y, x) \in S$. Thus $(x, y, x)=0$. That is, R is flexible.
Theorem 2: A 2- and 3- divisible prime assosymmetric R is power-associative, that is $(\mathrm{x}, \mathrm{x}, \mathrm{x})=0$.
Proof: By commuting each term in (1) with r , and using (14) we obtain
$(\mathrm{r}, \mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z}))+(\mathrm{r},(\mathrm{w}, \mathrm{x}, \mathrm{y}) \mathrm{z})=0$.
So that $(\mathrm{r}, \mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z}))=-(\mathrm{r},(\mathrm{w}, \mathrm{x}, \mathrm{y}) \mathrm{z})=-(\mathrm{r}, \mathrm{z}(\mathrm{w}, \mathrm{x}, \mathrm{y}))$ using (14).
By permuting cyclically (wzyx), we get
(15) $\quad(\mathrm{r}, \mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z}))=-(\mathrm{r}, \mathrm{z}(\mathrm{w}, \mathrm{x}, \mathrm{y}))=(\mathrm{r}, \mathrm{y}(\mathrm{z}, \mathrm{w}, \mathrm{x}))=-(\mathrm{r}, \mathrm{x}(\mathrm{y}, \mathrm{z}, \mathrm{w})$.

We know that in an assosymmetric ring (x, x, x) is in the nucleus of R. This combined with (14) prove that (x, x, x) is in the center of R.
Next applying (15) to ($\mathrm{z}, \mathrm{x}(\mathrm{x}, \mathrm{x}, \mathrm{x}$)), we obtain
$(\mathrm{z}, \mathrm{x}(\mathrm{x}, \mathrm{x}, \mathrm{x}))=-(\mathrm{z}, \mathrm{x}(\mathrm{x}, \mathrm{x}, \mathrm{x}))$.
This leads to $2(\mathrm{z}, \mathrm{x}(\mathrm{x}, \mathrm{x}, \mathrm{x}))=0$. So that $(\mathrm{z}, \mathrm{x}(\mathrm{x}, \mathrm{x}, \mathrm{x}))=0$.
Expanding ($x,(x, x, x), z)=0$ by using (2), we have
$0=x((x, x, x), z)+(x, z)(x, x, x)+(x,(x, x, x), z)$.
However (x, x, x) is in the center of R. Thus only one term servives and we obtain
$(x, z)(x, x, x)=0$. Since R is prime and not commutative, by similar argument in the proof of theorem 1 , we obtain $(x, x, x)=0$.

References

[1]. E. Kleinfield, Proc. Amer. Math Soc. 8 (1957), 983-986.
[2]. E. Kleinfield M. Kleinfeld, comm. in algebra 13(2) (1985), 465-477
[3]. E. Kleinfield and Smith, H.F. :Nova Journal of Algebra and Geometry, Vol. 3, No. 1 (1994), 73-81.
[4]. K. Suvarna \& G.R.B. Reddy, On flexibility of Prime Assosymmetric Rings, Jnanabha, Vol.30, (2000).
[5]. Thedy, A. On rings satisfying ((a, b, c), d) = 0, Proc. Amer. Math. Soc. 29 (1971), 250-254.

