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Abstract: We started looking for a formula to simplify the calculation of the difference of two k–Fibonacci 

numbers depending on the kind of subscripts. Then we study the value of the determinant of circulant matrices 

whose entries are k–Fibonacci numbers. We continue calculating their eigenvalues and finish with the 

calculation of the eigenvalues of the matrix obtained multiplying the k–Fibonacci 
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I. Introduction 
The classical Fibonacci sequence {0, 1, 1, 2, 3, 5, 8 . . .} had been extended in many ways [1, 2]. One 

on which they are working more intensely in recent years is due to Falcon and Plaza [3, 4] which we remember. 

For a given integer number k, we define the k–Fibonacci sequence  ,k k n n N
F F


  by the recurrence relation 

, 1 , , 1k n k n k nF k F F    for n ≥ 1 with initial conditions 
,0 ,10, 1.k kF F   

According to this definition, the general expression of the first terms of the k–Fibonacci sequence are 

 2 3 4 20,1, , 1, 2 , 3 1...kF k k k k k k     . In particular, for k = 1 the classical Fibonacci sequence 

 1 0,1,1,2,3,5,8...F F   is obtained while for k = 2 we get the Pell sequence  2 0,1,2,5,12,29,70,169...F  . 

Characteristic equation of this sequence is 
2 · 1r k r  whose solutions are 
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  and 
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 . It is easy to prove these solutions verify  

2 2

1 2 1 2 1 2 1 2· 1, , 4, 1, 0, 0.k k k                     

In particular, the Binet Identity for the k–Fibonacci numbers is 1 2
,

1 2

n n

k nF
 

 





. 

Moreover, we define the k–Fibonacci numbers with negative subscript as 
1

, ,( 1)n

k n k nF F

   . 

Similarly, we define the k–Lucas numbers as 
, 1 , , 1·k n k n k nL k L L    with initial conditions 

,0 ,12, .k kL L k   [5]. 

The Binet Identity for the k–Lucas numbers takes the form , 1 2

n n

k nL    and consequently
, , 1 , 1k n k n k nL F F   .  

Moreover, , ,( 1)n

k n k nL L   . 

With these instructions, it is relatively easy to prove  

    12

, ,2 2 1 ,2 12
0

1
( 1) 1 1

( 4)

n
nr

k r j k r n k r

j

F L L
k k



   



     


  (1) 

Now, as we will later need this formula, we will simplify 
, ,k p m k p mF F  according to m whether it is even or 

odd. From the Binet Identity and taking into account 
1 2· 1    ,  

1 2 1 2
, , 1 1 2 2

1 2 1 2 1 2 1 2
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In short:  

 
, ,

, ,

, ,

, if is even

, if is odd

k m k p
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k p k m

F L m
F F

F L m
 


  


 (2) 

 

1.1 Matrix norms 

The following matrix norms are defined in [6, 7].  

Let  ijA a be an m × n matrix. 

• The Frobenius or Euclidean norm of A is defined as 

1/ 2

2

1 1

m n

ijE
i j

A a
 

 
  
 
  

• The column norm of A is defined as 
1 1

1

max
m

ij
j n

i

A a
 



  , which is simply the maximum absolute column 

sum of the matrix. 

• The row norm of A is 
1

1

max
n

ij
j m

i

A a
  



  , which is simply the maximum absolute row sum of the matrix. 

• The spectral norm of a matrix A is the largest singular value of A i.e. the square root of the largest 

eigenvalue of the positive-semidefinite matrix *A A  where *A denotes the conjugate transpose of A; that is 

*

max max2
( ) ( )A A A A    

 

1.2 Circulant matrix 

Given the n numbers  0 1 2 1, , ... na a a a  , the matrix 

0 1 2 1

1 0 1 2

2 1 0 3

1 2 3 0

n

n n

n n n n

a a a a

a a a a

C a a a a

a a a a



 

  

 
 
 
 
 
 
 
 







    



is called a circulant matrix 

[8, 9, 10], because the entry  ,i j is equal to the entry  ,i l j l  for 1, 2,...l   If 
nC  is a circulant matrix, its 

transpose matrix  
T

nC  is also circulant. 

It is known the determinant of the circulant matrix 
nC  is [8] 
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  (3) 

where 

2 l
i

n
lw e



 are the n
th

 roots of unity. 

We will use the notation 
0 1 2 1( , , ... )nC CIRC a a a a   for the n × n circulant matrix whose top row is 

 0 1 2 1, , ... nc a a a a  . 

And later we will need the following properties: 

a) The map : ( ) n

nCIRC    is the eigenvalue map on real n×n circulant matrices to complex n-vectors. 

Thus, if ( )C CIRC  , then ( )C  is the set of n eigenvalues of the matrix C. 

b) 
1

0 1 1

0

( ( , ... )
n

l

i n j j

j

CIRC a a a a w






    ([11], Theorem 1.6(ii)). 

c) λ is an algebra isomorphism  ([11], Corollary 1.8.1). 

 

For the norms of circulant matrices, see [12, 13, 14 – 18]. 

 

1.3 Proposition  

If , , 0a b b   and a + ib is an eigenvalue of a real circulant matrix A, then 
2 2a b is an eigenvalue of the 

product matrix · TA A  with multiplicity ≥ 2, where TA  is the transpose matrix of A. 

Proof. 

Suppose 
0 1 1( , ... )nA CIRC a a a  . Then 0 1 2 1( , , ... )T

n nA CIRC a a a a  . 
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We are given that ( )ia ib A   for some i, 0 i n  , with 0b  . Therefore, ( )n ia ib A    is also an 

eigenvalue for the above Property (c). (if the subscript i is n − i, then b = 0 contrary to what is given). 

Again for the Property (c),  T

i A a ib    and  T

n i A a ib    . 

Hence     2 2T T

i n iAA AA a b      and its multiplicity is ≥ 2. 

The proof still works in case b = 0 provided n is odd and a 
1

0

0

( )
n

j

j

a A a




  , otherwise if, for example, b = 0 

and n is even, the eigenvalue 
2a can be non-degenerate in AAT . But, in this case, the multiplicity is 1 because 

the eigenvalue is 0i a i    with multiplicity 1. 

 

II. A Circulant K–Fibonacci Matrix 
 

According to previous definition, for r ≥ 0,  

, , 1 , 2 , 1

, 1 , , 1 , 2

, 2 , 1 , , 3,

, 1 , 2 , 3 ,

k r k r k r k r n

k r n k r k r k r n

k r n k r n k r k r nk n r

k r k r k r k r

F F F F

F F F F

F F F FCF

F F F F

   

    

     

  

 
 
 
 
 
 
 
 







    



 is called 

circulant k–Fibonacci matrix. 

Next we try to simplify the expression of the determinant of this matrix. It is obvious that n > 1 or r>0, it is 

|  
,

0k n r
CF   

 

2.1 Theorem (Determinant of the k–Fibonacci circulant matrix)  
The value of the circulant k–Fibonacci determinant is  

  
   , 1 , 1 , ,

,

, 1 ( 1)
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Proof. 

According to Formula (1.3),  
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because 1n

lw   and 
1 2 1    . 
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On the other hand, 
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Consequently, this establishes the equation (1.4). _ 

From this equation,  
,k n r

CF is positive or negative according n is odd or even, respectively. 

This formula can be simplified if n is even. Comparing the formulas (2) and (4) it is 
2

n
m  . Then, 

 m is even if n ≡ 0 (mod 4) and then  
, , 1 , , , , 1 ,
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 m is odd if n ≡ 2 (mod 4) and then  
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2.2 Matrix norms of the k–Fibonacci circulant matrix 

Taking into account the definition of the Euclidean matrix norm, and as all the row vectors have the same 

entries, the Euclidean norm of the k–Fibonacci circulant matrix is  
1

2

,,
0

n

k k r jn r E
j

CF n F






  . And applying the 

formula (1), it is    
2

,2 2 1 ,2 12,
( 1) ( 1)
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n
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.  

Logically, the Euclidean norm of the k–Fibonacci circulant matrix is n times its row or its column norm. 

 

 

2.3 Eigenvalues and eigenvectors 

The eigenvalues of  
,k n r

CF are given by 
1

,

0

n
l

j k r l j

l

F w






  [11, 10], where 
2

expj

i
w j

n

 
  

 
are the n−th roots 

of the unity and i is the imaginary unit. 

The corresponding normalized eigenvectors are given by  2 11
1, , ... , 0,1,2... 1

T
n

j j je w w w j n
n

  


. 

Taking into account if 
, ,k p k qp q F F   , the eigenvalues of  

,k n r
CF verify the following properties: 

(1) All the eigenvalues are simple. 

(2) If n is odd, only one eigenvalue is real: 
1

0 ,

0

n

k r j

l

F






 . 

(3) If n is even, n = 2p, the matrix  
,k n r

CF get only two real eigenvalues: λ0 and  
1

,

0

1
n

j

p k r j

l

F






   

(4) Half the other eigenvalues of  
,k n r

CF  gets complex and the other half are their conjugates. 

For instance, if n = 3, the eigenvalues of  
3,k r

CF are: 

1) 0 0 , , 1 , 21 k r k r k rw F F F        

2) 
1 1 , , 1 , 2

1 3 1 3 1 3

2 2 2 2 2 2
k r k r k rw i F F i F i  
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3) 
2 1 , , 1 , 2

1 3 1 3 1 3

2 2 2 2 2 2
k r k r k rw i F F i F i  

   
                

   

  

Evidently, 
2 1   

III. On The Matrix Product 
    , ,

·
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k kn r n r
CF CF

 

Let us consider the matrix     , , ,
·

T

n r k kn r n r
M CF CF , where   ,

T

k n r
CF ((CFk)n,r)T is the transpose matrix of 

 
,k n r

CF . Evidently, 
,n rM is double symmetric, that is 

, , , ,andi j j i i j i l j la a a a    . Consequently, all its 

eigenvalues are real. Finally, 
,n rM  is also circulant. 

If  1 1, , 1,2... 1ca a c n  


is the first row vector of this matrix, then 
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Taking into account Proposition 1, we can deduce the following theorem. 

 

3.1. Theorem  

If λ is an eigenvalue of the circulant matrix  
,k n r

CF , the square of its norm, 
2

 , is an eigenvalue of 

    , , ,
·

T

n r k kn r n r
M CF CF . 

 

3.2 Corollary  

If , 0a ib b    is a complex eigenvalue of  
,k n r

CF then 
2 2 2a b    is a double eigenvalue of 

    , , ,
·

T

n r k kn r n r
M CF CF . 

If λ = a is a real eigenvalue of  
,k n r

CF , then 
2  is a simple eigenvalue of     , , ,

·
T

n r k kn r n r
M CF CF . 
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