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I. Introduction 
Let X be a finite set of elements following the natural ordering of numbers. The notation Tn is the full 

transformation semigroup, Sn is the symmetric group and Tn \ Sn is the singular transformation semigroup which 

can as well be denoted by Singn, [4]. Let S be a semigroup generated by the relation aG where a Tn \ Sn and G 

= Sn.  

 In 1968, Tainiter [6] came up with a formula for knowing the number of idempotent in Tn, which he denoted by 

Hn with Hn =

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.  Araújo and Cameron [1] obtained that a semigroup S generated by the conjugates 

g
-1

ag  with aTn \Sn and g  Sn, is idempotent generated, regular and that S =
nn SSa \, . 

A partition of a set S is a pairwise disjoint set of non-empty subsets, called "parts" or "blocks" or “cells”, whose 

union is all of S. The semigroup S = Tn \Sn as studied in this work, is decomposable into non – overlapping cells 

using the semigroup aSn.  

Howie [4] used Singn to denote singular mappings and proved that Singn, the semigroup of all singular 

mappings of X =  {1,2, . . . n} into itself, is generated by its idempotents of defect 1. It was also proved that if 

n 3 then a minimal generating set for Singn contains 
 

2

1nn
  transformations of defect 1 [3]. In his work, 

Winbush [7] showed as Theorem 1.1 that a semigroup has at most one identity element and because of that 

Theorem, exactly one of the following statements must hold for a semigroup S that is a monoid: 

(i) S has no left and no right identity element; 

(ii) S has one or more left identity elements, but no right identity element; 

(iii) S has one or more right identity elements, but no left identity element; 

(iv) S has a unique two-sided identity, and no other right or left identity element. 

In consonant with Wimbush work [7], it is seen in this paper that a semigroup that has left-sided identity or 

right-sided identity element does not have the identity, hence not a monoid. 

Let nSing . The kernel of   is defined as Ker ( ) = {(x,y) Xn   X_n : x  = y }. The semigroup, 

Singn can be partitioned using the kernel of its elements. 

 

In addition, Howie [5] explained period and index of an element as follows: 

Let a be an element of a semigroup S and consider the monogenic semigroup 

,...},,{ 32 aaaa   generated by a. If there are no repetitions in the list ,...,, 32 aaa $ that is,  

nmaa nm  , then evidently  ,a  is isomorphic to the semigroup (N, +) of natural numbers with 

respect to addition. In such a case we say that a is an infinite order in S. Suppose now that there are repetitions 

among the powers of a. Then the set 

},)(:{ yxaaNyNx yx   

is non-empty and so has a least element. Let us denote this least element by m and call it the index of the 

element of a. Then the set 

}:{ mmx aaNx  
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is non-empty and so it too has a least element r, which is called the period of a. m and r are respectively referred 

to as the index and period of the monogenic semigroup a . Let a be an element with index m and period r. 

Thus, a
m
 = a

m+r
.  

 

II. Results 
The following results are on the semigroup of singular transformations denoted by S. 

Theorem 1. 

The number of partitions of the semigroup Tn\Sn using a subsemigroup aSn for a   Tn \Sn is the number  

f(n) = f(n - 1) + f(n - 3) + 1, where f(1) = f(2) = 1 and f(3) = 2. 

Proof: 

The elements of aSn is a subset of the singular transformation semigroup Tn\ Sn. It was known that the 

cardinality of Tn is n
n
 and that of Sn is n! Elements of the same structure belong to the same cell. It was obtained 

in this work that the number of cells, the structure of which is determined by a, is f(n) as seen in table 1.The 

initial values are set for n = 1, 2 and 3, through which other values of f(n) are determined for       n  4. The 

semigroup Singn is thus partitioned using its kernel. □ 

 

Table 1:Number of Decomposition of the Structure of Singular Transformations without Repetitions. 
N 1 2 3 4 5 6 7 

F(n) 1 1 2 4 6 9 14 

                                                                                                                                                                                   

The idempotent elements in the semigroup S generated by aSn, a   Tn\ Sn are identified to be left - sided 

identities. Im ( ) denotes image of , eL  is left identity element and )Im(  is the length of image of   in 

this work. 

Lemma 1: 

Each subsemigroup has at least two idempotent elements. 

Proof: 

Let the idempotent elements be E(S). The maximum length of image of S is n-1. If the number of fixes in an 

element is n-1 then that element is an idempotent. □ 

Lemma 2: 

The idempotents, E(S) is equivalent to the left identity element, eL. 

Proof: 

Let S be a non - empty set and a, b, eL S. Define multiplication operation * with composition of mapping for 

every element b  S, there are some elements a and eL such that a * b = b and              eL * b = b. It is 

immediate that * is associative. If 
2

Le  = eL and a
2
 =a then a and eL are left identities.  □ 

Theorem 2: 

Let i  Im( ) of the idempotents, then there are some elements   such that   S and Le 2 . 

That is,   is the inverse of itself implying that eL is both a left and right identity. 

Proof: 

Lemma 2 showed that E(S) = eL in the semigroup S. Let   S such that 
2  =   = eL. 

Le                     (i) 

LLL eee  2  

1 (identity by right cancellation law).   

Also if (i) is written as  

LLLL eeee   

1 (Identity by left cancellation law). 

Hence,  is the inverse of itself.  □ 

Each of the partitions obtained in theorem 1 above together with elements whose images are of length one, is a 

subsemigroup. This subsemigroup is then defined as 1)Im()ker(  S . 

It was established that idempotent elements are left identity in the semigroups under this study. The following 

results emerged from the relationship between index (i), period (p), left identity and idempotent elements.  

Proposition 1: 

The index (i) of   is one while its period (p) is n - 1 if for some t,  
t = e, where e is an idempotent element. 

Proof: 
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Let   S. It follows from composition of mapping that there exist t for some elements other than the 

idempotents such that 
t = e. 

It was shown in lemma (2) that e = eL , then 

, t
 

,1   nt
 

Hence, t = n - 1.  □ 

Proposition 2: 

The idempotent generated by the monogenic subsemigroup a  of Singn such that p < i, is the identity element 

of that subsemigroup and such an idempotent is the idempotent in the kernel of the generator. 

Proof: 

Let a  be a monogenic subsemigroup. There exist some Nk   such that a
k
. a

k
 = a

k
 .  Let 

 ,...},,{ 32 aaaa  . Composition of mapping shows that for elements a
q
   a , a

q
 . a

k
 = a

k
 . a

q
  

= a
q
. This simply means that, the idempotent generated by an element that commutes with its generator to yield 

itself or another element cannot be an identity of that subsemigroup, which is any other idempotent outside the 

kernel of the generator, is not an identity.Any idempotent that does not have the same kernel with its generator 

could not be an identity. In addition, the subsemigroup ,...,, 32 aaaa   must generate an idempotent. The 

following theorem clarifies this statement better. 

Theorem 3: 

Any idempotent generated by an element of the same kernel is an identity element; otherwise, it has a different 

kernel. 

Proof: 

Let   S and an idempotent element S  such that   and   have the same kernel structure. If for some 

positive integer n,  n
 then  2

. Following the proof of Proposition 2,   is an identity element.  □ 

Lemma 3: 
A set of elements generated by an element not necessarily generating itself forms a commutative subsemigroup. 

Proof: 

Let S = a, b, b
2
, . . . be a subsemigroup generated by a but a cannot generate itself. From composition of 

mappings, S can be shown to be commutative since a . b = b . a,  b . b
2
 = b

2
 . b, . . . The idempotents generated 

here do not belong to the same kernel with the generator. □ 

Lemma 4: 

A set of elements from a generator that generates itself is a commutative subsemigroup and hence a group. 

Proof: 

The proof is as in Lemma 3 and the generator generates itself. The idempotent generated is the identity (this 

follows from theorem 3) and each element has its inverse. In addition, all the elements generated here have the 

same kernel and the idempotent generated occupy the right diagonal of its Cayley's table with the elements 

occupying the left diagonal. □ 

 

III. Conclusion 

The semigroup of singular transformations can be partitioned using its kernels and a semigroup aSn . 

Idempotent elements can be used as left-identity elements and as identity element if generated by an element of 

the same kernel structure. 
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