Connected and Distance in $\mathbf{G} \boldsymbol{\otimes}_{2} \mathbf{H}$

U. P. Acharya ${ }^{1}$, H. S. Mehta ${ }^{2}$
${ }^{1}$ (Department of Appl. Sci. and Humanities, A. D. Patel Institute of Technology, New V. V. Nagar, India)
${ }^{2}$ (Department of Mathematics, S. P. University, V. V. Nagar-388120, India)

Abstract

The tensor product $G \otimes H$ of two graphs G and H is well-known graph product and studied in detail in the literature. This concept has been generalized by introducing 2-tensor product $G \otimes_{2} H$ and it has been discussed for special graphs like P_{n} and C_{n} [5]. In this paper, we discuss $G \otimes_{2} H$, where G and H are connected graphs. Mainly, we discuss connectedness of $G \otimes_{2} H$ and obtained distance between two vertices in it.

Keywords: Bipartite graph, Connected graph, Non-bipartite graph, 2-tensor product of graphs.

I. Introduction

The tensor product $G \otimes H$ of two graphs G and H is very well-known and studied in detail ([1], [2], [3], [4]). This concept has been extended by introducing 2 - tensor product $G \otimes_{2} H$ of G and H and studied for special graphs [5]. In this paper, we discuss connectedness of $G \otimes_{2} H$ for any connected graphs G and H. We also obtained the results for the distance between two vertices in $G \otimes_{2} H$.
If $G=(V(G), E(G))$ is finite, simple and connected graph, then $d_{G}\left(u, u^{\prime}\right)$ is the length of the shortest path between u and u^{\prime} in G. For a graph G, a maximal connected subgraph is a component of G. For the basic terminology, concepts and results of graph theory, we refer to ([1], [6], [7]).
We recall the definition of $2-$ tensor product of graphs.
Definition 1.1 [5] Let G and H be two connected graphs. The 2 -tensor product of G and H is the graph with vertex set $\{(u, v): u \in V(G), v \in V(H)\}$ and two vertices (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ are adjacent in 2 -tensor product if $d_{G}\left(u, u^{\prime}\right)=2$ and $d_{H}\left(v, v^{\prime}\right)=2$. It is denoted by $G \otimes_{2} H$.
Note that $G \otimes_{2} H$ is a null graph, if the diameter $D(G)<2$ or $D(H)<2$. So, throughout this paper we assume that G and H are non-complete graphs.

II. Connectedness of $G \otimes_{2} H$

this section, first we consider the graphs G and H, both connected and bipartite with $N^{2}(w) \neq \phi ; \forall w \in V(G) \cup V(H)$, where $N^{2}(u)=\left\{u^{\prime} \in V(G): d_{G}\left(u, u^{\prime}\right)=2\right\}$
In usual tensor product $G \otimes H$, the following result is known.
Proposition 2.1 [4] Let G and H be connected bipartite graphs. Then $G \otimes H$ has two components.
Note that in case of $G \otimes_{2} H$, the similar result is not true. We discuss the number of components in $G \otimes_{2} H$ with different conditions on G and H.

We fix the following notations
Let $V(G)=U_{1} \cup U_{2}$ and $V(H)=V_{1} \cup V_{2}$ with U_{i} and $V_{j},(i, j=1,2)$ are partite sets of G and H respectively. Then, $V\left(G \otimes_{2} H\right)=W_{11} \cup W_{12} \cup W_{21} \cup W_{22}$ with $W_{i j}=U_{i} \times V_{j}$
Remark 2.2 If (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ are from different $W_{i j}$, then (u, v) and (u^{\prime}, v^{\prime}) can not be adjacent in $G \otimes_{2} H$ as $d_{G}\left(u, u^{\prime}\right) \neq 2$ or $d_{H}\left(v, v^{\prime}\right) \neq 2$. So, $G \otimes_{2} H$ has at least four components. Suppose (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ are in the same $W_{i j}$. Then $d_{G}\left(u, u^{\prime}\right)$ and $d_{H}\left(v, v^{\prime}\right)$ are even.
Proposition 2.3 Let G and H be connected bipartite graphs. If $d_{G}\left(u, u^{\prime}\right)$ and $d_{H}\left(v, v^{\prime}\right)$ are of the same form, $4 k$ or $4 k+2,(k \in \mathbb{N} \cup\{0\})$ then (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ are in the same component of $G \otimes_{2} H$.
Proof.Let $(u, v) \&\left(u^{\prime}, v^{\prime}\right) \in U_{1} \times V_{1}$. Suppose, $P_{1}: u=u_{0} \rightarrow u_{1} \rightarrow \ldots \rightarrow u_{m}=u^{\prime}$ and
$P_{2}: v=v_{0} \rightarrow v_{1} \rightarrow \ldots \rightarrow v_{n}=v^{\prime}$ are paths between u, u^{\prime} and v, v^{\prime} respectively.
Suppose $l\left(P_{1}\right)=4 k / 4 k+2$ and $l\left(P_{2}\right)=4 t / 4 t+2$ with $k \leq t$. First assume that $k \neq 0 \neq t$, then there is a path P or P^{\prime} between (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ in $G \otimes_{2} H$ as follows:

$$
\begin{aligned}
& P:\left(u_{0}, v_{0}\right) \rightarrow\left(u_{2}, v_{2}\right) \rightarrow \ldots \rightarrow\left(u_{4 k}, v_{4 k}\right) \rightarrow\left(u_{4 k-2}, v_{4 k+2}\right) \rightarrow\left(u_{4 k}, v_{4 k+4}\right) \rightarrow \ldots \rightarrow\left(u_{4 k}, v_{4 t}\right)=\left(u^{\prime}, v^{\prime}\right) . \\
& P^{\prime}:\left(u_{0}, v_{0}\right) \rightarrow\left(u_{2}, v_{2}\right) \rightarrow \ldots \rightarrow\left(u_{4 k+2}, v_{4 k+2}\right) \rightarrow\left(u_{4 k}, v_{4 k+4}\right) \rightarrow\left(u_{4 k+2}, v_{4 k+6}\right) \rightarrow \ldots \rightarrow\left(u_{4 k+2}, v_{4 t+2}\right)=\left(u^{\prime}, v^{\prime}\right) .
\end{aligned}
$$

Next, assume that $k=0$, i.e. $l\left(P_{1}\right)=0$ or 2 , i.e. $u=u^{\prime}$ or $u=u_{0} \rightarrow u_{1} \rightarrow u_{2}=u^{\prime}$. Now as $N^{2}(u) \neq \phi$, $\exists a \in V(G)$ such that $d_{G}(u, a)=2$. So, in case of $l\left(P_{1}\right)=0$ and $l\left(P_{2}\right)=4 t$, we get the path between (u, v) and $\left(u, v^{\prime}\right)$ in $G \otimes_{2} H$ as follows:
$(u, v)=\left(u, v_{0}\right) \rightarrow\left(a, v_{2}\right) \rightarrow\left(u, v_{4}\right) \rightarrow \ldots \rightarrow\left(u, v_{4 t}\right)$.
Next if $l\left(P_{1}\right)=2$ and $l\left(P_{2}\right)=4 t+2$, then we get the path between $\left(u_{0}, v\right)$ and $\left(u_{2}, v^{\prime}\right)$ in $G \otimes_{2} H$ as follows:
$(u, v)=\left(u_{0}, v_{0}\right) \rightarrow\left(u_{2}, v_{2}\right) \rightarrow\left(u_{0}, v_{4}\right) \rightarrow\left(u_{2}, v_{6}\right) \rightarrow \ldots \rightarrow\left(u_{2}, v_{4 t+2}\right)=\left(u_{2}, v^{\prime}\right)$.
Thus in all cases there is a path from (u, v) to $\left(u^{\prime}, v^{\prime}\right)$ in $G \otimes_{2} H$. Which completes the proof.

Remarks 2.4

[i] Suppose (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ are in same $W_{i j}$. But if $d_{G}\left(u, u^{\prime}\right)$ and $d_{H}\left(v, v^{\prime}\right)$ are not of the same form, then (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ may be in different components. So, $U_{1} \times V_{1}$ give at most two components. Thus $G \otimes_{2} H$ has at most eight components.
[ii] Suppose $\Delta(G) \leq 2$ and $\Delta(H) \leq 2, \Delta(G)$ and $\Delta(H)$ are maximum degree of G and H respectively. Then G and H are either path or cycle. If the cycle is of the form $C_{4 l}$, then in each of the cases, $P_{m} \otimes_{2} P_{n}$, $P_{m} \otimes_{2} C_{4 n}$ and $C_{4 m} \otimes_{2} C_{4 n}$ have eight components [5].

Next, we discuss the conditions on G and H under which $G \otimes_{2} H$ has 4,5 or 6 components.
Proposition 2.5 Let G and H be connected bipartite graphs and at least one of the graphs contains a cycle $C_{4 l+2}(l \in \mathbb{N})$. Then $G \otimes_{2} H$ has exactly four components.
Proof. Let (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ be in $U_{1} \times V_{1}$. As we have seen in Proposition 2.3, if $d_{G}\left(u, u^{\prime}\right)$ and $d_{H}\left(v, v^{\prime}\right)$ are of the same form $4 k$ or $4 k+2$, then $U_{1} \times V_{1}$ gives connected component.
Let P_{1} and P_{2} be two paths between $u-u^{\prime}$ and $v-v^{\prime}$ in G and H respectively, as we have considered in Proposition 2.3. Suppose $l\left(P_{1}\right)$ and $l\left(P_{2}\right)$ are of the different form.
Suppose H contains a cycle $C_{4 l+2}$ with $V\left(C_{4 l+2}\right)=\left\{x_{1}, x_{2}, \ldots, x_{4 l+2}\right\}$. Then select a vertex from $C_{4 l+2}$, which is nearest to $v_{n}=v^{\prime}$ and also it is in V_{1}. Suppose this vertex is x_{j}. Since v_{n} and x_{j} both are in V_{1}, we get a path P_{0} from v_{n} to x_{j} of even length. We consider a walk $W: v=v_{0} \xrightarrow{P_{2}} v_{n} \xrightarrow{P_{0}} x_{j} \xrightarrow{C_{4 l+2}} x_{j} \xrightarrow{P_{0}} v_{n}=v^{\prime}$ between v and v^{\prime} in H. Then,
$l(W)=l\left(P_{2}\right)+2\left(l\left(P_{0}\right)\right)+l\left(C_{4 l+2}\right)=l\left(P_{2}\right)+2\left(2 t^{\prime}\right)+(4 l+2)=l\left(P_{2}\right)+4 t^{\prime \prime}+2$.
Thus, if $l\left(P_{2}\right)=4 t+2$ or $4 t$, then $l(W)=4 q$ or $4 q+2$. So, in any case, $l\left(P_{1}\right)$ and $l(W)$ are of the same form and therefore, as in Proposition 2.3, we can show that there is a path between (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ in $G \otimes_{2} H$. So, $U_{1} \times V_{1}$ gives a connected components in $G \otimes_{2} H$. Thus, $G \otimes_{2} H$ has four components.
Next, we assume that the graphs G and H do not contain a cycle of the form $C_{4 l+2}$. We prove that the number of components in $G \otimes_{2} H$ is depending upon $\Delta(G)$ as well as $\Delta(H)$.

Let $\quad \Delta\left(U_{i}\right)=\max \left\{d(u): u \in U_{i}\right\} \quad$ and $\quad \Delta\left(V_{i}\right)=\max \left\{d(v): v \in V_{i}\right\} ; \quad i=1,2 \quad$ and for $a \in V(G)$, $N(a)=\left\{b \in V(G): d_{G}(a, b)=1\right\}$.
Proposition 2.6 Let G and H be connected bipartite graphs with $\Delta(G) \leq 2$ and $\Delta(H) \geq 3$.
(a) If $\Delta\left(V_{1}\right) \leq 2$ and $\Delta\left(V_{2}\right) \geq 3$, then $G \otimes_{2} H$ has six components.
(b) If $\Delta\left(V_{1}\right) \geq 3$ and $\Delta\left(V_{2}\right) \geq 3$, then $G \otimes_{2} H$ has four components.

Proof. We know that $U_{1} \times V_{1}, U_{1} \times V_{2}, U_{2} \times V_{1}$ and $U_{2} \times V_{2}$ give disconnected subgraphs in $G \otimes_{2} H$.
(a) Fixed $U_{1} \times V_{1}$. We shall show that $U_{1} \times V_{1}$ gives connected subgraph of $G \otimes_{2} H$. Let $z \in V_{2}$ with $d(z) \geq 3$ and $N(z)=\left\{w_{0}, w_{1}, w_{2}, \ldots\right\} \subset V_{1}$.

Fixed $\left(u_{0}, v_{0}\right) \in U_{1} \times V_{1}$ with $v_{0}=w_{0}$. Let $\left(u^{\prime}, v^{\prime}\right)$ be any vertex in $U_{1} \times V_{1}$. Suppose, P_{1} and P_{2} are paths between $u=u_{0}$ to u^{\prime} and $v=v_{0}$ to v^{\prime} in G and H, as we have considered in Proposition 2.3. If $l\left(P_{1}\right)=4 k$ or $4 k+2$ and $l\left(P_{2}\right)=4 t$ or $4 t+2$, then the result is clear.

Next, suppose $l\left(P_{1}\right)=4 k$ and $l\left(P_{2}\right)=4 t+2 ; k \leq t$ with $k \neq 0 \neq t$. First, we show that for $v_{0} \rightarrow v_{1} \rightarrow v_{2}$ there is a path between $\left(u_{0}, v_{0}\right)$ and $\left(u_{0}, v_{2}\right)$ in $G \otimes_{2} H$.
Case (1) Suppose $z \neq v_{1}$ in V_{2}.
If $v_{2} \neq w_{1}$ in V_{1} as given in figure.1, then $\left(u_{0}, v_{0}\right) \rightarrow\left(u_{2}, w_{1}\right) \rightarrow\left(u_{0}, w_{2}\right) \rightarrow\left(u_{2}, v_{0}\right) \rightarrow\left(u_{0}, v_{2}\right)$ is a path between $\left(u_{0}, v_{0}\right)$ and $\left(u_{0}, v_{2}\right)$ in $G \otimes_{2} H$.

figure. 1

If $v_{2}=w_{1}$ in V_{1}, then, $\left(u_{0}, v_{0}\right) \rightarrow\left(u_{2}, w_{2}\right) \rightarrow\left(u_{0}, v_{2}\right)$ is the required path.
Case (2) Suppose $z=v_{1}$ in V_{2}.
If $w_{1} \neq v_{2} \neq w_{2}$ in V_{1}, then $\left(u_{0}, v_{0}\right) \rightarrow\left(u_{2}, w_{2}\right) \rightarrow\left(u_{0}, v_{2}\right)$ is the path and if $v_{2}=w_{2}$, then consider the path $\left(u_{0}, v_{0}\right) \rightarrow\left(u_{2}, w_{1}\right) \rightarrow\left(u_{0}, v_{2}\right)$ in $G \otimes_{2} H$.
Thus in each case there is a path between $\left(u_{0}, v_{0}\right)$ and $\left(u_{0}, v_{2}\right)$ in $G \otimes_{2} H$. Also as in Proposition 2.3 there is a path from $\left(u_{0}, v_{2}\right)$ to $\left(u_{4 k}, v_{4 t+2}\right)$ in $G \otimes_{2} H$. Hence there is a path from $\left(u_{0}, v_{0}\right)$ to $\left(u^{\prime}, v^{\prime}\right)$ in $G \otimes_{2} H$. By similar arguments if $l\left(P_{1}\right)=4 k+2$ and $l\left(P_{2}\right)=4 t$, then also there is a path between $\left(u_{0}, v_{0}\right)$ and $\left(u^{\prime}, v^{\prime}\right)$ in $G \otimes_{2} H$. So, $U_{1} \times V_{1}$ gives a connected component in $G \otimes_{2} H$.
Thus if $d(z) \geq 3$ with $z \in V_{2}$, then the other partite set V_{1} contribute connected components $U_{1} \times V_{1}$ and $U_{2} \times V_{1}$ in $G \otimes_{2} H$.
Here as $\Delta\left(U_{i}\right) \leq 2$ and $\Delta\left(V_{2}\right) \leq 2, U_{1} \times V_{2}$ as well as $U_{2} \times V_{2}$ each give two components in $G \otimes_{2} H$. So, the graph $G \otimes_{2} H$ has six components.
(b) In this case $\Delta\left(V_{1}\right) \geq 3$ and $\Delta\left(V_{2}\right) \geq 3$. So $U_{1} \times V_{1}, U_{1} \times V_{2}$ and $U_{2} \times V_{1}$ and $U_{2} \times V_{2}$ will give connected components in $G \otimes_{2} H$. So, the graph $G \otimes_{2} H$ has four components.
Corollary 2.7 Let G and H be connected bipartite graphs with $\Delta(G) \geq 3$ and $\Delta(H) \geq 3$.
(a) If $\Delta\left(U_{1}\right) \leq 2$ and $\Delta\left(U_{2}\right) \geq 3$ as well as $\Delta\left(V_{1}\right) \leq 2$ and $\Delta\left(V_{2}\right) \geq 3$, then $G \otimes_{2} H$ has five components.
(b) If $\Delta\left(U_{i}\right) \geq 3$ and $\Delta\left(V_{i}\right) \geq 3$; $(i=1,2)$, then $G \otimes_{2} H$ has four components.

Proof. (a) In this case $\Delta\left(U_{2}\right) \geq 3$ and $\Delta\left(V_{2}\right) \geq 3$. Since $\Delta\left(U_{2}\right) \geq 3$, the other partite set U_{1} contribute connected components $U_{1} \times V_{1}$ and $U_{1} \times V_{2}$ in $G \otimes_{2} H$. Similarly as $\Delta\left(V_{2}\right) \geq 3, U_{1} \times V_{1}$ and $U_{2} \times V_{1}$ give connected components in $G \otimes_{2} H$.
Further as $\Delta\left(U_{1}\right) \leq 2$ as well as $\Delta\left(V_{1}\right) \leq 2$, corresponding to other partite set U_{2} and V_{2}, we get two components for $U_{2} \times V_{2}$ in $G \otimes_{2} H$. Thus the graph $G \otimes_{2} H$ has five components.
(b) By similar arguments as given in Proposition 1.6, for $\Delta\left(U_{i}\right) \geq 3 ; i=1,2$, we get connected components $U_{1} \times V_{1}, U_{1} \times V_{2}, U_{2} \times V_{1}$ and $U_{2} \times V_{2}$ in $G \otimes_{2} H$. Thus, the graph $G \otimes_{2} H$ has four components.
In general from Remarks 2.4, Proposition 2.6 and Corollary 2.7, we can summarize the number of components in $G \otimes_{2} H$ as follows:

$\Delta\left(V_{1}\right) \leq 2, \Delta\left(U_{2}\right) \leq 2$	8	$\Delta\left(V_{1}\right) \leq 2$, $\Delta\left(V_{2}\right) \leq 2$	$\Delta\left(V_{1}\right) \geq 3$, $\Delta\left(V_{2}\right) \leq 2$	$\Delta\left(V_{1}\right) \geq 3$, $\Delta\left(V_{2}\right) \geq 3$
$\Delta\left(U_{1}\right) \leq 2, \Delta\left(U_{2}\right) \geq 3$	6	6	6	4
$\Delta\left(U_{1}\right) \geq 3, \Delta\left(U_{2}\right) \leq 2$	6	5	5	4
$\Delta\left(U_{1}\right) \geq 3, \Delta\left(U_{2}\right) \geq 3$	4	5	5	4

Next, we discuss connectedness of $G \otimes_{2} H$ for non-bipartite graphs. First we shall prove the following Proposition:
Proposition 2.8 labelnon Let G be a non-bipartite connected graph with $N^{2}(u) \neq \phi, \forall u \in V(G)$. Assume that G contains $C_{2 l+1}, l>1$. Then between every pair of vertices, there exists a walk of length $4 k$ as well as $4 k+2 ;(k \in \mathbb{I N} \cup\{0\})$ form in G.
Proof. Since G is non-bipartite, it contains an odd cycle. Suppose G contains $C_{2 l+1}$ with $V\left(C_{2 l+1}\right)=\left\{x_{1}, \ldots, x_{2 l+1}\right\}, l>1$. Let u and u^{\prime} be in $V(G)$ with path $P: u=u_{0} \rightarrow u_{1} \rightarrow \ldots \rightarrow u_{2 t+1}=u^{\prime}$, where $l(P)=d_{G}\left(u, u^{\prime}\right)=2 t+1$.
Suppose u and u^{\prime} are on $C_{2 l+1}$. Then clearly there is a path between u and u^{\prime} of even length.
Next, assume that $u, u^{\prime} \notin V\left(C_{2 l+1}\right)$. Assume that u_{i} is the nearest vertex from the cycle $C_{2 l+1}$ and x_{j} is the corresponding nearest vertex of $V\left(C_{2 l+1}\right)$. Suppose P_{0} is the path between u_{i} and x_{j} in G. Then there is a walk W^{\prime} between u and u^{\prime} in G as follows:
$W^{\prime}: u=u_{0} \xrightarrow{\text { part of } P} u_{i} \xrightarrow{P_{0}} x_{j} \xrightarrow{C_{2 l+1}} x_{j} \xrightarrow{P_{0}} u_{i} \xrightarrow{\text { part of } P} u^{\prime}$.
Then $l\left(W^{\prime}\right)=l(P)+l\left(C_{2 l+1}\right)+2 l\left(P_{0}\right)=(2 t+1)+(2 l+1)+2 l\left(P_{0}\right)$, which is of even length.
If necessary travelling on the cycle more than once, we get length of the walk in both the form $4 k$ as well as $4 k+2$ in G. If $l(P)$ is even, then by same arguments as above we get a walk of length $4 k$ and $4 k+2$ in G.
Thus in all cases there is a walk between u and u^{\prime} of length $4 k$ as well as $4 k+2$ form in G.
Note that since $l>1$, in every walk $W^{\prime}: u=w_{0} \rightarrow w_{1} \rightarrow \ldots \rightarrow w_{p}=u^{\prime}$ between u and u^{\prime} in above cases, we get $d_{G}\left(w_{i}, w_{i+2}\right)=2$.
Now onwards, whenever we consider a non-bipartite graph, we assume that it contain a cycle $C_{2 l+1},(l>1)$.
Proposition 2.9 Let G and H be two connected graphs. Suppose G is a non-bipartite graph. Then,
(a) the graph $G \otimes_{2} H$ has two components, if H is a bipartite graph.
(b) the graph $G \otimes_{2} H$ is connected, if H is a non-bipartite graph.

Proof. (a) Suppose H is a bipartite graph. It is clear that $U \times V_{1}$ and $U \times V_{2}$ give two disconnected subgraphs in $G \otimes_{2} H$.

Let (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ be in $U \times V_{1}$.
Let path P_{1} between u and u^{\prime} in G and path $P_{2}: v=v_{0} \rightarrow v_{1} \rightarrow \ldots \rightarrow v_{n}=v^{\prime} ;(n$ is an even integer) between v and v^{\prime} in H be as follows:
Since G is non-bipartite graph, by Proposition 1.11, there are walks between u and u^{\prime} of length of the form $4 k$ as well as $4 k+2$. Since n is an even integer, as we have discussed in Proposition 2.3, we get a path between (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ in $G \otimes_{2} H$. Thus $U \times V_{1}$ gives a connected component, which proves (a).
(b) Let (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ be in $U \times V$. Since G and H both are non-bipartite graphs, there exist walks between v and v^{\prime} of length $4 k$ as well as $4 k+2$ form. So, as above we get the result.
Corollary 2.10 Let G and H be two connected graphs. Then $G \otimes_{2} H$ is connected if and only if G and H both are non-bipartite graphs.
Note that the similar result for usual Tensor product is as follows:
Proposition 2.11 [7] Let G and H be connected graphs. Then $G \otimes H$ is connected graph if and only if either G or H is non-bipartite.

III. Distance between two vertices in $G \otimes_{2} H$

In this section, we discuss the distance between two vertices in $G \otimes_{2} H$ for G and H both are connected and $N^{2}(w) \neq \phi ; \forall w \in V(G) \cup V(H)$.
First we define $d_{G}^{*}\left(u, u^{\prime}\right)$ and $d_{G}^{* *}\left(u, u^{\prime}\right)$ for u and u^{\prime} in $V(G)$, where G is a connected graph.
Definition 2.1 Let $G=(U, E)$ be a connected graph and $u, v \in U$. Then,
(1) $d_{G}^{*}\left(u, u^{\prime}\right)$ is defined as the length of a shortest walk $W: u=w_{0} \rightarrow w_{1} \rightarrow \ldots \rightarrow w_{p}=u^{\prime}$ between u and u^{\prime} of the form $4 k(k \in \mathbb{N})$ in which $d_{G}\left(w_{i}, w_{i+2}\right)=2$ for $i=0,2,4, \ldots, 4 k-2$. (2) $d_{G}^{* *}\left(u, u^{\prime}\right)$ is defined as the length of a shortest walk $W: u=w_{0} \rightarrow w_{1} \rightarrow \ldots \rightarrow w_{p}=u^{\prime}$ between u and u^{\prime} of the form $4 k+2(k \geq 0)$ in which $d_{G}\left(w_{i}, w_{i+2}\right)=2$ for $i=0,2,4, \ldots, 4 k$.
Note that $\quad d_{G}\left(u, u^{\prime}\right)=\left\{\begin{array}{l}d_{G}^{*}\left(u, u^{\prime}\right)<d_{G}^{* *}\left(u, u^{\prime}\right), \quad \text { if } d_{G}\left(u, u^{\prime}\right)=4 k \\ d_{G}^{* * *}\left(u, u^{\prime}\right)<d_{G}^{*}\left(u, u^{\prime}\right), \quad \text { if } d_{G}\left(u, u^{\prime}\right)=4 k+2\end{array}\right.$
If there is no such shortest walk, then we write $d_{G}^{*}\left(u, u^{\prime}\right)=\infty\left(d_{G}^{* *}\left(u, u^{\prime}\right)=\infty\right)$.

Remark 3.2

[i] If G is a non-bipartite graph, then $d_{G}^{*}\left(u, u^{\prime}\right)<\infty$ and $d_{G}^{* *}\left(u, u^{\prime}\right)<\infty$ for every $u, u^{\prime} \in V(G)$, by Proposition 1.8.
[ii] If G is a bipartite graph and even, also if $d_{G}\left(u, u^{\prime}\right)$ is an even number $4 k$, then $d_{G}^{* *}\left(u, u^{\prime}\right)$ may not be finite.
For example, if $G=P_{6}: u_{1} \rightarrow u_{2} \rightarrow \ldots \rightarrow u_{5} \rightarrow u_{6}$, then $d_{G}\left(u_{1}, u_{5}\right)=4$ but $d_{G}^{* *}\left(u_{1}, u_{5}\right)=\infty$. However, if $G=C_{10}$, then $d_{G}\left(u_{1}, u_{5}\right)=4$ but $d_{G}^{* *}\left(u_{1}, u_{5}\right)=6<\infty$.
Now we fix the following notations:
Let $G=\left(U, E_{1}\right)$ and $H=\left(V, E_{2}\right)$ be connected graphs.Then $V\left(G \otimes_{2} H\right)=U \times V$. Fix $u, u^{\prime} \in U$, suppose $d_{G}=d_{G}\left(u, u^{\prime}\right)=m$ with path $P_{1}: u=u_{0} \rightarrow u_{1} \rightarrow \ldots \rightarrow u_{m}=u^{\prime}$ and $v, v^{\prime} \in V, d_{H}=d_{H}\left(v, v^{\prime}\right)=n$ with path $P_{2}: v=v_{0} \rightarrow v_{1} \rightarrow \ldots \rightarrow v_{n}=v^{\prime}$. Denote $d=d_{G \otimes_{2} H}\left((u, v),\left(u^{\prime}, v^{\prime}\right)\right)$. We assume that (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ are in the same component of $G \otimes_{2} H$, i.e., $d<\infty$.
Proposition 3.3 If d_{G} and d_{H} are of the same form $4 k$ or $4 k+2$, then $d=\operatorname{Max}\left\{\frac{1}{2} d_{G}, \frac{1}{2} d_{H}\right\}$.
Proof. Let $d_{G}=4 k$ and $d_{H}=4 t ; k \leq t$. Then using paths P_{1} and P_{2} from u to u^{\prime} and v to v^{\prime} in G and H respectively, there is a path
$P:(u, v)=\left(u_{0}, v_{0}\right) \rightarrow\left(u_{2}, v_{2}\right) \rightarrow \ldots \rightarrow\left(u_{4 k}, v_{4 k}\right) \rightarrow\left(u_{4 k-2}, v_{4 k+2}\right) \rightarrow\left(u_{4 k}, v_{4 k+4}\right) \rightarrow \ldots \rightarrow\left(u_{4 k}, v_{4 t}\right)=\left(u^{\prime}, v^{\prime}\right)$
between (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ of length $2 t$ in $G \otimes_{2} H$. So, $d \leq 2 t=\frac{1}{2} d_{H}=\operatorname{Max}\left\{\frac{1}{2} d_{G}, \frac{1}{2} d_{H}\right\}$. Similarly if $d_{G}=4 k+2$ and $d_{H}=4 t+2$, then path
$P^{\prime}:(u, v)=\left(u_{0}, v_{0}\right) \rightarrow\left(u_{2}, v_{2}\right) \rightarrow \ldots \rightarrow\left(u_{4 k+2}, v_{4 k+2}\right) \rightarrow\left(u_{4 k}, v_{4 k+4}\right) \rightarrow\left(u_{4 k+2}, v_{4 k+6}\right) \rightarrow \ldots \rightarrow\left(u_{4 k+2}, v_{4 t+2}\right)=\left(u^{\prime}, v^{\prime}\right)$ between (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ of length $2 t+1$ in $G \otimes_{2} H$. So, $d \leq 2 t+1=\frac{1}{2} d_{H}=\operatorname{Max}\left\{\frac{1}{2} d_{G}, \frac{1}{2} d_{H}\right\}$.
Conversely suppose that $d<\infty$ with the path $(u, v)=\left(u_{0}, v_{0}\right) \rightarrow\left(u_{1}, v_{1}\right) \rightarrow \ldots \rightarrow\left(u_{d}, v_{d}\right)=\left(u^{\prime}, v^{\prime}\right)$ in $G \otimes_{2} H$. Then $d_{G}\left(u_{i}, u_{i+1}\right)=2=d_{H}\left(v_{i}, v_{i+1}\right) ; \forall i$. So, there is a walk $W_{G}: u=u_{0} \rightarrow a_{0} \rightarrow u_{1} \rightarrow \ldots \rightarrow u_{d}=u^{\prime}$ of length $2 d$ between u and u^{\prime} in G with $u_{i} \neq u_{i+1}$. Similarly we get a walk W_{H} between v and v^{\prime} in H. Hence $d_{G} \leq 2 d$ and $d_{H} \leq 2 d$. So, $\operatorname{Max}\left\{\frac{1}{2} d_{G}, \frac{1}{2} d_{H}\right\} \leq d$. Thus we get $\operatorname{Max}\left\{\frac{1}{2} d_{G}, \frac{1}{2} d_{H}\right\}=d$.
Next, we consider the case in which d_{G} and d_{H} are not in same form, but both are even.
Proposition 3.4 If $d_{G}=4 k$ and $d_{H}=4 t+2$, then $d=\operatorname{Min}\left\{\operatorname{Max}\left\{\frac{1}{2} d_{G}, \frac{1}{2} d_{H}^{*}\right\}, \operatorname{Max}\left\{\frac{1}{2} d_{G}^{* *}, \frac{1}{2} d_{H}\right\}\right\}$.

Proof. First we prove that $d \leq \operatorname{Min}\left\{\operatorname{Max}\left\{\frac{1}{2} d_{G}, \frac{1}{2} d_{H}^{*}\right\}, \operatorname{Max}\left\{\frac{1}{2} d_{G}^{* *}, \frac{1}{2} d_{H}\right\}\right\}$.
If $d_{H}^{*}=\infty=d_{G}^{* *}$, then it is clear.
Suppose $d_{H}^{*}<\infty$. Suppose $d_{G}=4 k$ and $d_{H}^{*}=4 t^{\prime} ; k \leq t^{\prime}$. Then there is a shortest walk $W_{2}: v=w_{0} \rightarrow w_{1} \rightarrow \ldots \rightarrow w_{4 i^{\prime}}=v^{\prime}$ such that $d_{H}\left(w_{i}, w_{i+2}\right)=2$ for $i=0,2,4, \ldots, 4 t^{\prime}-2$. So, using path P_{1} and walk W_{2}, we get a path between (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ in $G \otimes_{2} H$, as in Proposition 3.3. So, $d \leq 2 t^{\prime}=\frac{1}{2} d_{H}^{*}=\operatorname{Max}\left\{\frac{1}{2} d_{G}, \frac{1}{2} d_{H}^{*}\right\}$.Similarly, if $d_{G}^{* *}=4 k^{\prime}+2$, then $d \leq \operatorname{Max}\left\{\frac{1}{2} d_{G}^{* *}, \frac{1}{2} d_{H}\right\}$.
Hence we get $d \leq \operatorname{Min}\left\{\operatorname{Max}\left\{\frac{1}{2} d_{G}, \frac{1}{2} d_{H}^{*}\right\}, \operatorname{Max}\left\{\frac{1}{2} d_{G}^{* *}, \frac{1}{2} d_{H}\right\}\right\}$.
For the reverse inequality, as $d<\infty$, as we have seen in Proposition 3.3, there are walks W_{G} and W_{H} between $u-u^{\prime}$ and $v-v^{\prime}$ respectively with $l\left(W_{G}\right)=2 d=l\left(W_{H}\right)$. Also, as $d_{G}=4 k$ and $d_{H}=4 t+2$, we get $d_{G}=d_{G}^{*}<d_{G}^{* *}$ and $d_{H}=d_{H}^{* *}<d_{H}^{*}$.

Suppose d is even. Let $d=2 p$.Then $l\left(W_{G}\right)=4 p=l\left(W_{H}\right)$. So, $d_{G}^{*} \leq 4 p$ as well as $d_{H}^{*} \leq 4 p$. Thus $\operatorname{Max}\left\{d_{G}, d_{H}^{*}\right\}=\operatorname{Max}\left\{d_{G}^{*}, d_{H}^{*}\right\} \leq 4 p=2 d$. If $d=2 p+1$, then $l\left(W_{G}\right)=4 p+2=l\left(W_{H}\right)$. So, $d_{G}^{* *} \leq 4 p+2$ and $d_{H}^{* *} \leq 4 p+2$ and therefore $\operatorname{Max}\left\{d_{G}^{* *}, d_{H}\right\} \leq 4 p+2=2 d$. Hence
$\operatorname{Min}\left\{\operatorname{Max}\left\{\frac{1}{2} d_{G}, \frac{1}{2} d_{H}^{*}\right\}, \operatorname{Max}\left\{\frac{1}{2} d_{G}^{* *}, \frac{1}{2} d_{H}\right\}\right\}=\operatorname{Min}\left\{\operatorname{Max}\left\{\frac{1}{2} d_{G}^{*}, \frac{1}{2} d_{H}^{*}\right\}, \operatorname{Max}\left\{\frac{1}{2} d_{G}^{* *}, \frac{1}{2} d_{H}^{* *}\right\}\right\} \leq d$
Corollary 3.5 Let d_{H} be an odd integer.
(i) If d_{G} is odd, then $d=\operatorname{Min}\left\{\operatorname{Max}\left\{\frac{1}{2} d_{G}^{*}, \frac{1}{2} d_{H}^{*}\right\}, \operatorname{Max}\left\{\frac{1}{2} d_{G}^{* *}, \frac{1}{2} d_{H}^{* *}\right\}\right\}$.
(ii) If $d_{G}=4 k$, then $d=\operatorname{Min}\left\{\operatorname{Max}\left\{\frac{1}{2} d_{G}, \frac{1}{2} d_{H}^{*}\right\}, \operatorname{Max}\left\{\frac{1}{2} d_{G}^{* *}, \frac{1}{2} d_{H}^{* *}\right\}\right\}$.
(iii) If $d_{G}=4 k+2$, then $d=\operatorname{Min}\left\{\operatorname{Max}\left\{\frac{1}{2} d_{G}^{*}, \frac{1}{2} d_{H}^{*}\right\}, \operatorname{Max}\left\{\frac{1}{2} d_{G}, \frac{1}{2} d_{H}^{* * *}\right\}\right\}$.

Proof. (i) Suppose If d_{G}, and d_{H} both are odd integers.
First we prove that $d \leq \operatorname{Min}\left\{\operatorname{Max}\left\{\frac{1}{2} d_{G}^{*}, \frac{1}{2} d_{H}^{*}\right\}, \operatorname{Max}\left\{\frac{1}{2} d_{G}^{* *}, \frac{1}{2} d_{H}^{* * *}\right\}\right\}$.
Suppose $\operatorname{Max}\left\{\frac{1}{2} d_{G}^{*}, \frac{1}{2} d_{H}^{*}\right\}=\infty=\operatorname{Max}\left\{\frac{1}{2} d_{G}^{* *}, \frac{1}{2} d_{H}^{* *}\right\}$. Then it is clear.
Suppose $\operatorname{Max}\left\{\frac{1}{2} d_{G}^{*}, \frac{1}{2} d_{H}^{*}\right\}<\infty$. Therefore $d_{G}^{*}=4 k^{\prime}$ and $d_{H}^{*}=4 t^{\prime} ; k^{\prime} \leq t^{\prime}$. Then using walks W_{1} and W_{2}, we get a path between (u, v) and $\left(u^{\prime}, v^{\prime}\right)$, as in Proposition 3.4 by replacing P_{1} by W_{1}. So, $d \leq \operatorname{Max}\left\{\frac{1}{2} d_{G}^{*}, \frac{1}{2} d_{H}^{*}\right\}$. Similarly, if $d_{G}^{* *}=4 k^{\prime}+2$ and $d_{H}^{* *}=4 t^{\prime}+2$, then $d \leq \operatorname{Max}\left\{\frac{1}{2} d_{G}^{* *}, \frac{1}{2} d_{H}^{* *}\right\}$. Hence we get $d \leq \operatorname{Min}\left\{\operatorname{Max}\left\{\frac{1}{2} d_{G}^{*}, \frac{1}{2} d_{H}^{*}\right\}, \operatorname{Max}\left\{\frac{1}{2} d_{G}^{* *}, \frac{1}{2} d_{H}^{* *}\right\}\right\}$.
Conversely, as $d<\infty$, as we have seen in Proposition 3.4, we get
$\operatorname{Min}\left\{\operatorname{Max}\left\{\frac{1}{2} d_{G}^{*}, \frac{1}{2} d_{H}^{*}\right\}, \operatorname{Max}\left\{\frac{1}{2} d_{G}^{* *}, \frac{1}{2} d_{H}^{* *}\right\}\right\} \leq d$.
(ii) If $d_{G}=4 k$, then $d_{G}=d_{G}^{*}$ and hence the result follows.
(iii) If $d_{G}=4 k+2$, then $d_{G}=d_{G}^{* *}$ and hence the result follows.

Acknowledgements

The research is supported by the SAP programmed to Department of Mathematics, S. P. University, Vallabh Vidyanagr, by UGC.

References

[1]. R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Universitext, Springer, New York, 2012.
[2]. I. H. Naga Raja Rao and K. V. S. Sarma, On Tensor Product of Standard Graphs, Int. J. Comp., 8(3), (2010), 99-103.
[3]. Sirous Moradi, A note on Tensor Product of Graphs, Iranian J. of Math. Sci. and Inf., 7(1), (2012), 73-81.
[4]. E. Sampathkumar, On Tensor Product of Graphs, J. Austral. Math. Soc., 20(Series-A), (1975), 268-273.
[5]. U. P. Acharya and H. S. Mehta, 2- Tensor Product of special Graphs, Int. J. of Math. and Scietific Comp., 4(1), (2014), 21-24.
[6]. Biggs. N. L., Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993.
[7]. N. Deo, Graph Theory with Application in Engineering and Computer Science, Prentice-Hall of India, Delhi, 1989.

