Connected and Distance in $G \bigotimes_2 H$

U. P. Acharya¹, H. S. Mehta²

¹(Department of Appl. Sci. and Humanities, A. D. Patel Institute of Technology, New V. V. Nagar, India) ²(Department of Mathematics, S. P. University, V. V. Nagar-388120, India)

Abstract: The tensor product $G \otimes H$ of two graphs G and H is well-known graph product and studied in detail in the literature. This concept has been generalized by introducing 2-tensor product $G \otimes_2 H$ and it has been discussed for special graphs like P_n and C_n [5]. In this paper, we discuss $G \otimes_2 H$, where G and H are connected graphs. Mainly, we discuss connectedness of $G \otimes_2 H$ and obtained distance between two vertices in it.

Keywords: Bipartite graph, Connected graph, Non-bipartite graph, 2-tensor product of graphs.

I. Introduction

The tensor product $G \otimes H$ of two graphs G and H is very well-known and studied in detail ([1], [2], [3], [4]). This concept has been extended by introducing 2-tensor product $G \otimes_2 H$ of G and H and studied for special graphs [5]. In this paper, we discuss connectedness of $G \otimes_2 H$ for any connected graphs G and H. We also obtained the results for the distance between two vertices in $G \otimes_2 H$.

If G = (V(G), E(G)) is finite, simple and connected graph, then $d_G(u, u')$ is the length of the shortest path between u and u' in G. For a graph G, a maximal connected subgraph is a component of G. For the basic terminology, concepts and results of graph theory, we refer to ([1], [6], [7]). We recall the definition of 2-tensor product of graphs.

Definition 1.1 [5] Let G and H be two connected graphs. The 2-tensor product of G and H is the graph with vertex set $\{(u,v): u \in V(G), v \in V(H)\}$ and two vertices (u,v) and (u',v') are adjacent in 2-tensor product if $d_G(u,u') = 2$ and $d_H(v,v') = 2$. It is denoted by $G \otimes_2 H$.

Note that $G \otimes_2 H$ is a null graph, if the diameter D(G) < 2 or D(H) < 2. So, throughout this paper we assume that G and H are non-complete graphs.

II. Connectedness of $G \otimes_2 H$

this section, first we consider the graphs G and H, both connected and bipartite with $N^2(w) \neq \phi$; $\forall w \in V(G) \cup V(H)$, where $N^2(u) = \{u' \in V(G) : d_G(u, u') = 2\}$

In usual tensor product $G \otimes H$, the following result is known.

Proposition 2.1 [4] Let G and H be connected bipartite graphs. Then $G \otimes H$ has two components.

Note that in case of $G \otimes_2 H$, the similar result is not true. We discuss the number of components in $G \otimes_2 H$ with different conditions on G and H.

We fix the following notations

Let $V(G) = U_1 \cup U_2$ and $V(H) = V_1 \cup V_2$ with U_i and V_j , (i, j = 1, 2) are partite sets of G and H respectively. Then, $V(G \otimes_2 H) = W_{11} \cup W_{12} \cup W_{21} \cup W_{22}$ with $W_{ij} = U_i \times V_j$

Remark 2.2 If (u,v) and (u',v') are from different W_{ij} , then (u,v) and (u',v') can not be adjacent in $G \otimes_2 H$ as $d_G(u,u') \neq 2$ or $d_H(v,v') \neq 2$. So, $G \otimes_2 H$ has at least four components. Suppose (u,v) and (u',v') are in the same W_{ij} . Then $d_G(u,u')$ and $d_H(v,v')$ are even.

Proposition 2.3 Let G and H be connected bipartite graphs. If $d_G(u,u')$ and $d_H(v,v')$ are of the same form, 4k or 4k + 2, $(k \in \mathbb{IN} \cup \{0\})$ then (u,v) and (u',v') are in the same component of $G \otimes_2 H$.

*Proof.*Let (u, v) & $(u', v') \in U_1 \times V_1$. Suppose, $P_1 : u = u_0 \rightarrow u_1 \rightarrow \ldots \rightarrow u_m = u'$ and

 $P_2: v = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_n = v'$ are paths between u, u' and v, v' respectively.

Suppose $l(P_1) = 4k/4k + 2$ and $l(P_2) = 4t/4t + 2$ with $k \le t$. First assume that $k \ne 0 \ne t$, then there is a path *P* or *P'* between (u,v) and (u',v') in $G \otimes_2 H$ as follows:

 $P: (u_0, v_0) \to (u_2, v_2) \to \dots \to (u_{4k}, v_{4k}) \to (u_{4k-2}, v_{4k+2}) \to (u_{4k}, v_{4k+4}) \to \dots \to (u_{4k}, v_{4t}) = (u', v').$

 $P': (u_0, v_0) \to (u_2, v_2) \to \dots \to (u_{4k+2}, v_{4k+2}) \to (u_{4k}, v_{4k+4}) \to (u_{4k+2}, v_{4k+6}) \to \dots \to (u_{4k+2}, v_{4t+2}) = (u', v').$

Next, assume that k = 0, i.e. $l(P_1) = 0$ or 2, i.e. u = u' or $u = u_0 \rightarrow u_1 \rightarrow u_2 = u'$. Now as $N^2(u) \neq \phi$, $\exists a \in V(G)$ such that $d_G(u, a) = 2$. So, in case of $l(P_1) = 0$ and $l(P_2) = 4t$, we get the path between (u, v) and (u, v') in $G \otimes_2 H$ as follows:

 $(u,v) = (u,v_0) \rightarrow (a,v_2) \rightarrow (u,v_4) \rightarrow \dots \rightarrow (u,v_{4t}).$

Next if $l(P_1) = 2$ and $l(P_2) = 4t + 2$, then we get the path between (u_0, v) and (u_2, v') in $G \otimes_2 H$ as follows:

 $(u, v) = (u_0, v_0) \to (u_2, v_2) \to (u_0, v_4) \to (u_2, v_6) \to \dots \to (u_2, v_{4t+2}) = (u_2, v').$

Thus in all cases there is a path from (u, v) to (u', v') in $G \otimes_2 H$. Which completes the proof.

Remarks 2.4

[i] Suppose (u,v) and (u',v') are in same W_{ij} . But if $d_G(u,u')$ and $d_H(v,v')$ are not of the same form, then (u,v) and (u',v') may be in different components. So, $U_1 \times V_1$ give at most two components. Thus $G \otimes_2 H$ has at most eight components.

[ii] Suppose $\Delta(G) \leq 2$ and $\Delta(H) \leq 2$, $\Delta(G)$ and $\Delta(H)$ are maximum degree of G and H respectively. Then G and H are either path or cycle. If the cycle is of the form C_{4l} , then in each of the cases, $P_m \otimes_2 P_n$, $P_m \otimes_2 C_{4n}$ and $C_{4m} \otimes_2 C_{4n}$ have eight components [5].

Next, we discuss the conditions on G and H under which $G \otimes_2 H$ has 4, 5 or 6 components.

Proposition 2.5 Let G and H be connected bipartite graphs and at least one of the graphs contains a cycle C_{4l+2} $(l \in \mathbb{IN})$. Then $G \otimes_2 H$ has exactly four components.

Proof. Let (u, v) and (u', v') be in $U_1 \times V_1$. As we have seen in Proposition 2.3, if $d_G(u, u')$ and $d_H(v, v')$ are of the same form 4k or 4k + 2, then $U_1 \times V_1$ gives connected component.

Let P_1 and P_2 be two paths between u - u' and v - v' in G and H respectively, as we have considered in Proposition 2.3. Suppose $l(P_1)$ and $l(P_2)$ are of the different form.

Suppose *H* contains a cycle C_{4l+2} with $V(C_{4l+2}) = \{x_1, x_2, \dots, x_{4l+2}\}$. Then select a vertex from C_{4l+2} , which is nearest to $v_n = v'$ and also it is in V_1 . Suppose this vertex is x_j . Since v_n and x_j both are in V_1 , we get a path P_0 from v_n to x_j of even length. We consider a walk $W: v = v_0 \xrightarrow{P_2} v_n \xrightarrow{P_0} x_j \xrightarrow{C_{4l+2}} x_j \xrightarrow{P_0} v_n = v'$ between v and v' in *H*. Then,

 $l(W) = l(P_2) + 2(l(P_0)) + l(C_{4l+2}) = l(P_2) + 2(2t') + (4l+2) = l(P_2) + 4t'' + 2.$

Thus, if $l(P_2) = 4t + 2$ or 4t, then l(W) = 4q or 4q + 2. So, in any case, $l(P_1)$ and l(W) are of the same form and therefore, as in Proposition 2.3, we can show that there is a path between (u, v) and (u', v') in $G \otimes_2 H$. So, $U_1 \times V_1$ gives a connected components in $G \otimes_2 H$. Thus, $G \otimes_2 H$ has four components.

Next, we assume that the graphs G and H do not contain a cycle of the form C_{4l+2} . We prove that the number of components in $G \otimes_2 H$ is depending upon $\Delta(G)$ as well as $\Delta(H)$.

Let $\Delta(U_i) = \max\{d(u) : u \in U_i\}$ and $\Delta(V_i) = \max\{d(v) : v \in V_i\}; i = 1, 2$ and for $a \in V(G)$, $N(a) = \{b \in V(G) : d_G(a, b) = 1\}.$

Proposition 2.6 Let G and H be connected bipartite graphs with $\Delta(G) \leq 2$ and $\Delta(H) \geq 3$.

(a) If $\Delta(V_1) \leq 2$ and $\Delta(V_2) \geq 3$, then $G \otimes_2 H$ has six components.

(b) If $\Delta(V_1) \ge 3$ and $\Delta(V_2) \ge 3$, then $G \otimes_2 H$ has four components.

Proof. We know that $U_1 \times V_1$, $U_1 \times V_2$, $U_2 \times V_1$ and $U_2 \times V_2$ give disconnected subgraphs in $G \otimes_2 H$.

(a) Fixed $U_1 \times V_1$. We shall show that $U_1 \times V_1$ gives connected subgraph of $G \otimes_2 H$. Let $z \in V_2$ with $d(z) \ge 3$ and $N(z) = \{w_0, w_1, w_2, \ldots\} \subset V_1$.

Fixed $(u_0, v_0) \in U_1 \times V_1$ with $v_0 = w_0$. Let (u', v') be any vertex in $U_1 \times V_1$. Suppose, P_1 and P_2 are paths between $u = u_0$ to u' and $v = v_0$ to v' in G and H, as we have considered in Proposition 2.3. If $l(P_1) = 4k$ or 4k + 2 and $l(P_2) = 4t$ or 4t + 2, then the result is clear.

Next, suppose $l(P_1) = 4k$ and $l(P_2) = 4t + 2$; $k \le t$ with $k \ne 0 \ne t$. First, we show that for $v_0 \rightarrow v_1 \rightarrow v_2$ there is a path between (u_0, v_0) and (u_0, v_2) in $G \otimes_2 H$.

Case (1) Suppose $z \neq v_1$ in V_2 .

If $v_2 \neq w_1$ in V_1 as given in figure.1, then $(u_0, v_0) \rightarrow (u_2, w_1) \rightarrow (u_0, w_2) \rightarrow (u_2, v_0) \rightarrow (u_0, v_2)$ is a path between (u_0, v_0) and (u_0, v_2) in $G \otimes_2 H$.

If $v_2 = w_1$ in V_1 , then, $(u_0, v_0) \rightarrow (u_2, w_2) \rightarrow (u_0, v_2)$ is the required path. Case (2) Suppose $z = v_1$ in V_2 .

If $w_1 \neq v_2 \neq w_2$ in V_1 , then $(u_0, v_0) \rightarrow (u_2, w_2) \rightarrow (u_0, v_2)$ is the path and if $v_2 = w_2$, then consider the path $(u_0, v_0) \rightarrow (u_2, w_1) \rightarrow (u_0, v_2)$ in $G \otimes_2 H$.

Thus in each case there is a path between (u_0, v_0) and (u_0, v_2) in $G \otimes_2 H$. Also as in Proposition 2.3 there is a path from (u_0, v_2) to (u_{4k}, v_{4t+2}) in $G \otimes_2 H$. Hence there is a path from (u_0, v_0) to (u', v') in $G \otimes_2 H$. By similar arguments if $l(P_1) = 4k+2$ and $l(P_2) = 4t$, then also there is a path between (u_0, v_0) and (u', v') in $G \otimes_2 H$. So, $U_1 \times V_1$ gives a connected component in $G \otimes_2 H$.

Thus if $d(z) \ge 3$ with $z \in V_2$, then the other partite set V_1 contribute connected components $U_1 \times V_1$ and $U_2 \times V_1$ in $G \otimes_2 H$.

Here as $\Delta(U_i) \le 2$ and $\Delta(V_2) \le 2$, $U_1 \times V_2$ as well as $U_2 \times V_2$ each give two components in $G \otimes_2 H$. So, the graph $G \otimes_2 H$ has six components.

(b) In this case $\Delta(V_1) \ge 3$ and $\Delta(V_2) \ge 3$. So $U_1 \times V_1$, $U_1 \times V_2$ and $U_2 \times V_1$ and $U_2 \times V_2$ will give connected components in $G \otimes_2 H$. So, the graph $G \otimes_2 H$ has four components.

Corollary 2.7 Let G and H be connected bipartite graphs with $\Delta(G) \ge 3$ and $\Delta(H) \ge 3$.

(a) If $\Delta(U_1) \leq 2$ and $\Delta(U_2) \geq 3$ as well as $\Delta(V_1) \leq 2$ and $\Delta(V_2) \geq 3$, then $G \otimes_2 H$ has five components.

(b) If $\Delta(U_i) \ge 3$ and $\Delta(V_i) \ge 3$; (i = 1, 2), then $G \otimes_2 H$ has four components.

Proof. (a) In this case $\Delta(U_2) \ge 3$ and $\Delta(V_2) \ge 3$. Since $\Delta(U_2) \ge 3$, the other partite set U_1 contribute connected components $U_1 \times V_1$ and $U_1 \times V_2$ in $G \otimes_2 H$. Similarly as $\Delta(V_2) \ge 3$, $U_1 \times V_1$ and $U_2 \times V_1$ give connected components in $G \otimes_2 H$.

Further as $\Delta(U_1) \le 2$ as well as $\Delta(V_1) \le 2$, corresponding to other partite set U_2 and V_2 , we get two components for $U_2 \times V_2$ in $G \otimes_2 H$. Thus the graph $G \otimes_2 H$ has five components.

(b) By similar arguments as given in Proposition 1.6, for $\Delta(U_i) \ge 3$; i = 1, 2, we get connected components $U_1 \times V_1$, $U_1 \times V_2$, $U_2 \times V_1$ and $U_2 \times V_2$ in $G \otimes_2 H$. Thus, the graph $G \otimes_2 H$ has four components.

In general from Remarks 2.4, Proposition 2.6 and Corollary 2.7, we can summarize the number of components in $G \otimes_2 H$ as follows:

H	$\begin{array}{l} \Delta(V_1) \leq 2 \ , \\ \Delta(V_2) \leq 2 \end{array}$	$\begin{array}{l} \Delta(V_1) \leq 2 \ , \\ \Delta(V_2) \geq 3 \end{array}$	$\begin{array}{l} \Delta(V_1) \geq 3 \ , \\ \Delta(V_2) \leq 2 \end{array}$	$\begin{array}{l} \Delta(V_1) \geq 3 \ , \\ \Delta(V_2) \geq 3 \end{array}$
$\Delta(U_1) \leq 2$, $\Delta(U_2) \leq 2$	8	6	6	4
$\Delta(U_1) \leq 2$, $\Delta(U_2) \geq 3$	6	5	5	4
$\Delta(U_1) \ge 3$, $\Delta(U_2) \le 2$	6	5	5	4
$\Delta(U_1) \ge 3$, $\Delta(U_2) \ge 3$	4	4	4	4

Next, we discuss connectedness of $G \otimes_2 H$ for non-bipartite graphs. First we shall prove the following Proposition:

Proposition 2.8 labelnon Let G be a non-bipartite connected graph with $N^2(u) \neq \phi$, $\forall u \in V(G)$. Assume that G contains C_{2l+1} , l > 1. Then between every pair of vertices, there exists a walk of length 4k as well as 4k + 2; $(k \in IN \cup \{0\})$ form in G.

Proof. Since G is non-bipartite, it contains an odd cycle. Suppose G contains C_{2l+1} with $V(C_{2l+1}) = \{x_1, \dots, x_{2l+1}\}, l > 1$. Let u and u' be in V(G) with path $P: u = u_0 \rightarrow u_1 \rightarrow \dots \rightarrow u_{2t+1} = u'$, where $l(P) = d_G(u, u') = 2t + 1$.

Suppose u and u' are on C_{2l+1} . Then clearly there is a path between u and u' of even length.

Next, assume that u, $u' \notin V(C_{2l+1})$. Assume that u_i is the nearest vertex from the cycle C_{2l+1} and x_j is the corresponding nearest vertex of $V(C_{2l+1})$. Suppose P_0 is the path between u_i and x_j in G. Then there is a walk W' between u and u' in G as follows:

 $W': u = u_0 \xrightarrow{part of P} u_i \xrightarrow{P_0} x_j \xrightarrow{C_{2l+1}} x_j \xrightarrow{P_0} u_i \xrightarrow{part of P} u'.$

Then $l(W') = l(P) + l(C_{2l+1}) + 2l(P_0) = (2t+1) + (2l+1) + 2l(P_0)$, which is of even length.

If necessary travelling on the cycle more than once, we get length of the walk in both the form 4k as well as 4k+2 in *G*. If l(P) is even, then by same arguments as above we get a walk of length 4k and 4k+2 in *G*. Thus in all cases there is a walk between *u* and *u'* of length 4k as well as 4k+2 form in *G*.

Note that since l > 1, in every walk $W': u = w_0 \rightarrow w_1 \rightarrow ... \rightarrow w_p = u'$ between u and u' in above cases, we get $d_G(w_i, w_{i+2}) = 2$.

Now onwards, whenever we consider a non-bipartite graph, we assume that it contain a cycle C_{2l+1} , (l > 1).

Proposition 2.9 Let G and H be two connected graphs. Suppose G is a non-bipartite graph. Then,

(a) the graph $G \otimes_2 H$ has two components, if H is a bipartite graph.

(b) the graph $G \otimes_2 H$ is connected, if H is a non-bipartite graph.

Proof. (a) Suppose H is a bipartite graph. It is clear that $U \times V_1$ and $U \times V_2$ give two disconnected subgraphs in $G \otimes_2 H$.

Let (u, v) and (u', v') be in $U \times V_1$.

Let path P_1 between u and u' in G and path $P_2: v = v_0 \rightarrow v_1 \rightarrow ... \rightarrow v_n = v'$; (n is an even integer) between v and v' in H be as follows:

Since G is non-bipartite graph, by Proposition 1.11, there are walks between u and u' of length of the form 4k as well as 4k+2. Since n is an even integer, as we have discussed in Proposition 2.3, we get a path between (u, v) and (u', v') in $G \otimes_2 H$. Thus $U \times V_1$ gives a connected component, which proves (a).

(b) Let (u, v) and (u', v') be in $U \times V$. Since G and H both are non-bipartite graphs, there exist walks between v and v' of length 4k as well as 4k + 2 form. So, as above we get the result.

Corollary 2.10 Let G and H be two connected graphs. Then $G \otimes_2 H$ is connected if and only if G and H both are non-bipartite graphs.

Note that the similar result for usual Tensor product is as follows:

Proposition 2.11 [7] Let G and H be connected graphs. Then $G \otimes H$ is connected graph if and only if either G or H is non-bipartite.

III. Distance between two vertices in $G \otimes_2 H$

In this section, we discuss the distance between two vertices in $G \otimes_2 H$ for G and H both are connected and $N^2(w) \neq \phi$; $\forall w \in V(G) \cup V(H)$.

First we define $d_G^{(u,u')}$ and $d_G^{(u,u')}$ for u and u' in V(G), where G is a connected graph.

Definition 2.1 Let G = (U, E) be a connected graph and $u, v \in U$. Then,

(1) $d_G(u,u')$ is defined as the length of a shortest walk $W: u = w_0 \to w_1 \to ... \to w_p = u'$ between u and u' of the form $4k \ (k \in IN)$ in which $d_G(w_i, w_{i+2}) = 2$ for i = 0, 2, 4, ..., 4k - 2. (2) $d_G^{**}(u,u')$ is defined as the length of a shortest walk $W: u = w_0 \to w_1 \to ... \to w_p = u'$ between u and u' of the form $4k + 2 \ (k \ge 0)$ in which $d_G(w_i, w_{i+2}) = 2$ for i = 0, 2, 4, ..., 4k - 2.

Note that $d_G(u, u') = \begin{cases} d_G^*(u, u') < d_G^{**}(u, u'), & \text{if } d_G(u, u') = 4k \\ d_G^{**}(u, u') < d_G^*(u, u'), & \text{if } d_G(u, u') = 4k + 2 \end{cases}$

If there is no such shortest walk, then we write $d_G^*(u,u') = \infty (d_G^{**}(u,u') = \infty)$. **Remark 3.2**

[i] If G is a non-bipartite graph, then $d_G^*(u,u') < \infty$ and $d_G^{**}(u,u') < \infty$ for every $u,u' \in V(G)$, by *Proposition 1.8.*

[ii] If G is a bipartite graph and even, also if $d_G(u,u')$ is an even number 4k, then $d_G^{**}(u,u')$ may not be finite.

For example, if $G = P_6 : u_1 \to u_2 \to \dots \to u_5 \to u_6$, then $d_G(u_1, u_5) = 4$ but $d_G^{**}(u_1, u_5) = \infty$. However, if $G = C_{10}$, then $d_G(u_1, u_5) = 4$ but $d_G^{**}(u_1, u_5) = 6 < \infty$. Now we fix the following notations:

Let $G = (U, E_1)$ and $H = (V, E_2)$ be connected graphs. Then $V(G \otimes_2 H) = U \times V$. Fix $u, u' \in U$, suppose $d_G = d_G(u, u') = m$ with path $P_1 : u = u_0 \rightarrow u_1 \rightarrow ... \rightarrow u_m = u'$ and $v, v' \in V$, $d_H = d_H(v, v') = n$ with path $P_2 : v = v_0 \rightarrow v_1 \rightarrow ... \rightarrow v_n = v'$. Denote $d = d_{G \otimes_2 H}((u, v), (u', v'))$. We assume that (u, v) and (u', v') are in the same component of $G \otimes_2 H$, i.e., $d < \infty$.

Proposition 3.3 If d_G and d_H are of the same form 4k or 4k+2, then $d = Max\left\{\frac{1}{2}d_G, \frac{1}{2}d_H\right\}$.

Proof. Let $d_G = 4k$ and $d_H = 4t$; $k \le t$. Then using paths P_1 and P_2 from u to u' and v to v' in G and H respectively, there is a path

 $P: (u, v) = (u_0, v_0) \to (u_2, v_2) \to \dots \to (u_{4k}, v_{4k}) \to (u_{4k-2}, v_{4k+2}) \to (u_{4k}, v_{4k+4}) \to \dots \to (u_{4k}, v_{4t}) = (u', v')$ between (u, v) and (u', v') of length 2t in $G \otimes_2 H$. So, $d \le 2t = \frac{1}{2} d_H = Max \left\{ \frac{1}{2} d_G, \frac{1}{2} d_H \right\}$. Similarly if

$$d_{G} = 4k + 2 \text{ and } d_{H} = 4t + 2, \text{ then path}$$

$$P': (u, v) = (u_{0}, v_{0}) \rightarrow (u_{2}, v_{2}) \rightarrow \dots \rightarrow (u_{4k+2}, v_{4k+2}) \rightarrow (u_{4k}, v_{4k+4}) \rightarrow (u_{4k+2}, v_{4k+6}) \rightarrow \dots \rightarrow (u_{4k+2}, v_{4t+2}) = (u', v')$$
between (u, v) and (u', v') of length $2t + 1$ in $G \otimes_{2} H$. So, $d \leq 2t + 1 = \frac{1}{2} d_{H} = Max \left\{ \frac{1}{2} d_{G}, \frac{1}{2} d_{H} \right\}.$

Conversely suppose that $d < \infty$ with the path $(u, v) = (u_0, v_0) \rightarrow (u_1, v_1) \rightarrow \dots \rightarrow (u_d, v_d) = (u', v')$ in $G \otimes_2 H$. Then $d_G(u_i, u_{i+1}) = 2 = d_H(v_i, v_{i+1})$; $\forall i$. So, there is a walk $W_G : u = u_0 \rightarrow a_0 \rightarrow u_1 \rightarrow \dots \rightarrow u_d = u'$ of length 2d between u and u' in G with $u_i \neq u_{i+1}$. Similarly we get a walk W_H between v and v' in H. Hence $d_G \leq 2d$ and $d_H \leq 2d$. So, $\operatorname{Max}\left\{\frac{1}{2}d_G, \frac{1}{2}d_H\right\} \leq d$. Thus we get $\operatorname{Max}\left\{\frac{1}{2}d_G, \frac{1}{2}d_H\right\} = d$.

Next, we consider the case in which d_G and d_H are not in same form, but both are even.

Proposition 3.4 If
$$d_G = 4k$$
 and $d_H = 4t + 2$, then $d = Min\left\{Max\left\{\frac{1}{2}d_G, \frac{1}{2}d_H^*\right\}, Max\left\{\frac{1}{2}d_G^{**}, \frac{1}{2}d_H\right\}\right\}$.

Proof. First we prove that $d \leq Min\left\{Max\left\{\frac{1}{2}d_G, \frac{1}{2}d_H^*\right\}, Max\left\{\frac{1}{2}d_G^{**}, \frac{1}{2}d_H\right\}\right\}$.

If $d_H^* = \infty = d_G^{**}$, then it is clear.

Suppose $d_H^* < \infty$. Suppose $d_G = 4k$ and $d_H^* = 4t'$; $k \le t'$. Then there is a shortest walk $W_2: v = w_0 \rightarrow w_1 \rightarrow \ldots \rightarrow w_{4t'} = v'$ such that $d_H(w_i, w_{i+2}) = 2$ for $i = 0, 2, 4, \ldots, 4t' - 2$. So, using path P_1 and walk W_2 , we get a path between (u, v) and (u', v') in $G \otimes_2 H$, as in Proposition 3.3. So, $d \le 2t' = \frac{1}{2}d_H^* = Max \left\{\frac{1}{2}d_G, \frac{1}{2}d_H^*\right\}$. Similarly, if $d_G^{**} = 4k' + 2$, then $d \le Max \left\{\frac{1}{2}d_G^{**}, \frac{1}{2}d_H\right\}$. Hence we get $d \le Min \left\{Max \left\{\frac{1}{2}d_G, \frac{1}{2}d_H^*\right\}, Max \left\{\frac{1}{2}d_G^{**}, \frac{1}{2}d_H\right\}\right\}$.

For the reverse inequality, as $d < \infty$, as we have seen in Proposition 3.3, there are walks W_G and W_H between u - u' and v - v' respectively with $l(W_G) = 2d = l(W_H)$. Also, as $d_G = 4k$ and $d_H = 4t + 2$, we get $d_G = d_G^* < d_G^{**}$ and $d_H = d_H^{**} < d_H^*$.

Suppose *d* is even. Let d = 2p. Then $l(W_G) = 4p = l(W_H)$. So, $d_G^* \le 4p$ as well as $d_H^* \le 4p$. Thus $Max\{d_G, d_H^*\} = Max\{d_G^*, d_H^*\} \le 4p = 2d$. If d = 2p+1, then $l(W_G) = 4p+2 = l(W_H)$. So, $d_G^{**} \le 4p+2$ and $d_H^{**} \le 4p+2$ and therefore $Max\{d_G^{**}, d_H\} \le 4p+2 = 2d$. Hence $Min\{Max\{\frac{1}{2}d_G, \frac{1}{2}d_H^*\}, Max\{\frac{1}{2}d_G^{**}, \frac{1}{2}d_H\}\} = Min\{Max\{\frac{1}{2}d_G^*, \frac{1}{2}d_H^*\}, Max\{\frac{1}{2}d_G^{**}, \frac{1}{2}d_H^*\}\} \le d$

Corollary 3.5 Let d_H be an odd integer.

(*i*) If d_G is odd, then $d = Min\left\{Max\left\{\frac{1}{2}d_G^*, \frac{1}{2}d_H^*\right\}, Max\left\{\frac{1}{2}d_G^{**}, \frac{1}{2}d_H^{**}\right\}\right\}$. (*ii*) If $d_G = 4k$, then $d = Min\left\{Max\left\{\frac{1}{2}d_G, \frac{1}{2}d_H^*\right\}, Max\left\{\frac{1}{2}d_G^{**}, \frac{1}{2}d_H^{**}\right\}\right\}$.

(iii) If
$$d_G = 4k + 2$$
, then $d = Min\left\{Max\left\{\frac{1}{2}d_G^*, \frac{1}{2}d_H^*\right\}, Max\left\{\frac{1}{2}d_G^*, \frac{1}{2}d_H^{**}\right\}\right\}$

Proof. (i) Suppose If d_G , and d_H both are odd integers.

First we prove that $d \leq Min\left\{Max\left\{\frac{1}{2}d_{G}^{*}, \frac{1}{2}d_{H}^{*}\right\}, Max\left\{\frac{1}{2}d_{G}^{**}, \frac{1}{2}d_{H}^{**}\right\}\right\}$.

Suppose $Max\left\{\frac{1}{2}d_{G}^{*}, \frac{1}{2}d_{H}^{*}\right\} = \infty = Max\left\{\frac{1}{2}d_{G}^{**}, \frac{1}{2}d_{H}^{**}\right\}$. Then it is clear.

Suppose $Max\left\{\frac{1}{2}d_{G}^{*}, \frac{1}{2}d_{H}^{*}\right\} < \infty$. Therefore $d_{G}^{*} = 4k'$ and $d_{H}^{*} = 4t'$; $k' \le t'$. Then using walks W_{1} and W_{2} , we get a path between (u, v) and (u', v'), as in Proposition 3.4 by replacing P_{1} by W_{1} . So, $d \le Max\left\{\frac{1}{2}d_{G}^{*}, \frac{1}{2}d_{H}^{*}\right\}$. Similarly, if $d_{G}^{**} = 4k' + 2$ and $d_{H}^{**} = 4t' + 2$, then $d \le Max\left\{\frac{1}{2}d_{G}^{**}, \frac{1}{2}d_{H}^{**}\right\}$. Hence we get $d \le Min\left\{Max\left\{\frac{1}{2}d_{G}^{*}, \frac{1}{2}d_{H}^{*}\right\}, Max\left\{\frac{1}{2}d_{G}^{**}, \frac{1}{2}d_{H}^{**}\right\}\right\}$. Conversely, as $d < \infty$, as we have seen in Proposition 3.4, we get

$$Min\left\{Max\left\{\frac{1}{2}d_{G}^{*},\frac{1}{2}d_{H}^{*}\right\}, Max\left\{\frac{1}{2}d_{G}^{**},\frac{1}{2}d_{H}^{**}\right\}\right\} \leq d.$$

(ii) If $d_G = 4k$, then $d_G = d_G^*$ and hence the result follows. (iii) If $d_G = 4k + 2$, then $d_G = d_G^{**}$ and hence the result follows.

Acknowledgements

The research is supported by the SAP programmed to Department of Mathematics, S. P. University, Vallabh Vidyanagr, by UGC.

References

- [1]. R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Universitext, Springer, New York, 2012.
- [2]. I. H. Naga Raja Rao and K. V. S. Sarma, On Tensor Product of Standard Graphs, Int. J. Comp., 8(3), (2010), 99-103.
- Sirous Moradi, A note on Tensor Product of Graphs, *Iranian J. of Math. Sci. and Inf.*, 7(1), (2012), 73-81.
 E. Sampathkumar, On Tensor Product of Graphs, *J. Austral. Math. Soc.*, 20(Series-A), (1975), 268-273. [3].
- [4].
- [5]. U. P. Acharya and H. S. Mehta, 2- Tensor Product of special Graphs, Int. J. of Math. and Scietific Comp., 4(1), (2014), 21-24.
- [6]. [7].
- Biggs. N. L., *Algebraic Graph Theory*, Cambridge University Press, Cambridge, 1993.
 N. Deo, *Graph Theory with Application in Engineering and Computer Science*, Prentice-Hall of India, Delhi, 1989.