A Note on Nonsplitdomination number of a graph

Y. Therese Sunitha Mary ${ }^{1}$, R. Kala ${ }^{2}$
${ }^{1}$ Department of Mathematics, St. Xavier's College, Palayamkottai -627 002,Tamil Nadu, India.
${ }^{2}$ Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627 012,Tamil Nadu, India.

Abstract

Let $G=(V, E)$ be any graph.A dominating set D of a graph G is a nonsplit dominat- ing if < $V-D>$ is connected. The minimum cardinality of a nonsplit dominating set is called nonsplit domination number $\gamma_{n s}(G)$. In this paper, we investigate several properties of this parameter.

Keywords: Domination, Domination number, Nonsplit Domination, Nonsplit Domination number. AMS subject classification: 05C 69

I. Introduction

By a graph $G=(V, E)$ we mean a finite, undirected graph without loops or multiple edges.The order and size of G are denoted by p and q respectively. For graph theoretical terms we refer to Harary [6] and for terms related to domination we refer Haynes et al.[8] A subset D of V is said to be a dom- inating set in G if every vertex in $\mathrm{V}-\mathrm{D}$ is adjacent to atleast one vertex in D. Kulli and Janakiram introduced the concept of nonsplit domination in graphs [10]. A dominating set D of a graph G is a nonsplit dominating set if
$<\mathrm{V}-\mathrm{D}>$ is connected. The nonsplit domination number $\gamma_{\mathrm{ns}}(\mathrm{G})$ of G is the minimum cardinality of a nonsplit dominating set. A nonsplit dominating set with cardinality $\gamma_{\mathrm{ns}}(\mathrm{G})$ is called a $\gamma_{\mathrm{ns}}-$ set. In this paper, we investigate several properties of this parameter.

II. Main Results

Theorem 2.1 [6] For any graph $G, \chi(G) \leq 1+\Delta(G)$.
Proposition 2.2 For any connected graph $G, \gamma_{n s}(G) \leq p-1$. Further equality holds if and only if G is a star.
Proof.Every set $S \subseteq V(G)$ with $|S|=p-1$ is a nonsplit dominating set of
G and so $\gamma_{\mathrm{ns}}(\mathrm{G}) \leq \mathrm{p}-1$.
If G is a star, clearly $\gamma_{\mathrm{ns}}(\mathrm{G})=\mathrm{p}-1$. Suppose $\gamma_{\mathrm{ns}}(G)=\mathrm{p}-1$. If G is not a star,
then G has an edge $e=u v$ such that both u and v are non - pendent vertices. Now $V(G)-\{u, v\}$ is a nonsplit dominating set of G and so $\gamma_{n s}(G) \leq p-2$ which is a contradiction. Hence G is a star.

Remark2.3 1. If H is a spanning subgraph of G ,then
$\gamma_{\mathrm{ns}}(\mathrm{G}) \leq \gamma_{\mathrm{ns}}(\mathrm{H})$.
2. If H is any spanning subgraph of complete graph K_{p} with $\Delta(H)=p-1$
and $|\mathrm{E}(\mathrm{H})|=2 \mathrm{p}-3$, then $\gamma_{\mathrm{ns}}(\mathrm{H})=\gamma_{\mathrm{ns}}\left(\mathrm{K}_{\mathrm{p}}\right)=1$.
Remark 2.4 1. For any graph $G, \gamma_{\mathrm{ns}}(\mathrm{G})=1$ if and only if $\mathrm{G} \cong \mathrm{K}_{1}+\mathrm{H}$
where H is a connected graph or a trivial graph.
2. For any graph $G, \gamma_{\mathrm{ns}}(\mathrm{G})=\mathrm{p}$ if and only if $\mathrm{G} \cong \overline{\mathrm{K}_{\mathrm{p}}}$.

Theorem 2.5 For a non- trivial tree $\mathrm{T}, \gamma_{\mathrm{ns}}(\mathrm{T}) \geq \Delta(\mathrm{T})$ and $\gamma_{\mathrm{ns}}(\mathrm{T})=\Delta(\mathrm{T})$
if and only if $\mathrm{T} \cong$ star or wounded spider.
Proof. Since T is a tree, T has at least $\Delta(T)$ pendent vertices. If $T \cong$ star then $\gamma_{\mathrm{ns}}(\mathrm{T})=\Delta(\mathrm{T})$. If $\mathrm{T} \not \equiv$ star then every nonsplit dominating set must contain all the pendent vertices and so $\gamma_{\mathrm{ns}}(\mathrm{T}) \geq$ $\Delta(\mathrm{T})$.
Suppose $\gamma_{\mathrm{ns}}(\mathrm{T})=\Delta(\mathrm{T})$ and $\mathrm{T} \not \equiv$ star.Let v be a vertex of T such that
$\operatorname{deg} \mathrm{v}=\Delta(\mathrm{T})$. Let S be a γ_{ns}-set. S contains every pendent vertex of $\mathrm{T} . \mathrm{As} \gamma_{\mathrm{ns}}(\mathrm{T})=\Delta(\mathrm{T})$, every component of $T-\{v\}$ must contain exactly one vertex of S. So v is adjacent to a pendent vertex. Since $\mathrm{T} \not \equiv$ star there exists at least one vertex u in T such that $d(u, v) \geq 2$. If $d(u, v)=3$ and u, u_{1}, u_{2}, v is
the path from u to v, then u, v_{1}, v_{2} are in the same component of $T-\{v\}$ say $w_{1}(T)$. Then $\mid S \cap w_{1}$ $(\mathrm{T}) \mid \geq 2$ which is a contradiction. So every vertex of T is at a distance at most two from v. Every vertex except v in T must have degree
one or 2 , otherwise $\Delta(T)<$ the number of pendents. So $T \cong$ wounded spider. If $G \cong$ star then $\gamma_{\mathrm{ns}}(\mathrm{T})=$
$\Delta(T)$. So when $\gamma_{\mathrm{ns}}(\mathrm{T})=\Delta(\mathrm{T})$, then $\mathrm{T} \cong$ star or a wounded spider. Converse is obvious.
Theorem 2.6 For any tree T not isomorphic to $\mathrm{P}_{2}, \gamma_{\mathrm{ns}}(\bar{T})=2$.
Proof. If $\operatorname{diam}(T)=2$, then $T \cong K_{1, p-1}$. If u is the central vertex and $v_{1}, v_{2}, \ldots, v_{p-1}$ are the pendent vertices then $\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathbf{i}}\right\}(1 \leq \mathrm{i} \leq \mathrm{p}-1)$ are non-
Split dominating sets in \bar{T}.
If diam $(T)=3$ and if u, v are the supports then $\{u, v\}$ is a nonsplit domi- nating set in \bar{T}.If diam (T $)=4$, let $P=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right)$ be the diametrical path in T. Then $\left\{\mathrm{v}_{1}, \mathrm{v}_{4}\right\}$ is a nonsplit dominating set in \bar{T}. If $\operatorname{diam}(T) \geq 5$, let $P=\left(v_{1}, v_{2}, \ldots, v_{\mathbf{n}}\right)(\mathrm{n} \geq 6)$ be the diametrical path in T.Then $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ is a nonsplit dominating set in \bar{T}. Thus $\gamma_{\mathrm{ns}}(\bar{T})=2$.
Lemma 2.7 If G is an isolate - free disconnected graph with at least 2 com- ponents then $\gamma_{\mathrm{ns}}(\bar{G})=2$.
Proof. If u and v are two vertices lying in two different components of G, then $\{u, v\}$ is a minimum nonsplit dominating set of \bar{G} and so $\gamma_{\mathrm{ns}}(\bar{G})=2$.
Theorem 2.8 If G is a connected graph with at least 2 pendents then $\gamma_{\mathrm{ns}}(\bar{G}) \leq$
3. Further $\gamma_{\mathrm{ns}}(\bar{G})=2$ if and only if $G \nRightarrow \mathrm{G}_{1}$ where G_{1} is the graph given in

Fig 1

Proof. Claim 1: $\gamma_{\mathrm{ns}}(\bar{G}) \leq 3$.
Suppose G has at least 3 pendent vertices. Let u , v and w be 3 pendent ver- tices with supports $\mathrm{u}_{1}, \mathrm{v}_{1}$ and w_{1}. If $\mathrm{u}_{1}=\mathrm{v}_{1}=\mathrm{w}_{1}$ then $\left\{\mathrm{u}, \mathrm{u}_{1}\right\}$ is a nonsplit dominating set of \bar{G}. Since no subset of $\mathrm{V}(\mathrm{G})$ with cardinality 1 can be a
nonsplit dominating set of \bar{G}, we have $\gamma_{\mathrm{ns}}(\bar{G})=2$.
If $u_{1}=w_{1}$ then also as above $\gamma_{\mathrm{ns}}(\bar{G})=2$. If $\mathrm{u}_{1}, \mathrm{v}_{1}$, w_{1} are distinct then obviously $\gamma_{\mathrm{ns}}(\bar{G})=2$. Now let G contain exactly 2 pendent vertices. Let u and v be
2 pendents with supports u_{1} and v_{1} respectively.If $V(G)-\left\{u, v_{1}, u_{1}, v_{1}\right\}=\varnothing$ then $\gamma_{\mathrm{ns}}(\bar{G})=2$. If $\mathrm{V}(\mathrm{G})-\left\{\mathrm{u}, \mathrm{v}, \mathrm{u}_{1}, \mathrm{v}_{1}\right\} \neq \varnothing$ then $\left\{\mathrm{u}, \mathrm{u}_{1}, \mathrm{v}_{1}\right\}$ is a nonsplit dominating set of G and so $\gamma_{\mathrm{ns}}(\bar{G}) \leq 3$. So for a connected graph with at least 2 pendents, $\gamma_{\mathrm{ns}}(\bar{G}) \leq 3$.
Claim 2: $\gamma_{\mathrm{ns}}(\bar{G})=3$ if and only if $\mathrm{G} \cong \mathrm{G}_{1}$.
Since G is connected, $\bar{G} \nsupseteq \mathrm{H}+\mathrm{K}_{1}$ for any connected graph and so by remark
2.4, $\gamma_{\mathrm{ns}}(\bar{G}) \neq 1$. So $\gamma_{\mathrm{ns}}(\bar{G})=2$ or 3.Let $\gamma_{\mathrm{ns}}(\bar{G})=3$.From claim 1, we can Conclude that G contains exactly 2 pendent vertices.
Let u_{1} and v_{1} be the supports of the 2 pendents u and v respectively. If $u_{1}=v_{1}$ then $\left\{u, u_{1}\right\}$ is a $\gamma_{n s}$ set of \bar{G}.Let u_{1} and v_{1} be distinct and non-adjacent.
Then $\{u, x\}$ is a $\gamma_{n s}$-set of \bar{G} where $x \in V(G)-\left\{u_{1}, v_{1}, v\right\}, x \notin N\left(u_{1}\right)$ and $N\left(u_{1}\right) \cap N\left(v_{1}\right)=\emptyset$. If $V(G)-\left\{u_{1}, v_{1}, u, v\right\}=N(u) \cap N(v)$ then $\left\{u_{1}, v\right\}$ is a
γ_{ns}-set of \bar{G}.
Let u_{1} and v_{1} be adjacent. If there exists a vertex y such that $d\left(y, v_{1}\right) \geq 2(x$
such that $\mathrm{d}\left(\mathrm{x}, \mathrm{u}_{1}\right) \geq 2$) then $\left\{\mathrm{u}, \mathrm{u}_{1}\right\}\left(\left\{\mathrm{v}_{\mathrm{l}}, \mathrm{v}_{1}\right\}\right)$ is a $\gamma_{\mathrm{ns}}-$ set of \bar{G}. So $\mathrm{d}\left(\mathrm{v}_{1}, \mathrm{y}\right)=1$ for all $\mathrm{y} \in \mathrm{V}(\mathrm{G})-$ $\{u\}$ and $d\left(u_{1}, y\right)=1$ for all $y \in V(G)-\{v\}$. So $G \cong G_{1}$. If $G \cong G_{1}$ obviously $\gamma_{\mathrm{ns}}(\bar{G})=3$ as $\left\{u_{1} u_{1}\right.$, $\left.\mathrm{v}_{1}\right\}$ is a γ_{ns}-set of \bar{G}.
Thus $\gamma_{\mathrm{ns}}(\bar{G})=2$ if and only if G is not isomorphic to G_{1}.
Theorem 2.9 If G is a connected graph with at least 2 pendent vertices, then $3 \leq \gamma_{\mathrm{ns}}(\mathrm{G})+\gamma_{\mathrm{ns}}(\bar{G}) \leq \mathrm{p}+1$. Further $\gamma_{\mathrm{ns}}(\mathrm{G})+\gamma_{\mathrm{ns}}(\bar{G})=3$ if and only if
$\mathrm{G} \cong \mathrm{K}_{2}$ and $\gamma_{\mathrm{ns}}(\mathrm{G})+\gamma_{\mathrm{ns}}(\bar{G})=\mathrm{p}+1$ if and only if $\mathrm{G} \cong \mathrm{K}_{1, \mathrm{p}}-1$ or H where
H is given in Fig 2.

Fig 2

Proof. Clearly $\gamma_{\mathrm{ns}}(\mathrm{G})+\gamma_{\mathrm{ns}}(\bar{G}) \geq 3$. If $\gamma_{\mathrm{ns}}(\mathrm{G})+\gamma_{\mathrm{ns}}(\bar{G})=3$, then $\gamma_{\mathrm{ns}}(\mathrm{G})=1$ and $\gamma_{\mathrm{ns}}(\bar{G})=2$. As G contains at least 2 pendent vertices and $\gamma_{\mathrm{ns}}(\mathrm{G})=1$, by

Remark 2.4(i), $\mathrm{G} \cong \mathrm{K}_{2}$.
By Proposition 2.2 and Theorem 2.8, $\gamma_{\mathrm{ns}}(\mathrm{G})+\gamma_{\mathrm{ns}}(\bar{G}) \leq \mathrm{p}-1+3=\mathrm{p}+2$. If
$\gamma_{\mathrm{ns}}(\mathrm{G})+\gamma_{\mathrm{ns}}(\bar{G})=\mathrm{p}+2$ then $\gamma_{\mathrm{ns}}(\mathrm{G})=\mathrm{p}-1$ and $\gamma_{\mathrm{ns}}(\bar{G})=3$. By Theorem
$2.8, \gamma \mathrm{~ns}(\bar{G})=3$ if and only if $\mathrm{G} \cong \mathrm{G}_{1}$ where G_{1} is in Figure 1. But for
$\mathrm{G}_{1}, \gamma_{\mathrm{ns}}(\mathrm{G}) \neq \mathrm{p}-1$ and so there is no graph G with $\gamma_{\mathrm{ns}}(\mathrm{G})+\gamma_{\mathrm{ns}}(\bar{G})=\mathrm{p}+2$.
Hence $\gamma_{\mathrm{ns}}(\mathrm{G})+\gamma_{\mathrm{ns}}(\bar{G}) \leq \mathrm{p}+1$.
If $\gamma_{\mathrm{ns}}(\mathrm{G})+\gamma_{\mathrm{ns}}(\bar{G})=\mathrm{p}+1$, then either $\gamma_{\mathrm{ns}}(\mathrm{G})=\mathrm{p}-1, \gamma_{\mathrm{ns}}(\bar{G})=2$ or $\gamma_{\mathrm{ns}}(\mathrm{G})=$ $\mathrm{p}-2, \gamma_{\mathrm{ns}}(\bar{G})=3$. In the former case $\mathrm{G} \cong$ star and in the latter case $\mathrm{G} \cong \mathrm{H}$.
Converse is obvious.
Proposition 2.10 If T is a tree of order $\mathrm{p} \geq 3$ then $\gamma_{\mathrm{ns}}(\mathrm{T}) \gamma_{\mathrm{ns}}(\bar{T})=\mathrm{p}$ if and only if $\gamma_{\mathrm{ns}}(\mathrm{T})=\mathrm{p}$.
Proof. Follows by Theorem 2.6.
Proposition 2.11 If T is a tree of order $\mathrm{p} \geq 3$, then $\gamma_{\mathrm{ns}}(\mathrm{T})+\gamma_{\mathrm{ns}}(\bar{T})=\mathrm{p}$ if and only if T has exactly two supports.
Proof.Follows from Theorem 2.6 and Theorem 2.2 of [14].
Theorem 2.12 Let G be a unicyclic graph with cycle C_{p} and $\delta(G)=1$. Then

1. $\gamma_{\mathrm{ns}}(\bar{G})=\chi(\mathrm{G})=2$ if and only if p is even.
$2 . \gamma_{\mathrm{ns}}(\bar{G})=\chi(\mathrm{G})=3$ if and only if $\mathrm{G} \cong \mathrm{G}_{1}, \mathrm{G}_{2}$ where G_{1} and G_{2} are given in Fig 3.

Fig 3

Proof. (1) If $\chi(G)=2$ then p is even. Conversely, suppose that p is even. If G has two pendent vertices u, v with supports u_{1}, v_{1} and $u_{1} \neq v_{1}$, then for any other vertex $x \in C_{p},\{u, x\}$ is a $\gamma_{n s^{-}}$set of \bar{G}. If $u_{1}=v_{1}$, then $\left\{u, u_{1}\right\}$ is a $\gamma_{\mathrm{ns}^{-}}$set of \bar{G}.
(2) If $\gamma_{\mathrm{ns}}(\bar{G})=\chi(\mathrm{G})=3$ then p is odd and $\mathrm{C}_{\mathrm{p}} \cong \mathrm{C}_{3}$ since otherwise $\gamma_{\mathrm{ns}}(\bar{G})=$
2. If a tree rooted at a vertex of C_{3} has diameter at least 2 , then $\gamma_{\mathrm{ns}}(\bar{G})=2$ and so every rooted tree is a P_{2}. If a vertex u of C_{3} is of degree ≥ 4 then u with any pendent adjacent to u is a minimum nonsplit dominating set of G
and so every vertex of C_{3} is of degree ≤ 3. If $\mathrm{G} \cong \mathrm{K}_{3}{ }^{\circ} \mathrm{K}_{1}$, then $\gamma_{\mathrm{ns}}(\bar{G})=2$ and so $\mathrm{G} \cong \mathrm{G}_{1}$ or G_{2}. Converse is obvious.
Theorem 2.13 If G is a graph with a $\chi(\mathrm{G})$-colouring where every colour is used at least for 3 vertices then $\gamma_{\mathrm{ns}}(\bar{G}) \leq \chi(\mathrm{G})$.

Proof. Let $\chi(\mathrm{G})=\mathrm{m}$ and let $\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{m}}\right\}$ be the $\chi(\mathrm{G})$ partition of $\mathrm{V}(\mathrm{G})$. For each $1 \leq \mathrm{i} \leq$ $\mathrm{m}, \mathrm{u}_{\mathbf{i}} \in \mathrm{V}_{\mathbf{i}}, \mathrm{S}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \mathrm{u}_{\mathrm{m}}\right\}$ is a dominating set in \bar{G}. As $\left|\mathrm{V}_{\mathbf{i}}\right| \geq 3 \forall \mathrm{i},<\mathrm{V}-\mathrm{S}>$ has no isolated vertices in \bar{G}. Also for $1 \leq \mathrm{i} \leq \mathrm{m}$, every vertex of $\mathrm{V}_{\mathbf{i}}$ is adjacent to at least one vertex of every $\mathrm{V}_{\mathbf{j}}, \mathbf{j} \neq \mathrm{i}$ and so S is a nonsplit dominating set of \bar{G}. Hence $\gamma_{\mathrm{ns}}(\bar{G}) \leq \mathrm{m}=\chi(\mathrm{G})$.

Theorem 2.14 Let G be any connected bipartite graph. Then $\gamma_{\mathrm{ns}}(\mathrm{G})+\chi(\mathrm{G})=\mathrm{p}+1$ if and only if $\mathrm{G} \cong$ $\mathrm{K}_{1, \mathrm{p}}-1$.
Proof. Since $\chi(G)=2$, the result follows by Proposition 2.2.
Theorem 2.15 For any connected graph $G, \gamma_{n s}(G)+\chi(G) \leq p+\Delta(G)$ and equality holds if G is a star. Proof. Follows from Proposition 2.2 and Theorem 2.1.

Theorem 2.16 For any connected graph $G, \gamma_{\mathrm{ns}}(G)+\operatorname{diam}(G) \leq 2 p-2$.Further (i) $\gamma_{\mathrm{ns}}(G)+\operatorname{diam}$ (G) $=2$ p-2 if and only if $G \cong K_{1,2}$.
(ii) $\gamma_{\mathrm{ns}}(\mathrm{G})+\operatorname{diam}(\mathrm{G})=2 \mathrm{p}-3$ if and only if $\mathrm{G} \cong \mathrm{K}_{1,3}$ or G_{1}, where G_{1} is given in Fig 4 .

$$
G_{1}:
$$

Fig 4

Proof.(i) Since a single vertex is assumed to be connected, $\gamma_{\mathrm{ns}}(\mathrm{G}) \leq \mathrm{p}-1$. Since G is connected, $\operatorname{diam}(G) \leq p-1$. Hence $\gamma_{n s}(G)+\operatorname{diam}(G) \leq 2 p-2$. Sup- pose $\gamma_{n s}(G)+\operatorname{diam}(G)=2 p-2$. Then $\gamma_{n s}(G)=$ $\mathrm{p}-1$ and $\operatorname{diam}(\mathrm{G})=\mathrm{p}-1$. By Proposition 2.2, $\gamma_{\mathrm{ns}}(\mathrm{G})=\mathrm{p}-1$ if and only if $\mathrm{G} \cong \mathrm{K}_{1, \mathrm{p}}-1$ and $\operatorname{diam}\left(K_{1, p-1}\right)=2$ so that $p=3$. Hence $G \cong K_{1,2}$. Converse is obvious. So (i) is proved.
(ii) Suppose $\gamma_{\mathrm{ns}}(G)+\operatorname{diam}(G)=2 \mathrm{p}-3$. We have $\gamma_{\mathrm{ns}}(G)=\mathrm{p}-1$ and
$\operatorname{Diam}(G)=p-2$ or $\gamma_{\mathrm{ns}}(\mathrm{G})=\mathrm{p}-2$ and $\operatorname{diam}(\mathrm{G})=\mathrm{p}-1$. In the former case $\mathrm{p}=4$ and $\mathrm{G} \cong \mathrm{K}_{1,3}$. In the latter case, Theorem 2.2 of [14], $G \cong \mathrm{G}_{1}$ where G_{1} is given in Fig 4. Hence (ii) is proved.

Theorem 2.17 For any graph $G, \gamma_{\mathrm{ns}}(\mathrm{G})+\kappa(\mathrm{G}) \leq \mathrm{p}+\Delta(\mathrm{G})-1$, where $\kappa(\mathrm{G})$ is the connectivity of G and equality holds if and only if $\mathrm{G} \cong \mathrm{K}_{2}$.

Proof. For any graph $G, \gamma_{\mathrm{ns}}(\mathrm{G}) \leq \mathrm{p}-1$ and $\kappa(\mathrm{G}) \leq \Delta(\mathrm{G})$ so that $\gamma_{\mathrm{ns}}(\mathrm{G})+\kappa(\mathrm{G}) \leq \mathrm{p}+\Delta(\mathrm{G})-1$. Suppose $\gamma_{\mathrm{ns}}(\mathrm{G})+\kappa(\mathrm{G})=\mathrm{p}+\Delta(\mathrm{G})-1$. Then $\gamma_{\mathrm{ns}}(\mathrm{G})=\mathrm{p}-1$ and $\kappa(\mathrm{G})=\Delta(\mathrm{G})$. By proposition 2.2, G $\cong K_{1, p-1}$. But now $\kappa(G)=1$ and so $\Delta(G)=1$. Hence $G \cong K_{1,1}=K_{2}$. Converse is obvious.

References

[1]. B. D. Acharya, The strong domination number of a graph and related concepts, J.Math. Phys.Sci. 14(1980), No. 5, 471-475.
[2]. S. Arumugam and R. Kala, Domsaturation number of a graph, Indian J. Pure appl. Math., 33(2002), No. 11, 1671-1676.
[3]. G. Chartrand and L. Lesniak, Graphs and Digraphs, Chapman and Hall, Madras (1996).
[4]. E. J. Cockayne, Domination of undirected graphs -A survey. In theory and Applications of Graphs. LNM 642,Springer Verlag, (1978), 141-147.
[5]. E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs, Networks, 7, (1977), 247-261.
[6]. F. Harary, Graph theory, Addison Wesley, Reading Mass (1969).
[7]. F.Harary, Changing and unchanging invariants for graphs, Bull.Malaysian Math. Soc., 5(1982),73-78.
[8]. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, Inc., (1998).
[9]. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs -Advanced Topics, Marcel Dekker, (1998).
[10]. V. R. Kulli and B. Janakiram, The nonsplit domination number of a graph, Indian J. Pure Appl. Math., 31 (2000), No. 4, 545-550.
[11]. V. R. Kulli and B. Janakiram, The strong nonsplit domination number of a graph, International Journal of Management and Systems, 19(2004), No. 2, 441-447.
[12]. E. Sampathkumar and H. B. Walikar, The connected domination number of a graph, J. Math. Phy. Sci., 13, (1979), 607613.
[13]. Y. Therese Sunitha Mary and R. Kala, The nonsplit domination number of a graph, Proceedings of the National Conference on Mathematical and Computational Models, December 2007, PSG College of Technology, Coimbatore, INDIA, 218-224.
[14]. Y. Therese Sunitha Mary and R. Kala, The nonsplit domination number of a graph, International Journal of Computational and applied Mathematics, Vol.9, No. 1(2014),pp. 51-61.
[15]. Y. Therese Sunitha Mary and R. Kala, The nonsplit domsaturation number of a graph, IOSR Journal of Mathematics, Vol.10, Issue 3 Ver.IV(2014),pp. 77 -81.
[16]. H. B. Walikar, B. D. Acharya and E. Sampathkumar, Recent developments in the theory of domination in graphs and its applications, M. R. I. Lecture notes in Math, No. 1, Metha Research Institute, Allahabad (1979).

