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Abstract: In this paper, some sufficient conditions that ensure second order delay difference inequality have no 

eventually positive solution are obtained. 

Keywords: Positive solution, Inequality, Second order and Difference inequality. 

 

I. Introduction 
 Very little work has been done on the topic the problem of difference inequalities with deviating 

arguments. For first order second order and   order difference inequalities. We can refer to [1-9] and their 

references. In this paper, we consider the following second order neutral difference inequality with deviating 

arguments  

 

The aim of this paper is to obtain some sufficient conditions under which (1) have no eventually positive 

solution. We first assume the following condition throughout this paper that 

(A1)    
1i i to n

c n


 is a positive real sequence 

(A2)   
1i i to n

n


 is a sequence of positive integers such that  ( )i n n   and lim ( ) .i
n

n


   

(A3) The functions ( , ), [ , ]g n a b    is a non-decreasing with respect to n and   respectively such that    

( , ) lim ( , ) .
n

g n n and g n 


    

(A4) ( , )p n  is a non-decreasing sequence with respect to n and  . 

II. Main Results 
For convenience, we first give the following lemmas. 

Lemma 2.1. Suppose that the following conditions holds 

    
1

( ) 1,
m

i

i

c n


           (2) 

   
( )

0 ( 0, isa constant).
f x

x
x

            (3) 

If ( )x n is an eventually positive solution of inequality (1), and let 

    
1

( ) ( ) ( ( ))
m

i i

i

y n x n c x n


          (4) 

then there exists a 1 0n   such that 

   2( ) 0, ( ) 0 ( ) 0.y n y n and y n             (5) 

 

 

Proof. Since x(n) is an eventually positive solution of (1), and from (A3), there exists a 1 0n   such that  

      1( ) 0, ( ) 0 ( , ) 0, , [ , ].ix n x n and x g n n n a b        
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Noting (2) we have 
1( ) 0,y n n n    and from (2), we have 

       2 ( ) , ( , ) 0,
b

a

y n p n f x g n             (6) 

then ( )y n  is a monotonic decreasing and we can further prove 
1( ) 0, .y n n n    

 In fact, if there is a 2 1n n  with 
2( ) 0.y n   Then from (6), we have 

3 2 3( ) ( ) ( ) 0, ,y n y n y n n n         then 

   
3 3

1 1

3 3 3( ) ( ) ( ) ( ) 0, ,
n n

n n

y n y n y s y n n n
 

          

therefore  lim ( ) .
n

y n


   This contradicts the assumption that 
1( ) 0, .y n n n    

This complete the proof of Lemma 2.1.            ▀ 

 

Lemma 2.2. Suppose that x(n) is an eventually positive solution of inequality (1), then there exists a 
2n  for any   

(0,1)  such that  

     ( ) ( ).y n n y n           (7) 
 

Proof. Since x(n) is an eventually positive solution of (1) by Lemma 2.1, there exists a 1 0n  such that (5) 

holds, and it is easily seen that there exists a    such that 

     1 1( ) ( ) ( ) .y n y n y n n            (8) 

From (5), for any (0,1),    we have 

     1( ) ( ) .y n y n n    

Let 
1

,
1

w





 then 
1

1 ,
w

    and 

   1 1 2

1
1 , .

n
n n n n n n wn n

w w


 
        

 
       (9) 

Form (8) and (9), we can get (7).  

This completes the proof of Lemma 2.2.            ▀ 

 

Lemma 2.3. Suppose ( , )Q n   is real positive sequence [ , ]a b    and 

(H1)      there exists a function ( , )h n   such that   ( , ) ( , );h h n g n   ( , )h n  is non-decreasing function with  

 respect to n and    and  ( , ) ( , ),n h n g n    

(H2)   
1

( , )

1
liminf ( , ) ,

n b

n
g n b a

Q s
e





   

(H3)   
1

( , )

liminf ( , ) 0,
n b

n
h n b a

Q s 



   then the first order retarded difference inequality 

    ( ) ( , ) ( , ) 0,
b

a

x n Q s x g n          (10) 

 have no eventually positive solution. 
 

Proof. Refer Conjecture A in [10].             ▀ 

 

 Now we give the main results of this paper. 
 

Theorem 2.1. Suppose that (2) and (3) hold. Assume further that ( )n   is a decreasing positive real sequence 

such that 

    
 

0

2

1

( )
( ) ( , ) 1 ( , ) ,

4 ( )

b m

i

n a i

s
s p s c g s

s


  







  
     

   
      (11) 

then inequality (1) has no eventually positive solution. 

Proof. Suppose that x(n) is an eventually positive solution of (1). Then there exists a 1 0n   such that 

 ( ) 0, ( ) 0ix n x n   and   1( , ) 0, , [ , ].x g n n n a b     From (4) we have 
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           
1

( , ) ( , ) ( , ) ( , ) ,
m

i i

i

x g n y g n c g n x g n    


   

and from (3), we have     ( , ) ( , ) 0.f x g n x g n      Thus 

                 

  

     

2

2

1

0 ( ) ( , ) ( , )

( ) ( , ) ( , ) ( , ) ( ) (12)

b

a

b m

i i

a i

y n p n f x g n

y n p n y g n c g n x n

 

    


  

 
   

 



 

 

From Lemma 2.1, ( ) 0,y n   and noting  1( ) ( ), ,y n x n n n   we have 

        2

1

( ) ( , ) 1 ( , ) , 0.
b m

i

a i

y n p n c g n y g n   


 
       

 
      (13) 

Using (A3), ( , )g n    is non-decreasing in  , we have ( , ) ( , ), [ , ].g n a g n a b    Therefore, we have 

     2

1

( ) ( , ) ( , ) 1 ( , ) 0.
b m

i

a i

y n y g n a p n c g n  


 
    

 
      (14) 

Set 

    
 

( )
( ) ,

( , )

y n
W n

y g n a



       (15) 

then ( ) 0.W n   Using the conditions ( , ) , [ , ], ( ) [ ( , )],g n n a b y n y g n x        then 

 

   

     

 
 

 

2

2

2 2

2

222

( ) ( ) [ ( , )] ( ) [ ( , )]
( ) ( 1)

( , ) ( , )

( ) ( ) ( ) ( )

( , ) ( , ) ( , )

( )( ) ( ) ( ) ( )
( ) .

( , ) 4 ( ) ( , ) 2 ( )

y n y n y g n a y n y g n a
W n n

y g n a y g n a

y n y n n y n

y g n a y g n a y g n a

nn y n y n n
n

y g n a n y g n a n




 


 


 

     
     

  

   
  

   
    

  

 

From (14), we have 

   
 

2

1

( )
( ) ( ) ( , ) 1 ( , ) .

4 ( )

b m

i

a i

n
W n n p n c g n

n


  



  
      

   
   

Summing both sides of the last inequality above from 1 11 ( ),n to n n n   we have 

   
 

1

2
1

1

1

( )
( ) ( ) ( ) ( , ) 1 ( , ) .

4 ( )

n b m

i

n a i

n
W n W n n p n c g n

n


  







  
      

   
     (16) 

By taking  n   and noticing (14), we have ( ) ,W n   which contradicts ( ) 0.W n    

This completes the proof of Theorem 2.1.            ▀ 

 

Theorem 2.2. Suppose that (2)-(3) and (H1) hold, and that  

(H4)  
1

( , ) 1

1 1
liminf ( , ) ( , ) 1 ( , ) ,

2

n b m

i
n

g n b a i

g n Q n c g g s
e

  





  
   

   
    

(H5)  
1

( , ) 1

1
liminf ( , ) ( , ) 1 ( , ) 0.

2

n b m

i
n

h n b a i

g n Q n c g g s  





  
   

   
    

Then the inequality (1) has no eventually positive solutions. 
 

Proof. Suppose that x(n) is an eventually positive solution, by Lemma 2.1, we know that there exists a  3 1n n  

such that  ( ( )) 0, ( , ) 0,ix n x g n    and   3( , ) 0, , [ , ].x g n n n a b       

Noticing ( ) ( )y n x n ,  we have 

     3

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ), ,
m m

i i i

i i

y n x n c n y n x n c n y n n n
 

       

 

then  
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1

1 ( ) ( ) ( ).
m

i

i

c n y n x n


 
  

 
       (17) 

Using Lemma 2.2, (13) and (17), we have 

                 

   

   

2

1

2

1

0 ( ) ( , ) 1 ( , ) ( , )

( ) ( , ) 1 ( , ) ( , ) ( , ) .

b m

i

a i

b m

i

a i

y n p n c g g n y g n

y n p n c g g s g n y g n

   

     





 
    

 

 
   

 

 

 

 

Choosing  
1

(0,1),
2

    we have 

        2

3

1

( ) ( , ) 1 ( , ) ( , ) , 0, ,
2

b m

i

a i

y n p n c g g s g n y g n n n


   


 
         

 
    

let  ( ) ( )z n y n   

     2

4

1

1
( ) ( , ) 1 ( , ) ( , ) , 0, .

2

b m

i

a i

y n p n c g g s g n z g n n n    


 
        

 
    (18) 

Choosing 

    3

1

1
( , ) ( , ) 1 ( , ) ( , ), ,

2

m

i

i

Q n p n c g g s g n n n   


 
   

 
  

then we have 

  
1

( , )

1
liminf ( , ) ,

n b

n
g n b a

Q s
e





   

  
1

( , )

liminf ( , ) 0,
n b

n
h n b a

Q s 



   

  ( ) ( , ) [ ( , )] 0.
b

a

z n Q s z g n            (19) 

Then if follows from Lemma 2.3 that inequality (19) has no eventually positive solutions, which contradicts the 

fact that  ( ) ( ) 0z n y n    is a solution of (18).  

This completes the proof of Theorem 2.2.            ▀ 

 

Remark 2.1. Similar to the above results on equation (1), we can consider the following second order delay 

difference inequality 

        2

1

( ) ( ) ( ) , ( , ) 0
m b

i i

i a

x n c n x n p s f x g n  


 
    

 
       (1’) 

and obtain sufficient conditions that ensure two inequality has no eventually negative solutions. 

 

 For the second order delay difference equation 

        
1

( ) ( ) ( ) , ( , ) 0.
m b

i i

i a

x n c n x n p s f x g n  


 
   

 
       (20) 

 

 We have the following results. 

Theorem 2.3. Suppose that the conditions of Theorem 2.1 hold. Then every solution of equation (20) is 

oscillatory. 
 

Theorem 2.4. Suppose that the conditions of Theorem 2.2 hold. Then every solution of equation (20) is 

oscillatory. 
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