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Abstract: The performance of a series of Complete and Incomplete Neighbour Balanced Block Designs for 

Auto Regressive (AR), Moving Average (MA) and Nearest Neighbour (NN) error correlation structure is studied 

when generalized least squares estimation is used.  We have compared the efficiency of AR(2), MA(2) and NN 

correlation structures. It is observed that efficiency for direct as well as neighbour effects is high, in case of 

complete block designs for NN correlation structure.  In case of incomplete block designs MA(2) correlation 

structure turns out to be more efficient as compared to others models with  21 ,   in the interval 0.1 to 0.4.   

It is therefore concluded that when block sizes are large and neighbouring plots are highly correlated, 

generalized least squares for estimation of direct and neighbour effects can be used. The gain in efficiency of 

NNBD and NNBIBD over regular block design is high under MA(2) models for direct and neighbour effects of 

treatments. 
Keywords: Neighbour Balanced Block Design; Correlated observations; Generalized least squares; Auto 

Regressive; Moving Average; Nearest neighbour; Efficiency; Regular Block Design. 

 

I. Introduction 
In many experiments, especially in agriculture, the field on a given plot may be affected by treatments 

on neighbouring plots as well as by the treatment applied to that plot.  To diminish these undesirable effects, 

Rees [15] first provided designs for the test and named such designs as neighbour designs.  He used technique in 

virus research which requires arrangement in circles of samples from a number of virus preparations in such a 

way that over the whole set, a sample from each virus preparation appears next to a sample from every other 

virus preparation.  He defined a neighbour design as an arrangement of v  antigens (called symbols) in b  

circular plates (called blocks) such that: each block has k  symbols, not necessarily distinct, each symbol 

appears r  times in the design and each symbol is a neighbour of every other symbol precisely   times.  A 

neighbour design with at least one block having less than v  distinct symbols may called as incomplete block 

neighbour designs.  The designs in both series are neighbour balanced in the sense that every experimental 

treatment has each other treatment once as a right neighbour and once as a left neighbour.  When treatments are 

varieties, neighbour effects may be caused by differences in height, root vigor, or germination date, especially 

on small plots, which are used in plant breeding experiments.  Treatments such as fertilizer, irrigation, or 

pesticide may spread to adjacent plots causing neighbour effects.  Such experiments exhibit neighbour effects, 

because the effect of having no treatment as a neighbour is different from the neighbour effects of any treatment.  

In case of block design setup if each block is a single line of plots and blocks are well separated, extra 

parameters are needed for the effect of left and right neighbours.  An alternative is to have border plots on both 

ends of every block.  Each border plots receives an experimental treatment, but it is not used for measuring the 

response variable.  These border plots do not add too much to the cost of one-dimensional experiments.  

Neighbour balanced designs, where in the allocation of treatments is such that every treatment occurs equally 

often with every other treatment as neighbours, are used for these situations and permit the estimation of direct 

and neighbor effects of treatments.  The neighbour effects are also called as interference effects, indirect effects 

or remote treatment effects.  

The effect of correlation on the usual two-way analysis of variance and on the power of usual tests has 

been studied by Box [4]; Anderson et al. [1] and Aastveit [2].  Keedwell [9] considered 2-fold perfect circuit 

designs, these being balanced circuit designs whose neighbour properties apply not only to immediate 

neighbours but also to neighbours that are two places apart.  In situations where the correlation structure among 

the observations within a block is known, may be from the data of past similar experiments, it may be 

advantageous to use this information in designing an experiment and analyzing the data so as to make more 

precise inference about treatment effects Gill and Shukla [6].  Neighbour balanced block designs for correlated 

errors by Kunert [10]. Lindner et al. [12] considered 2-perfect k-cycle systems of order v , i.e., balanced circuit 

RND’s (Rees Neighbour Designs) whose neighbour properties hold both for immediate neighbours and for 2-
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places-apart neighbours.  Optimal and highly efficient two dimensional designs have been constructed for 

correlated errors on the torus and in the two dimensional plane by Morgan and Nizamuddin [13].  Azais et al. 

[3] obtained a series of efficient neighbour designs with border plots that are balanced in 1v  blocks of size v  

and v  blocks of size 1v , where v  is the number of treatments.  Bailey [5] has given some designs for 

studying one-sided neighbour effects.  These neighbour balanced block designs have been developed under the 

assumption that the observations within a block are uncorrelated.  Kunert et al. [11] considered two related 

models for interference and have shown that optimal designs for one model can be obtained from optimal 

designs for the other model.  Martin and Eccelston [14] have given variance balanced designs under interference 

and dependent observations. Santharam and Ponnuswamy [18] examined the optimality and efficiency of 

nearest neighbor balanced block designs when error follows Auto Regressive (AR), Moving Average (MA) or 

Auto Regressive Moving Average (ARMA) models.  Senthil Kumar and Santharam [17] Efficiency of Nearest 

Neighbour Balanced Block Designs using ARMA models.  Senthil Kumar and Santharam [16] Efficiency of 

NNBD over NNBIBD using First Order Correlated Models. Iqbal et al. [7] constructed second order neighbour 

designs for 73  k  in circular block using method of cyclic shifts.    

In this paper, neighbour balanced block designs for observations correlated within a block have been 

investigated for the estimation of direct as well as left and right neighbour effects of treatments.  The 

performance of these designs for AR(2), MA(2) and NN error correlation structure is studied when generalized 

least squares estimation is used.  We have also investigated the efficiency of Nearest Neighbour Balanced Block 

Design (NNBD) and Nearest Neighbour Balanced Incomplete Block Design (NNBIBD) in comparison to 

regular block design when the error follows second order correlated models with  21 ,  in the interval          

-0.4 (-0.4) 0.4.  

 

II. Model Structures and Information Matrix 

Let   be a class of binary neighbour balanced block designs with bkn   units that form b blocks 

each containing k units.  ijY  be the response from the 
thi  plot in the 

thj  block  bjki ,,2,1;,,2,1   .  

The layout includes border plots at both ends of every block, i.e. at 
th0  and  thk 1  position and observations 

for these units are not modeled. The following fixed effects additive model is considered for analyzing a 

neighbour balanced block design under correlated observations: 

                                                                                                                                         

                                  (2.1) 

where   is the general mean,  ji ,  is the direct effect of the treatment in the 
thi  

plot of 
thj  block, j  is the 

effect of the 
thj  block,  jil ,1  is the left neighbour effect due to the treatment in the  thi 1 plot of 

thj  block, 

 ji ,1  is the right neighbour effect due to the treatment in the  thi 1  plot in 
thj  block,  ije  are error terms 

distributed with mean zero and a variance-covariance structure  bI  ( bI is an identity matrix of order 

b  and   denotes the kronecker product).  Assuming no correlation among the observations between the 

blocks and correlation structure between plots within a block to be the same in each block,   is the correlation 

matrix of k observations within a block.  If the errors within a block follow an Second Order Auto Regressive 

model (AR(2)) then kb MI   where kM  is a kk   matrix given by 
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For 3k ,   02211 rrrr kkk     

 

If the errors within a block follow Second Order Moving Average model (MA(2)) the kb NI   where 

kN  is a kk   matrix given by 
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The NN correlation structure, the   is a matrix with diagonal entries as 1 and off-diagonal entries as  .  

Model (2.1) can be rewritten in the matrix notation as follows:                                                       

                                                                                                                                                                                                                                  

(2.2)  

                                                                                                                                                                                                                                             

where Y  is 1n  vector of observations, 1 is 1n  vector of ones, 
'  is an vn  incidence matrix 

of observations versus direct treatments,   is 1v  vector of direct treatment effects, 
'

1  is a vn  matrix of 

observations versus left neighbour treatment, 
'

2  is a vn  matrix of observations versus right neighbour 

treatment, l is 1v  vector of left neighbour effects,  is 1v  vector of right neighbour effects, 
'D  is an 

bn  incidence matrix of observations versus blocks,   is 1b vector of block effects and e  is 1n  vector 

of errors. The joint information matrix for estimating the direct and neighbour (left and right) effects under 

correlated observations estimated by generalized least squares is obtained as follows: 

                                                                                                                                              

            

                                      (2.3)                     

                                                   

 

 

 

with                                                                   

 

 

The above vv 33   information matrix  C  for estimating the direct effects and neighbour effects of 

treatments in a block design setting is symmetric, non-negative definite with row and column sums equal to 

zero. The information matrix for estimating the direct effects of treatments from (2.3) is as follows:  

                                     (2.4)                    
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Similarly, the information matrix for estimating the left neighbour effect of treatments  lC  and right 

neighbour effect of treatments  C  can be obtained.   
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2.1 Construction of Design 

Tomer et al. [19] has constructed neighbour balanced block design with parameters v  (prime or prime 

power),  1 vvb ,   mvvr  1 ,  mvk  , 4,,2,1  vm   and  mv   using 

Mutually Orthogonal Latin Squares (MOLS) of order v .  This series of design bas been investigated under the 

correlated error structure.  It is seen that the design turns out to be pair-wise uniform with 1  and also 

variance balanced for estimating direct  1V  and neighbour effects  32 VV  .  

 

Example:  

Let 5v  and 0m .  The following is a neighbour balanced pair-wise uniform complete block design with 

parameters 5v , 20b , 20r , 5k , 5  and  1 : 
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The information matrices for estimating the direct and neighbouring effects of treatments for AR(2) with  

  = 0.1    21  is obtained given as below:
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Similarly for MA(2) & NN structures, 
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These matrices have been worked out using R package.  For, 1m  the resulting design will be a neighbour 

balanced pair-wise uniform incomplete block design with parameters 5v , 20b , 16r , 4k , 4  

and  1 . 
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III. Efficiency of Neighbour Balanced Pair-Wise Uniform Block Designs: 

 
In this section, a quantitative measure of efficiency of the NNBD has been derived when error structure 

follows AR(2) and MA(2) models.  The comparison of universally optimal neighbour balanced design for v  

treatments in  1v  complete blocks of   Azais et al. [3] considering observations to be correlated within the 

blocks.  We compare the average variance of an elementary treatment contrast 


 'ss   in both cases.  The 

average variance of an elementary treatment contrast Kempthorne, [8] for direct effects of the neighbour 

balanced design of Azais et al. [3] estimated by generalized least squares methods, is given by  
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where s ’s are the  1v   non-zero eigen values of C  for Azais et al. [3], 
2  is the variance of an 

observation.  The efficiency factor  E  for direct effects of the neighbour balanced pair-wise uniform block 

design is thus given as: 

 

 

 

 

 

 

s ’s are the  1v  non-zero eigen values of C .  Similarly the efficiency  lE  and  E  for 

neighbour effects (left and right) of treatments is obtained.  The ranges of correlation coefficient    for 

different correlation structures investigated are 40.0  for AR(2), MA(2) and NN correlation structures. For 

these ranges, the matrix of correlation coefficients among observations within a block is positive definite.  For 

0 , the efficiency is that of totally balanced designs obtained by Tomer et al. [19].   

In Tables 1, 2 and 3 the parameters of neighbour balanced pair-wise uniform block design for 5v  

 0m  and 6v   2,1,0m  along with the efficiency for direct and neighbour effects (left and right) 

has been shown.  The efficiency values have been reported under the AR(2), MA(2) and NN correlation 

structures with  21 ,  in the interval -0.4 (-0.4) 0.4.   It is seen that efficiency for direct as well as neighbour 

effects is high, in case of complete block designs i.e.,  0m  for NN correlation structure.  In case of 

incomplete block designs  4,,2,1  vm   MA(2) correlation structure turns out to be more efficient as 

compared to others models with  21 ,   in the interval 0.1 to 0.4.   It is therefore concluded that when block 

sizes are large and neighbouring plots are highly correlated, generalized least squares for estimation of direct 

and neighbour effects can be used. 

 

IV. Efficiency of NNBD and NNBIBD in comparison to Regular Block Design 

 

In this section, a quantitative measure of efficiency of NNBD is also derived when the errors follow AR(2) and 

MA(2) models.   If errors within a block follow an AR(2) then 
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If errors follow second order moving average model MA(2), then  
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For NNBD the variance of an elementary contrast is given by  
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Where di ’s are non-zero values of dC .  We define the efficiency of a design d  relative to a regular block 

design as 
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 respectively for AR(2) and MA(2) models. 

The Tables 4, 5, 6 and 7 shows the efficiencies of NNBD with 20,5  rt  and 30,6  rt , 

 21 ,  = -0.4 (-0.4) 0.4 and 1  .  The values in the tables show that as   increases from -0.4 to -0.1 the 

gain in efficiency also increases and   decreases from 0.1 to 0.4 the gain in efficiency also decreases under 

AR(2) and MA(2) models.  The gain in efficiency of NNBD over regular block design is high under MA(2) 

models ( 5t , 20r  and 1 ) for direct and neighbour effects of treatments.   

The Tables 8, 9, 10, 11, 12 and 13 show the efficiencies of NNBIBD with 16,5  rt , 25,6  rt  and 

20,6  rt ,  21 ,  = -0.4 (-0.4) 0.4 and 1  .  The values in the tables show that as   increases from 

-0.4 to -0.1, the gain in efficiency also increases and   decreases from 0.1 to 0.4, the gain in efficiency also 

decreases under AR(2) and MA(2) models.  The gain in efficiency of NNBIBD over regular block design is high 

under MA(2) models ( 6t , 20r and 1 ) for direct and neighbour effects of treatments. 

 

V. Conclusion 
We have concluded that the efficiency for direct as well as neighbouring effects is high in the case of 

complete block designs for NN correlation structure.  In the case of incomplete block designs, MA(2) 

correlation structure turned out to be more efficient as compared to other models with  21 ,  in the interval 

0.1 to 0.4.   The gain in efficiency of NNBD and NNBIBD over regular block design is high under MA(2) 

models for direct and neighbour effects of treatments. 
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Tables:  
Table 1. Efficiency of neighbour balanced pair-wise uniform block designs AR(2) model 

Parameters Correlation Structure 

     AR(2) 

v  b  m  r  k  ),( 21   E  lE  E  

5 20 0 20 5 (-0.4,-0.4) 0.56427 0.56808 0.54146 

     (-0.3,-0.3) 0.64066 0.64761 0.64341 

     (-0.2,-0.2) 0.78467 0.71141 0.60989 

     (-0.1,-0.1) 0.76701 0.76929 0.76893 

     (0,0) 0.80000 0.80000 0.80000 

     (0.1,0.1) 0.80582 0.81691 0.79696 

     (0.2,0.2) 0.79178 0.80068 0.80757 

     (0.3,0.3) 0.72334 0.79433 0.73051 

     (0.4,0.4) 0.88824 0.69126 0.70063 

6 30 0 30 6 (-0.4,-0.4) 0.60734 0.59666 0.58634 

     (-0.3,-0.3) 0.68867 0.68532 0.73889 

     (-0.2,-0.2) 0.74974 0.75752 0.76040 

     (-0.1,-0.1) 0.80637 0.79854 0.80464 

     (0,0) 0.83333 0.83333 0.83333 

     (0.1,0.1) 0.85754 0.84921 0.84619 

     (0.2,0.2) 0.83448 0.82871 0.88098 

     (0.3,0.3) 0.81760 0.80621 0.76668 

     (0.4,0.4) 0.72861 0.71027 0.68055 

6 30 1 25 5 (-0.4,-0.4) 0.83447 0.82390 0.81067 

     (-0.3,-0.3) 0.87554 0.87287 0.87532 

     (-0.2,-0.2) 0.92940 0.92201 0.93455 

     (-0.1,-0.1) 0.97469 0.97316 0.98455 

     (0,0) 1.00000 1.00000 1.00000 

     (0.1,0.1) 1.03364 1.03548 1.04214 

     (0.2,0.2) 1.04870 1.05409 1.04523 

     (0.3,0.3) 1.03975 1.01356 1.01522 

     (0.4,0.4) 0.94793 1.15515 1.70573 

6 30 2 20 4 (-0.4,-0.4) 0.93088 0.49412 0.87094 

     (-0.3,-0.3) 1.03841 1.00006 1.00628 

     (-0.2,-0.2) 1.13443 1.13032 1.13469 

     (-0.1,-0.1) 1.21476 1.24003 1.23816 

     (0,0) 1.25000 1.25000 1.25000 

     (0.1,0.1) 1.32514 1.34697 1.32511 

     (0.2,0.2) 1.38279 1.40407 1.41581 

     (0.3,0.3) 1.38420 1.41755 1.40362 

     (0.4,0.4) 1.43294 1.44810 1.42910 

 

Table 2. Efficiency of neighbour balanced pair-wise uniform block designs MA(2) model 
Parameters Correlation Structure 

     MA(2) 

v  b  m  r  k  ),( 21   E  lE  E  

5 20 0 20 5 (-0.4,-0.4) 0.50455 0.50991 0.49682 

     (-0.3,-0.3) 0.57578 0.59003 0.58525 

     (-0.2,-0.2) 0.71456 0.69540 0.65266 

     (-0.1,-0.1) 0.73357 0.65061 0.74019 

     (0,0) 0.80000 0.80000 0.80000 

     (0.1,0.1) 0.85091 0.86773 0.84908 

     (0.2,0.2) 0.86011 0.85519 0.83159 

     (0.3,0.3) 0.83086 0.85669 0.82009 
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     (0.4,0.4) 0.75814 0.70742 0.74459 

6 30 0 30 6 (-0.4,-0.4) 0.53221 0.52322 0.50447 

     (-0.3,-0.3) 0.62195 0.61417 0.61648 

     (-0.2,-0.2) 0.69486 0.66319 0.68810 

     (-0.1,-0.1) 0.76892 0.76855 0.76305 

     (0,0) 0.83333 0.83333 0.83333 

     (0.1,0.1) 0.85323 0.86888 0.86780 

     (0.2,0.2) 0.87748 0.87339 0.87662 

     (0.3,0.3) 0.84813 0.81497 0.84059 

     (0.4,0.4) 0.77341 0.62246 0.77547 

6 30 1 25 5 (-0.4,-0.4) 0.66551 0.62619 0.65638 

     (-0.3,-0.3) 0.74862 0.74420 0.75138 

     (-0.2,-0.2) 0.84034 0.83530 0.83880 

     (-0.1,-0.1) 0.92152 0.93806 0.93681 

     (0,0) 1.00000 1.00000 1.00000 

     (0.1,0.1) 1.06487 1.10040 1.07081 

     (0.2,0.2) 1.12050 1.08714 1.11359 

     (0.3,0.3) 1.13502 1.12539 1.12761 

     (0.4,0.4) 1.12955 1.11200 1.10951 

6 30 2 20 4 (-0.4,-0.4) 0.79845 0.78892 0.79581 

     (-0.3,-0.3) 0.86223 0.93426 0.88878 

     (-0.2,-0.2) 1.05227 1.11215 1.06864 

     (-0.1,-0.1) 1.15628 1.17838 1.23751 

     (0,0) 1.25000 1.25000 1.25000 

     (0.1,0.1) 1.35875 1.35286 1.41124 

     (0.2,0.2) 1.42639 1.44671 1.47277 

     (0.3,0.3) 1.46134 1.44887 1.43499 

     (0.4,0.4) 1.49548 1.42926 1.50805 

 

Table 3. Efficiency of neighbour balanced pair-wise uniform block designs NN model 
Parameters Correlation Structure 

     NN 

v  b  m  r  k    
E  lE  E  

5 20 0 20 5 -0.4 0.57777 0.54370 0.55414 

     -0.3 0.77230 0.76003 0.71921 

     -0.2 1.12702 1.11899 1.12748 

     -0.1 1.32548 1.27062 1.26528 

     0 0.80000 0.80000 0.80000 

     0.1 1.33665 1.39663 1.26119 

     0.2 1.16767 1.20560 1.13899 

     0.3 0.77862 0.78772 0.76156 

     0.4 0.58218 0.63672 0.56695 

6 30 0 30 6 -0.4 0.33727 0.36735 0.32629 

     -0.3 0.46641 0.50243 0.45668 

     -0.2 0.68408 0.68807 0.67801 

     -0.1 1.37697 1.39017 1.34549 

     0 0.83333 0.83333 0.83333 

     0.1 1.44357 1.40101 1.40017 

     0.2 0.93128 0.90471 0.87864 

     0.3 0.62177 0.62254 0.58294 

     0.4 0.47132 0.45645 0.45121 

6 30 1 25 5 -0.4 0.15597 0.21636 0.44046 

     -0.3 0.24370 0.21980 0.49732 

     -0.2 0.48998 0.41370 0.82479 

     -0.1 0.90261 0.95073 0.95956 

     0 1.00000 1.00000 1.00000 

     0.1 1.01487 1.02528 1.13842 

     0.2 0.46956 0.55623 0.68783 

     0.3 0.38600 0.38782 0.34714 

     0.4 0.30592 0.31637 0.40601 

6 30 2 20 4 -0.4 0.85435 0.90279 0.92465 

     -0.3 1.08256 1.28288 1.18901 

     -0.2 1.77180 1.65902 1.91532 

     -0.1 1.59519 1.85066 1.90607 

     0 1.25000 1.25000 1.25000 

     0.1 1.54050 1.83199 1.90737 

     0.2 1.85560 1.81908 1.86553 

     0.3 1.24573 1.30222 1.21305 

     0.4 0.94025 1.03260 0.77395 
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Table 4. Efficiency of NNBD using AR(2) Model ( 5t , 20r and 1 ) 

),( 21   E  lE  E  

(-0.4, -0.4) 0.99707 0.94537 1.02110 

(-0.3, -0.3) 1.10683 1.09303 1.05162 

(-0.2, -0.2) 1.26307 1.40307 1.66570 

(-0.1, -0.1) 2.58826 2.55587 2.57687 

(0,0) 0.83954 0.85159 0.86020 

(0.1,0.1) 2.42797 2.49175 2.43415 

(0.2,0.2) 1.25211 1.29677 1.22696 

(0.3,0.3) 0.93993 0.87836 0.93270 

(0.4,0.4) 0.49401 0.30393 0.62504 

 

Table 5. Efficiency of NNBD using AR(2) Model ( 6t , 30r and 1 ) 

),( 21   E  lE  E  

(-0.4, -0.4) 0.53382 0.54339 0.54519 

(-0.3, -0.3) 0.61517 0.61818 0.57215 

(-0.2, -0.2) 0.79475 0.78659 0.79152 

(-0.1, -0.1) 1.44493 1.43084 1.44203 

(0,0) 0.83238 0.83238 0.84832 

(0.1,0.1) 1.78390 1.80140 1.77907 

(0.2,0.2) 0.93644 0.94297 0.85290 

(0.3,0.3) 0.64644 0.65558 0.65871 

(0.4,0.4) 0.35792 0.36716 0.37387 

 

Table 6. Efficiency of NNBD using MA(2) Model ( 5t , 20r and 1 ) 

),( 21   E  lE  E  

(-0.4, -0.4) 1.21164 1.14440 1.20920 

(-0.3, -0.3) 1.30915 1.27530 1.22896 

(-0.2, -0.2) 1.44002 1.49026 1.61606 

(-0.1, -0.1) 2.15184 2.07303 2.12199 

(0,0) 0.83954 0.85159 0.86020 

(0.1,0.1) 2.26616 2.31200 2.25180 

(0.2,0.2) 1.17302 1.17594 1.15405 

(0.3,0.3) 0.77541 0.77173 0.78728 

(0.4,0.4) 0.64231 0.76367 0.65257 

 

Table 7. Efficiency of NNBD using MA(2) Model ( 6t , 30r and 1 ) 

),( 21   E  lE  E  

(-0.4, -0.4) 0.66202 0.74614 0.68862 

(-0.3, -0.3) 0.72312 0.80247 0.72799 

(-0.2, -0.2) 0.88883 0.95291 0.90663 

(-0.1, -0.1) 1.53897 1.58135 1.54437 

(0,0) 0.83238 0.84678 0.84832 

(0.1,0.1) 1.77126 1.72860 1.73183 

(0.2,0.2) 0.86914 0.86297 0.83654 

(0.3,0.3) 0.62122 0.64246 0.58433 

(0.4,0.4) 0.51164 0.62631 0.49786 

  

Table 8. Efficiency of NNBIBD using AR(2) Model ( 5t , 16r and 1 ) 

),( 21   E  lE  E  

(-0.4, -0.4) 0.18527 0.28995 0.26233 

(-0.3, -0.3) 0.28763 0.12989 0.16658 

(-0.2, -0.2) 0.37600 0.37649 0.18700 

(-0.1, -0.1) 0.71467 0.70473 0.62399 

(0,0) 0.35740 0.35740 0.35740 

(0.1,0.1) 0.72382 0.66743 0.75656 

(0.2,0.2) 0.34895 0.35068 0.35801 

(0.3,0.3) 0.29492 0.30014 0.29630 

(0.4,0.4) 0.16895 0.12241 0.11859 
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Table 9. Efficiency of NNBIBD using AR(2) Model ( 6t , 25r and 1 ) 

),( 21   E  lE  E  

(-0.4, -0.4) 0.07397 0.01262 0.13114 

(-0.3, -0.3) 0.10149 0.11443 0.13766 

(-0.2, -0.2) 0.18434 0.16134 0.07707 

(-0.1, -0.1) 0.31455 0.23519 0.27502 

(0,0) 0.33414 0.33164 0.33772 

(0.1,0.1) 0.32705 0.31905 0.31155 

(0.2,0.2) 0.15082 0.15102 0.15221 

(0.3,0.3) 0.12668 0.12051 0.13172 

(0.4,0.4) 0.07168 0.05185 0.03884 

 

Table 10. Efficiency of NNBIBD using AR(2) Model ( 6t , 20r  and 1 ) 

),( 21   E  lE  E  

(-0.4, -0.4) 0.52996 0.71555 0.59596 

(-0.3, -0.3) 0.56881 0.67374 0.62672 

(-0.2, -0.2) 0.81717 0.56405 0.85855 

(-0.1, -0.1) 1.50430 1.51538 0.36159 

(0,0) 0.48303 0.48130 0.48606 

(0.1,0.1) 1.33171 0.99505 1.42879 

(0.2,0.2) 0.67638 0.69771 0.64563 

(0.3,0.3) 0.45953 0.45152 0.42899 

(0.4,0.4) 0.11869 0.08814 0.09162 

 

Table 11. Efficiency of NNBIBD using MA(2) Model ( 5t , 16r and 1 ) 

),( 21   E  lE  E  

(-0.4, -0.4) 0.25723 0.38273 0.35743 

(-0.3, -0.3) 0.41218 0.16191 0.23084 

(-0.2, -0.2) 0.43682 0.43746 0.22084 

(-0.1, -0.1) 0.80030 0.74586 0.70076 

(0,0) 0.35746 0.35746 0.35746 

(0.1,0.1) 0.67062 0.65268 0.70637 

(0.2,0.2) 0.31053 0.30814 0.31343 

(0.3,0.3) 0.25911 0.24575 0.24123 

(0.4,0.4) 0.14553 0.14651 0.14770 

 

Table 12. Efficiency of NNBIBD using MA(2) Model ( 6t , 25r and 1 ) 

),( 21   E  lE  E  

(-0.4, -0.4) 0.10080 0.01805 0.17602 

(-0.3, -0.3) 0.12601 0.14248 0.17024 

(-0.2, -0.2) 0.21132 0.18459 0.08900 

(-0.1, -0.1) 0.33790 0.24780 0.29348 

(0,0) 0.33414 0.33414 0.33414 

(0.1,0.1) 0.31362 0.29660 0.29955 

(0.2,0.2) 0.13776 0.14291 0.13943 

(0.3,0.3) 0.11287 0.10556 0.11534 

(0.4,0.4) 0.09128 0.08172 0.09062 

 

Table 13. Efficiency of NNBIBD using MA(2) Model ( 6t , 20r and 1 ) 

),( 21   E  lE  E  

(-0.4, -0.4) 0.67145 0.69124 0.70874 

(-0.3, -0.3) 0.72723 0.76561 0.75328 

(-0.2, -0.2) 0.91314 0.59420 0.94491 

(-0.1, -0.1) 1.60506 1.61956 0.36742 

(0,0) 0.48303 0.48130 0.48606 

(0.1,0.1) 1.28310 0.78202 1.32538 

(0.2,0.2) 0.63993 0.66086 0.60573 

(0.3,0.3) 0.42334 0.42966 0.40811 

(0.4,0.4) 0.33980 0.37711 0.25161 

 
 


