A Note on " $\alpha - \phi$ Geraghty contraction type mappings"

Sujata Goyal

Department of Mathematics, A.S. College, Khanna-141401

Abstract: In this paper, a fixed point result for $\alpha - \phi$ Geraghty contraction type mappings has been proved. Karapiner [2] assumes ϕ to be continuous. In this paper, the continuity condition of ϕ has been replaced by a weaker condition and fixed point result has been proved. Thus the result proved generalizes many known results in the literature [2-7].

Keywords: Fixed point, α - Geraghty contraction type map, α - ψ Geraghty contraction type, $\alpha - \phi$ Geraghty contraction type, metric space

I. Introduction

The Banach contraction principle [1], which is a useful tool in the study of many branches of mathematics, is one of the earlier and fundamental results in fixed point theory. A number of authors have improved and extended this result either by defining a new contractive mapping or by investigating the existing contractive mappings in various abstract spaces, see, for e.g.,[2-10].

Geraghty [3] obtained a generalization of Banach contraction principle by considering an auxiliary function β :

Let \mathfrak{I} denote the family of maps $\beta:[0,\infty) \to [0,1)$ satisfying the condition that $\beta(t_n) \to 1$ implies

 $t_n \rightarrow 0.$

He proved the following theorem:

Theorem 1.1: Let (X,d) be a metric space and let T: $X \rightarrow X$ be a map. Suppose there exists $\beta \in \mathfrak{I}$ such that for all x, y in X:

 $d(Tx,Ty) \leq \beta(d(x,y)) d(x,y).$

Then T has a unique fixed point $x_* \in X$ and $\{T^n x\}$ converges to x_* for each $x \in X$.

Cho *et al.*, [5] used the concept of α - admissible and triangular α - admissible maps to generalize the result of Geraghty [3].

Definition 1.1: Let T: X \rightarrow X be a map and α :X \times X \rightarrow **R** be a map. Then T is said to be α - admissible if α (x, y) \geq 1 implies α (Tx, Ty) \geq 1

Definition 1.2: An α - admissible map is said to be triangular α - admissible if

 $\alpha(\mathbf{x}, \mathbf{z}) \ge 1$ and $\alpha(\mathbf{z}, \mathbf{y}) \ge 1$ implies $\alpha(\mathbf{x}, \mathbf{y}) \ge 1$

Definition 1.3: A map T: X \rightarrow X is called a generalized α - Geraghty contraction type if there exists

 $\beta \in \mathfrak{I}$ such that for all x, y in X:

$$\alpha$$
 (x, y) d(Tx, Ty) $\leq \beta$ (M(x,y)) M(x,y)

Where M(x,y)=max{d(x,y),d(x,Tx),d(y,Ty)}

Cho et al., [5] proved the following theorem:

Theorem 1.2: Let (X,d) be a complete metric space. $\alpha : X \times X \rightarrow \mathbf{R}$ be a map and let T: $X \rightarrow X$ be a map. Suppose the following conditions are satisfied:

- 1) T is generalized α Geraghty contraction type map
- 2) T is triangular α admissible
- 3) There exists $x_1 \in X$ such that $\alpha(x_1, Tx_1) \ge 1$
- 4) T is continuous

Then T has a fixed point fixed point $x_* \in X$ and $\{T^n x_1\}$ converges to x_*

Popescu [6] extended this result using concept of α -orbital admissible and triangular α -orbital admissible maps:

Definition 1.4: Let T: X \rightarrow X be a map. α : X \times X \rightarrow **R** be a map . T is said to be α -orbital admissible if

 α (x, Tx) \ge 1 implies α (Tx, T² x) \ge 1

Definition 1.5: Let T: $X \to X$ be a map. $\alpha : X \times X \to \mathbf{R}$ be a map .T is said to be triangular α -orbital admissible if T is α -orbital admissible and $\alpha (x, y) \ge 1$ and $\alpha (y, Ty) \ge 1$ implies $\alpha (x, Ty) \ge 1$

Popescu [6] proved the following theorem:

Theorem 1.3: Let (X,d) be a complete metric space. $\alpha : X \times X \rightarrow \mathbf{R}$ be a function. Let T: $X \rightarrow X$ be a map. Suppose the following conditions are satisfied:

- 1) T is generalized α Geraghty contraction type map
- 2) T is triangular α orbital admissible map
- 3) There exists $x_1 \in X$ such that $\alpha(x_1, Tx_1) \ge 1$
- 4) T is continuous

Then T has a fixed point fixed point $x_* \in X$ and $\{T^n x_1\}$ converges to x_*

Karapinar [4], introduced the notion of α - ψ Geraghty contraction type map to extend the result:

Let Ψ denote the class of the functions $\psi : [0,\infty) \rightarrow [0,\infty)$ which satisfy the following conditions:

(a) ψ is non-decreasing.

(b) ψ is subadditive, that is, ψ (s+t) $\leq \psi$ (s)+ ψ (t) for all s, t

- (c) ψ is continuous.
- (d) ψ (t) = 0 \Leftrightarrow t = 0.

Definition 1.6: Let (X,d) be a metric space, and let $\alpha : X \times X \rightarrow R$ be a function. A mapping $T : X \rightarrow X$ is said to be a generalized $\alpha - \psi$ -Geraghty contraction if there exists $\beta \in \mathfrak{I}$ such that

 $\alpha(x,y) \ \psi \ (d(Tx,Ty)) \le \beta(\psi \ (M(x,y))) \ \psi \ (M(x,y)) \text{ for any } x, y \in X$

where $M(x,y) = \max\{d(x,y), d(x,Tx), d(y,Ty)\}$ and $\psi \in \Psi$.

Karapinar, E. [4] proved the following theorem:

Theorem 1.4: Let (X,d) be a complete metric space, $\alpha : X \times X \to R$ be a function and let $T : X \to X$ be a map. Suppose that the following conditions are satisfied:

(1) T is generalized α - ψ Geraghty contraction type map

(2) T is triangular α -admissible

(3) there exists $x_1 \in X$ such that $\alpha(x_1, Tx_1) \ge 1$

(4) T is continuous.

Then, T has a fixed point $x \in X$, and $\{T^n x_1\}$ converges to $x \in X$.

Later Karapinar [2] observed that condition of subadditivity of ψ can be removed:

Let Φ denote the class of functions $\phi:[0,\infty) \to [0,\infty)$ which satisfy the following conditions:

- 1) ϕ is nondecreasing
- 2) ϕ is continuous
- 3) ϕ (t)=0 iff t=0

Definition 1.7: Let (X,d) be a metric space. $\alpha: X \times X \to \mathbf{R}$ be a map. A mapping $T: X \to X$ is said to be

generalized α - ϕ Geraghty contraction type map if there exists $\beta \in \mathfrak{I}$ such that

 $\alpha(\mathbf{x}, \mathbf{y}) \phi(\mathbf{d}(\mathbf{T}\mathbf{x}, \mathbf{T}\mathbf{y})) \le \beta(\phi(\mathbf{M}(\mathbf{x}, \mathbf{y}))) (\phi(\mathbf{M}(\mathbf{x}, \mathbf{y})))$ for all \mathbf{x}, \mathbf{y} in X

Where M(x,y)=max{d(x,y),d(x,Tx),d(y,Ty)} and $\phi \in \Phi$

Karapinar [2] proved the following theorem:

Theorem 1.5: Let (X,d) be a complete metric space, $\alpha : X \times X \to R$ be a function, and let $T : X \to X$ be a map. Suppose that the following conditions are satisfied:

- (1) T is generalized α - ϕ -Geraghty contraction type map
 - (2) T is triangular α -admissible
 - (3) There exists $x_1 \in X$ such that $\alpha(x_1, Tx_1) \ge 1$
 - (4) T is continuous

Then T has a fixed point $x \in X$ and $\{T' x_1\}$ converges to $x \in X$.

In this paper we have shown that above result is true even if the continuity condition of ϕ is replaced by the following weaker condition:

 $\lim_{n \to \infty} \mathbf{x}_n = \lim_{n \to \infty} \mathbf{y}_n = \mathbf{l} (> 0) \text{ implies } \lim_{n \to \infty} \boldsymbol{\phi} (\mathbf{x}_n) = \lim_{n \to \infty} \boldsymbol{\varphi} (\mathbf{y}_n) = \mathbf{m} \text{ where } \mathbf{m} \in \mathbf{R}^+.$

In this regard we have the following theorem:

Theorem 2.1: Let (X,d) be a complete metric space. $\alpha : X \times X \rightarrow R$ and $T: X \rightarrow X$ be such that :

- (1) T is generalized α - φ -Geraghty contraction type map for some $\phi \in \Phi$
- (2) T is triangular α -orbital admissible
- (3) There exists $x_1 \in X$ such that $\alpha(x_1, Tx_1) \ge 1$
- (4) T is continuous

Then T has a fixed point $x \in X$, and $\{T' x_1\}$ converges to $x \in X$.

Where Φ denotes the class of functions $\phi: [0,\infty) \to [0,\infty)$ such that

(i) ϕ is non decreasing.

(ii) $\phi(t) = 0$ iff t = 0

(iii) $\lim_{n \to \infty} \mathbf{x}_n = \lim_{n \to \infty} \mathbf{y}_n = \mathbf{s} \ (>0) \text{ implies } \lim_{n \to \infty} \phi(\mathbf{x}_n) = \lim_{n \to \infty} \varphi(\mathbf{y}_n) = \mathbf{m} \text{ where } \mathbf{m} \in \mathbf{R}^+$

Before proving the theorem, we need the following lemma: Lemma 2.1: T : X \rightarrow X be triangular α -orbital admissible. Suppose there exists such that

$$\alpha(x_1, Tx_1) \ge 1$$
. Define (x_n) by $x_{n+1} = T(x_n)$ then $\alpha(x_n, x_m) \ge 1$ for all n

Proof of lemma: Since T is α -orbital admissible and $\alpha(x_1, Tx_1) \ge 1$. We deduce

$$\alpha_{(\mathbf{x}_2,\mathbf{x}_3)=\alpha(\mathbf{T}\mathbf{x}_1,\mathbf{T}\mathbf{x}_2)\geq 1.}$$

Continuing this way, we get, $\alpha(x_n, x_{n+1}) \ge 1$ for all n. suppose $\alpha(x_n, x_m) \ge 1$ where m>n. Since T is triangular α -orbital admissible and $\alpha(x_m, x_{m+1}) \ge 1$, we get $\alpha(x_n, x_{m+1}) \ge 1$. Thus lemma is proved.

Proof of main theorem 2.1: let $x_1 \in X$ be such that $\alpha(x_1, Tx_1) \ge$. Define (x_n) by $x_{n+1} = T(x_n)$

Now we will prove $\lim d(x_n, x_{n+1})=0$.

By lemma,
$$\alpha$$
 (x n, x n+1) ≥ 1 for all n.

$$\phi (d(x_{n+1}, x_{n+2})) = \phi (d(Tx_n, Tx_{n+1})) \le \alpha (x_n, x_{n+1}) \phi (d(Tx_n, Tx_{n+1}))$$

$$\le \beta (\phi (M(x_n, x_{n+1})) \phi (M(x_n, x_{n+1}))$$
(3)

Where $M(x_n, x_{n+1}) = \max\{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2})\}$

Now $M(x_n, x_{n+1}) = d(x_{n+1}, x_{n+2})$ is not possible.

Since if $M(x_n, x_{n+1}) = d(x_{n+1}, x_{n+2})$ we will have

$$\phi_{(d(x_{n+1}, x_{n+2}))} \leq \beta_{(\phi_{(M(x_{n}, x_{n+1}))})} \phi_{(M(x_{n}, x_{n+1}))}$$

$$\leq \beta_{(\phi_{(d(x_{n+1}, x_{n+2}))})} \phi_{(d(x_{n+1}, x_{n+2}))}$$

$$< \phi_{(d(x_{n+1}, x_{n+2}))}$$

which is a contradiction.

Thus $M(x_n, x_{n+1}) = d(x_n, x_{n+1})$ Using Eq. (3), we get,

$$\oint (d(x_{n+1}, x_{n+2})) < \oint (d(x_n, x_{n+1})) \Longrightarrow d(x_{n+1}, x_{n+2}) < (d(x_n, x_{n+1}) \text{ for all } n$$

Thus the sequence $\{d(x_n, x_{n+1})\}$ is non-negative and monotonically decreasing

This implies that $\lim_{n\to\infty} d(x_n, x_{n+1}) = r (\ge 0)$ Claim r = 0If r > 0, from Eq. (3), (2)

$$\frac{\phi(d(x_{n+1}, x_n))}{\phi(M(x_n, x_{n+1}))} \leq \beta \left(\phi \left(\mathbf{M}(x_n, x_{n+1}) \right) < 1 \right)$$

$$\Rightarrow \lim \beta \left(\phi \left(\mathbf{M}(x_n, x_{n+1}) \right) = 1 \right)$$

$$\Rightarrow \lim \phi \left(\mathbf{M}(x_n, x_{n+1}) \right) = 0$$

$$\Rightarrow r = \lim d(x_n, x_{n+1}) = 0$$
(4)

Now let (x_n) be not Cauchy .Thus, there exists $\leq > 0$ such that Given k there exists m(k) > n(k) > k such that

$$d(x_{n(k)}, x_{m(k)}) \ge \in \text{but } d(x_{n(k)}, x_{m(k)-1}) < \in$$

$$\in \leq d(x_{n(k)}, x_{m(k)}) \le d(x_{n(k)}, x_{m(k)-1}) + d(x_{m(k)-1}, x_{m(k)}) < \in + d(x_{m(k)-1}, x_{m(k)})$$

This implies $\lim_{k\to\infty} d(\mathbf{x}_{n(k)}, \mathbf{x}_{m(k)}) = \in$

 $\lim_{k\to\infty} \phi(\mathbf{d}(\mathbf{x}_{n(k)},\mathbf{x}_{m(k)})) > 0$

Also $\lim_{k\to\infty} d(\mathbf{x}_{m(k)-1}, \mathbf{x}_{n(k)-1}) = \in$

Now
$$\phi(\mathbf{d}(\mathbf{x}_{m(k)},\mathbf{x}_{n(k)})) = \phi(\mathbf{d}(\mathbf{T}\mathbf{x}_{m(k)-1},\mathbf{T}\mathbf{x}_{n(k)-1})) \leq \alpha(\mathbf{x}_{m(k)-1},\mathbf{x}_{n(k)-1})\phi(\mathbf{d}(\mathbf{T}\mathbf{x}_{m(k)-1},\mathbf{T}\mathbf{x}_{n(k)-1}))$$

$$\leq \beta \left(\phi \left(\mathbf{M}(\mathbf{x}_{m(k)-1}, \mathbf{x}_{n(k)-1}) \right) \right) \phi \left(\mathbf{M}(\mathbf{x}_{m(k)-1}, \mathbf{x}_{n(k)-1}) \right)$$

$$\Rightarrow \frac{\phi(d(x_{m(k)}, x_{n(k)}))}{\phi(M(x_{m(k)-1}, x_{n(k)-1}))} \le \beta(\phi(M(x_{m(k)-1}, x_{n(k)-1})))$$
(5)

Now $d(x_{m(k)}, x_{n(k)}) \rightarrow \in$ and $M(x_{m(k)-1}, x_{n(k)-1}) \rightarrow \in$ Thus by assumption:

 $\lim \phi (d(x_{m(k)}, x_{n(k)})) = \lim \phi (M(x_{m(k)-1}, x_{n(k)-1}))) \text{ and it will be +ve.}$

Thus by (5), $\lim \beta (\phi (M(x_{m(k)-1}, x_{n(k)-1}))) = 1$

$$\Rightarrow \phi_{(\mathbf{M}(\mathbf{x}_{m(k)-1},\mathbf{x}_{n(k)-1}))} \rightarrow 0$$

$$\Rightarrow_{\mathbf{M}(\mathbf{X}_{m(k)-1},\mathbf{X}_{n(k)-1})}\rightarrow_{0}$$

 \Rightarrow d(x_{m(k)-1}, x_{n(k)-1}) \rightarrow 0 which is a contradiction.

Thus the sequence (x_n) is Cauchy. Hence the result.

Example: define a map, $\phi : \mathbf{R} \rightarrow \mathbf{R}$ as follows:

$$\phi(\mathbf{x}) = 1 \text{ if } \mathbf{x} > 0 \& \phi(\mathbf{x}) = 0 \text{ if } \mathbf{x} \le 0$$

Clearly, ϕ is discontinuous but it satisfies the condition given in Eq. (1) Thus our result applies to a wider class of mappings.

References

- Banach, S. (1922), "Sur les opérations dans les ensembles abstraits et leur application aux équations integrals", Fundamenta Mathematicae, Vol. 3, No. 1, pp. 133-181.
- [2]. Karapınar, E. (2014), "A discussion on 'α-ψ-Geraghty contraction type mappings", Filomat, Vol. 28, No. 4, pp. 761-766.
- [3]. Geraghty, Michael A. (1973), "On contractive mappings", Proceedings of the American Mathematical Society, Vol. 40, No. 2, pp. 604-608.
- [4]. Karapınar, E. (2014), "α-ψ-Geraghty contraction type mappings and some related fixed point results", Filomat, Vol. 28, No. 1, pp. 37-48.
- [5]. Cho S. H., Bae J. S. and Karapınar E. (2013), "Fixed point theorems for α-Geraghty contraction type maps in metric spaces", Fixed Point Theory and Applications, Vol. 2013, No. 2013: 329.
- [6]. Popescu O. (2014), "Some new fixed point theorems for α-Geraghty contraction type maps in metric spaces", Fixed Point Theory and Applications, Vol. 2014, No. 2014;190.

- [7]. Chandok S. (2015), "Some fixed point theorems for (a, b)-admissible Geraghty type contractive mappings and related results",
- Mathematical Sciences, Vol. 9, pp. 127-135. Dukic D., Kadelburg Z. and Radenovic S. (2011), "Fixed Points of Geraghty-Type Mappings in Various Generalized Metric Spaces", Abstract and Applied Analysis, Vol. 2011, No. 2011, pp. 1-13. [8].
- Karapınar E. and Samet B. (2014), "A note on '\u03c8-Geraghty type contractions", Fixed Point Theory and Applications, Vol. 2014, [9]. No. 2014:26.
- Karapınar E., Shahi P. and Tas K. (2014),"Generalized α-ψ Contractive Type Mappings and Related Fixed Point Theorems with [10]. Applications", Journal of Inequalities and Applications, Vol. 2014, No. 2014:160