A Note on Nonsplitdomination number of a graph

Y. Therese Sunitha Mary¹, R. Kala²

¹Department of Mathematics, St. Xavier's College, Palayamkottai -627 002, Tamil Nadu, India. ²Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627 012, Tamil Nadu, India.

Abstract: Let G = (V, E) be any graph. A dominating set D of a graph G is a nonsplit dominat- ing if $\langle V-D \rangle$ is connected. The minimum cardinality of a nonsplit dominating set is called nonsplit domination number $\gamma_{ns}(G)$. In this paper, we investigate several properties of this parameter.

Keywords: Domination, Domination number, Nonsplit Domination, Nonsplit Domination number. AMS subject classification: 05C 69

I. Introduction

By a graph G = (V, E) we mean a finite, undirected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For graph theoretical terms we refer to Harary [6] and for terms related to domination we refer Haynes et al. [8] A subset D of V is said to be a dom- inating set in G if every vertex in V - D is adjacent to atleast one vertex in D. Kulli and Janakiram introduced the concept of nonsplit domination in graphs [10]. A dominating set D of a graph G is a nonsplit dominating set if

< V - D > is connected. The nonsplit domination number γ_{ns} (G) of G is the minimum cardinality of a nonsplit dominating set. A nonsplit dominating set with cardinality γ_{ns} (G) is called a γ_{ns} -set. In this paper, we investigate several properties of this parameter.

II. Main Results

Theorem 2.1 [6] For any graph G, $\chi(G) \le 1 + \Delta(G)$. **Proposition 2.2** For any connected graph G, $\gamma_{ns}(G) \le p-1$. Further equality holds if and only if G is a star.

Proof. Every set $S \subseteq V(G)$ with |S| = p-1 is a nonsplit dominating set of

G and so γ_{ns} (G) $\leq p-1$.

If G is a star, clearly γ_{ns} (G) = p-1. Suppose γ_{ns} (G) = p-1. If G is not a star,

then G has an edge e = uv such that both u and v are non - pendent vertices. Now $V(G) - \{u, v\}$ is a nonsplit dominating set of G and so $\gamma_{ns}(G) \le p - 2$ which is a contradiction. Hence G is a star.

Remark2.3 1. If H is a spanning subgraph of G , then $\gamma_{ns}(G) \leq \gamma_{ns}(H)$.

2. If H is any spanning subgraph of complete graph K_p with $\Delta(H) = p - 1$ and |E(H)| = 2p - 3, then $\gamma_{ns}(H) = \gamma_{ns}(K_p) = 1$.

Remark 2.4 1. For any graph G, $\gamma_{ns}(G) = 1$ if and only if $G \cong K_1 + H$ where H is a connected graph or a trivial graph.

2. For any graph G, $\gamma_{ns}(G) = p$ if and only if $G \cong \overline{K_p}$.

Theorem 2.5 For a non-trivial tree T, $\gamma_{\text{IIS}}(T) \ge \Delta(T)$ and $\gamma_{\text{IIS}}(T) = \Delta(T)$

if and only if $T \mathrel{\widetilde{=}} star$ or wounded spider.

Proof. Since T is a tree, T has at least $\Delta(T)$ pendent vertices. If $T \cong$ star then $\gamma_{ns}(T) = \Delta(T)$. If $T \not\cong$ star then every nonsplit dominating set must contain all the pendent vertices and so $\gamma_{ns}(T) \ge \Delta(T)$.

Suppose $\gamma_{NS}~(T)~=~\Delta(T)$ and T $\,\not\equiv\,$ star.Let v be a vertex of T such that

deg v = $\Delta(T)$. Let S be a γ_{nS} -set. S contains every pendent vertex of T.As $\gamma_{nS}(T) = \Delta(T)$, every component of T - {v} must contain exactly one vertex of S. So v is adjacent to a pendent vertex. Since T \neq star there exists at least one vertex u in T such that $d(u, v) \ge 2$. If d(u, v) = 3 and u, u_1, u_2, v is

the path from u to v, then u, v_1, v_2 are in the same component of $T - \{v\}$ say $w_1(T)$. Then $|S \cap w_1(T)| \ge 2$ which is a contradiction. So every vertex of T is at a distance at most two from v. Every vertex except v in T must have degree

one or 2, otherwise $\Delta(T) <$ the number of pendents. So $T \cong$ wounded spider. If $G \cong$ star then $\gamma_{ns}(T) =$

 $\Delta(T)$. So when $\gamma_{ns}(T) = \Delta(T)$, then $T \cong star$ or

a wounded spider. Converse is obvious.

Theorem 2.6 For any tree T not isomorphic to P₂, $\gamma_{ns}(\overline{T}) = 2$.

Proof. If diam (T) = 2, then T \cong K_{1,p}-1. If u is the central vertex and v₁, v₂,..., v_p-1 are the pendent vertices then { u, v_i } (1 \le i \le p - 1) are non-

Split dominating sets in \overline{T} .

If diam (T) = 3 and if u, v are the supports then {u, v} is a nonsplit domi- nating set in \overline{T} . If diam (T) = 4, let P = (v₁, v₂, v₃, v₄, v₅) be the diametrical path in T. Then {v₁, v₄} is a nonsplit dominating set in \overline{T} . If diam(T) \geq 5, let P = (v₁, v₂, ..., v_n)(n \geq 6) be the diametrical path in T. Then {v₁, v₂} is a nonsplit dominating set in \overline{T} . Thus $\gamma_{ns}(\overline{T}) = 2$.

Lemma 2.7 If G is an isolate - free disconnected graph with at least 2 com- ponents then $\gamma_{ns}(\bar{G}) = 2$.

Proof. If u and v are two vertices lying in two different components of G, then $\{u, v\}$ is a minimum nonsplit dominating set of \overline{G} and so $\gamma_{ns}(\overline{G}) = 2$.

Theorem 2.8 If G is a connected graph with at least 2 pendents then $\gamma_{ns}(\overline{G}) \leq$

3. Further $\gamma_{ns}(\overline{G}) = 2$ if and only if $G \not\cong G_1$ where G_1 is the graph given in Fig 1

Proof. Claim 1: $\gamma_{ns}(\overline{G}) \leq 3$.

Suppose G has at least 3 pendent vertices. Let u, v and w be 3 pendent vertices with supports u_1, v_1 and w_1 . If $u_1 = v_1 = w_1$ then $\{u, u_1\}$ is a nonsplit dominating set of \overline{G} . Since no subset of V (G) with cardinality 1 can be a

nonsplit dominating set of \overline{G} , we have $\gamma_{ns}(\overline{G}) = 2$.

If $u_1 = w_1$ then also as above $\gamma_{ns}(\overline{G}) = 2$. If u_1, v_1, w_1 are distinct then obvi-

ously $\gamma_{nS}(\overline{G}) = 2$. Now let G contain exactly 2 pendent vertices. Let u and v be

2 pendents with supports u_1 and v_1 respectively. If $V(G) - \{u, v, u_1, v_1\} = \emptyset$

then $\gamma_{ns}(\overline{G}) = 2$. If $V(G) - \{u, v, u_1, v_1\} \neq \emptyset$ then $\{u, u_1, v_1\}$ is a nonsplit dominating set of G and so $\gamma_{ns}(\overline{G}) \leq 3$. So for a connected graph with at least 2 pendents, $\gamma_{ns}(\overline{G}) \leq 3$.

Claim 2: $\gamma_{ns}(\overline{G}) = 3$ if and only if $G \cong G_1$.

Since G is connected, $\overline{G} \notin H + K_1$ for any connected graph and so by remark

2.4, γ_{ns} $(\bar{G}) \neq 1$. So γ_{ns} $(\bar{G}) = 2$ or 3.Let γ_{ns} $(\bar{G}) = 3$.From claim 1,we can

Conclude that G contains exactly 2 pendent vertices. Let u_1 and v_1 be the supports of the 2 pendents u and v respectively. If $u_1=v_1$ then $\{u,u_1\}$ is a γ_{ns} -

set of \overline{G} .Let u₁ and v₁ be distinct and non-adjacent.

Then $\{u, x\}$ is a γ_{ns} -set of \overline{G} where $x \in V(G) - \{u_1, v_1, v\}, x \notin N(u_1)$ and

 $N(u_1) \cap N(v_1) = \emptyset$. If $V(G) - \{u_1, v_1, u, v\} = N(u) \cap N(v)$ then $\{u_1, v\}$ is a γ_{ns} -set of \overline{G} .

Let u₁ and v₁ be adjacent. If there exists a vertex y such that $d(y, v_1) \ge 2$ (x

such that $d(x, u_1) \ge 2$ then $\{u, u_1\}$ ($\{v, v_1\}$) is a γ_{ns} - set of \overline{G} . So $d(v_1, y) = 1$ for all $y \in V(G) - \{u\}$ and $d(u_1, y) = 1$ for all $y \in V(G) - \{v\}$. So $G \cong G_1$. If $G \cong G_1$ obviously $\gamma_{ns}(\overline{G}) = 3$ as $\{u, u_1, v_1\}$ is a γ_{ns} -set of \overline{G} . Thus $\gamma_{ns}(\overline{G}) = 2$ if and only if G is not isomorphic to G_1 .

Theorem 2.9 If G is a connected graph with at least 2 pendent vertices, then $3 \le \gamma_{ns}(G) + \gamma_{ns}(\overline{G}) \le p + 1$. Further $\gamma_{ns}(G) + \gamma_{ns}(\overline{G}) = 3$ if and only if

 $G \cong K_2$ and $\gamma_{ns}(G) + \gamma_{ns}(\overline{G}) = p + 1$ if and only if $G \cong K_{1,p-1}$ or H where H is given in Fig 2.

Fig 2

Proof. Clearly $\gamma_{ns}(G) + \gamma_{ns}(\overline{G}) \ge 3$. If $\gamma_{ns}(G) + \gamma_{ns}(\overline{G}) = 3$, then $\gamma_{ns}(G) = 1$ and $\gamma_{ns}(\overline{G}) = 2$. As G contains at least 2 pendent vertices and $\gamma_{ns}(G) = 1$, by

Remark 2.4(i), $G \cong K_2$.

By Proposition 2.2 and Theorem 2.8, $\gamma_{ns}(G) + \gamma_{ns}(\overline{G}) \le p - 1 + 3 = p + 2$. If $\gamma_{ns}(G) + \gamma_{ns}(\overline{G}) = p + 2$ then $\gamma_{ns}(G) = p - 1$ and $\gamma_{ns}(\overline{G}) = 3$. By Theorem

2.8 , $\gamma_{ns}(\overline{G}) = 3$ if and only if $G \cong G_1$ where G_1 is in Figure 1. But for $G_1, \gamma_{ns}(G) \neq p-1$ and so there is no graph G with $\gamma_{ns}(G) + \gamma_{ns}(\overline{G}) = p+2$. Hence $\gamma_{ns}(G) + \gamma_{ns}(\overline{G}) \leq p+1$.

If $\gamma_{ns}(G) + \gamma_{ns}(\overline{G}) = p+1$, then either $\gamma_{ns}(G) = p-1$, $\gamma_{ns}(\overline{G}) = 2$ or $\gamma_{ns}(G) = 2$

p-2, $\gamma_{ns}(\overline{G}) = 3$. In the former case $G \cong$ star and in the latter case $G \cong H$. Converse is obvious.

Proposition 2.10 If T is a tree of order $p \ge 3$ then $\gamma_{ns}(T)\gamma_{ns}(\overline{T}) = p$ if and only if $\gamma_{ns}(T) = \frac{p}{2}$. **Proof.** Follows by Theorem 2.6.

Proposition 2.11 If T is a tree of order $p \ge 3$, then $\gamma_{ns}(T) + \gamma_{ns}(\overline{T}) = p$ if and only if T has exactly two supports.

Proof.Follows from Theorem 2.6 and Theorem 2.2 of [14].

Theorem 2.12 Let G be a unicyclic graph with cycle C_p and $\delta(G) = 1$. Then

1. $\gamma_{ns}(\overline{G}) = \chi(G) = 2$ if and only if p is even.

 $2.\gamma_{ns}(\overline{G}) = \chi(G) = 3$ if and only if $G \cong G_1, G_2$ where G_1 and G_2 are given in Fig 3.

Fig 3

Proof. (1) If $\chi(G) = 2$ then p is even. Conversely, suppose that p is even. If G has two pendent vertices u, v with supports u₁, v₁ and u₁ \neq v₁, then for any other vertex x \in C_p, {u, x} is a γ_{ns} - set of \overline{G} . If u₁ = v₁, then {u, u₁} is a γ_{ns} - set of \overline{G} .

(2) If $\gamma_{ns}(\overline{G}) = \chi(G) = 3$ then p is odd and $C_p \cong C_3$ since otherwise $\gamma_{ns}(\overline{G}) =$

2. If a tree rooted at a vertex of C₃ has diameter at least 2, then $\gamma_{\Pi S}(\overline{G}) = 2$ and so every rooted tree is a P₂. If a vertex u of C₃ is of degree ≥ 4 then u with any pendent adjacent to u is a minimum nonsplit dominating set of G

and so every vertex of C₃ is of degree ≤ 3 . If $G \cong K_3 \circ K_1$, then $\gamma_{ns}(\overline{G}) = 2$ and so $G \cong G_1$ or G_2 . Converse is obvious.

Theorem 2.13 If G is a graph with a $\chi(G)$ -colouring where every colour is used at least for 3 vertices then $\gamma_{nS}(\overline{G}) \leq \chi(G)$.

Proof. Let $\chi(G) = m$ and let $\{V_1, V_2, \dots, V_m\}$ be the $\chi(G)$ partition of V(G). For each $1 \le i \le m$, $u_i \in V_i$, $S = \{u_1, u_2, \dots, u_m\}$ is a dominating set in \overline{G} . As $|V_i| \ge 3 \quad \forall i, < V - S >$ has no isolated vertices in \overline{G} . Also for $1 \le i \le m$, every vertex of V_i is adjacent to at least one vertex of every V_j , $j \ne i$ and so S is a nonsplit dominating set of \overline{G} . Hence $\gamma_{ns}(\overline{G}) \le m = \chi(G)$.

Theorem 2.14 Let G be any connected bipartite graph. Then $\gamma_{nS}(G) + \chi(G) = p + 1$ if and only if $G \cong K_{1,p-1}$.

Proof. Since $\chi(G) = 2$, the result follows by Proposition 2.2.

Theorem 2.15 For any connected graph G, $\gamma_{nS}(G) + \chi(G) \le p + \Delta(G)$ and equality holds if G is a star. **Proof.** Follows from Proposition 2.2 and Theorem 2.1.

Theorem 2.16 For any connected graph G, $\gamma_{ns}(G) + \text{diam}(G) \le 2p - 2$. Further (i) $\gamma_{ns}(G) + \text{diam}(G) = 2p - 2$ if and only if $G \cong K_{1,2}$.

(ii) $\gamma_{ns}(G) + \text{diam}(G) = 2p - 3$ if and only if $G \cong K_{1,3}$ or G_1 , where G_1 is given in Fig 4.

Fig 4

Proof.(i) Since a single vertex is assumed to be connected, γ_{ns} (G) $\leq p - 1$. Since G is connected, diam(G) $\leq p-1$. Hence $\gamma_{ns}(G)$ +diam(G) $\leq 2p-2$. Sup- pose $\gamma_{ns}(G)$ +diam (G) = 2p-2. Then $\gamma_{ns}(G) = p-1$ and diam(G) = p-1. By Proposition 2.2, $\gamma_{ns}(G) = p-1$ if and only if $G \cong K_{1,p-1}$ and diam($K_{1,p-1}$) = 2 so that p = 3. Hence $G \cong K_{1,2}$. Converse is obvious. So (i) is proved. (ii) Suppose $\gamma_{ns}(G)$ + diam(G) = 2p-3. We have $\gamma_{ns}(G) = p-1$ and

Diam (G) = p - 2 or $\gamma_{ns}(G) = p - 2$ and diam(G) = p - 1. In the former case p = 4 and $G \cong K_{1,3}$. In the latter case, Theorem 2.2 of [14], $G \cong G_1$ where G_1 is given in Fig 4. Hence (ii) is proved.

Theorem 2.17 For any graph G, $\gamma_{ns}(G) + \kappa(G) \le p + \Delta(G) - 1$, where $\kappa(G)$

is the connectivity of G and equality holds if and only if $G \cong K_2$.

Proof. For any graph G, $\gamma_{ns}(G) \le p - 1$ and $\kappa(G) \le \Delta(G)$ so that $\gamma_{ns}(G) + \kappa(G) \le p + \Delta(G) - 1$. Suppose $\gamma_{ns}(G) + \kappa(G) = p + \Delta(G) - 1$. Then $\gamma_{ns}(G) = p - 1$ and $\kappa(G) = \Delta(G)$. By proposition 2.2, G

 $\cong K_{1,p-1}$. But now $\kappa(G) = 1$ and so $\Delta(G) = 1$. Hence $G \cong K_{1,1} = K_2$. Converse is obvious.

References

- [1]. B. D. Acharya, The strong domination number of a graph and related concepts, J.Math. Phys.Sci. 14(1980), No. 5, 471-475.
- [2]. S. Arumugam and R. Kala, Domsaturation number of a graph, Indian J. Pure appl. Math., 33(2002), No. 11, 1671-1676.
- [3]. G. Chartrand and L. Lesniak, Graphs and Digraphs, Chapman and Hall, Madras (1996).
- [4]. E. J. Cockayne, *Domination of undirected graphs -A survey*. In theory and Applications of Graphs. LNM 642, Springer Verlag, (1978), 141-147.
- [5]. E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs, Networks, 7, (1977), 247-261.
- [6]. F. Harary, Graph theory, Addison Wesley, Reading Mass (1969).
- [7]. F.Harary, Changing and unchanging invariants for graphs, Bull.Malaysian Math. Soc., 5(1982),73-78.
- [8]. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, Inc., (1998).
- [9]. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs -Advanced Topics, Marcel Dekker, (1998).
- [10]. V. R. Kulli and B. Janakiram, The nonsplit domination number of a graph, Indian J. Pure Appl. Math., 31 (2000), No. 4, 545-550.
- [11]. V. R. Kulli and B. Janakiram, *The strong nonsplit domination number of a graph*, International Journal of Management and Systems, 19(2004), No. 2, 441-447.
- [12]. E. Sampathkumar and H. B. Walikar, *The connected domination number of a graph*, J. Math. Phy. Sci., 13, (1979), 607-613.
- [13]. Y. Therese Sunitha Mary and R. Kala, *The nonsplit domination number of a graph*, Proceedings of the National Conference on Mathematical and Computational Models, December 2007, PSG College of Technology, Coimbatore, INDIA, 218-224.
- [14]. Y. Therese Sunitha Mary and R. Kala, *The nonsplit domination number of a graph*, International Journal of Computational and applied Mathematics, Vol.9, No. 1(2014), pp. 51 -61.
- [15]. Y. Therese Sunitha Mary and R. Kala, The nonsplit domsaturation number of a graph, IOSR Journal of Mathematics, Vol.10, Issue 3 Ver.IV(2014), pp. 77-81.
- [16]. H. B. Walikar, B. D. Acharya and E. Sampathkumar, *Recent developments in the theory of domination in graphs and its applications*, M. R. I. Lecture notes in Math, No. 1, Metha Research Institute, Allahabad (1979).