Certain Third Order Mixed Neutral Difference Equations

B. Selvarajand S. Kaleeswari

Abstract: In this paper some criteria for the oscillation of mixed type third order neutral difference equation of the form

$$
\Delta\left(a_{n} \Delta\left(d_{n} \Delta\left(x_{n}+b_{n} x_{n-\tau_{1}}+c_{n} x_{n+\tau_{2}}\right)\right)\right)+q_{n} x_{n+1-\sigma_{1}}^{\beta}+p_{n} x_{n+1+\sigma_{2}}^{\beta}=0
$$

where β is the ratio of odd positive integers, $\tau_{1}, \tau_{2}, \sigma_{1}$ and σ_{2} are non-negative integers were discussed.
Examples are inserted to illustrate the main results.
2010 Mathematics Subject Classification. 39A10.
Keywords and phrases: mixed neutral difference equation, Nonlinear, Non-oscillation, Oscillation.

I. Introduction

The notion of nonlinear difference equation was studied intensively by R.P.Agarwal [1] and oscillatory properties were discussed by R.P. Agarwal et.al.[2], [3], [4]. Difference equations find a lot of applications in the natural sciences, technology and population dynamics.Recently there has been a lot of interest in the study of oscillatory behaviour of solutions of nonlinear difference equations. We can see this in [5-24]. Researchers carried out their researches on the oscillatory and asymptotic behaviour of solutions of difference equations with delay and neutral delay type. In this paper, we consider the third order mixed type neutral difference equation of the form
$\Delta\left(a_{n} \Delta\left(d_{n} \Delta\left(x_{n}+b_{n} x_{n-\tau_{1}}+c_{n} x_{n+\tau_{2}}\right)\right)\right)+q_{n} x_{n+1-\sigma_{1}}^{\beta}+p_{n} x_{n+1+\sigma_{2}}^{\beta}=0$
and $n \in N=\left\{n_{0}, n_{0}+1, \ldots ..\right\}, n_{0}$ is a nonnegative integer. Here Δ is the forward difference operator defined by $\Delta x_{n}=x_{n+1}-x_{n}$.
By a solution of equation (1.1), we mean a real sequence $\left\{x_{n}\right\}$ which is defined for all $n \geq n_{0}-\theta$ and satisfies equation (1.1) for all $n \in N$ where $\theta=\max \left\{\tau_{1}, \sigma_{1}\right\}$. A solution $\left\{x_{n}\right\}$ is said to be oscillatory if it is neither eventually positive nor eventually negative. Otherwise it is called non-oscillatory. A difference equation is said to be oscillatory if all of its solutions are oscillatory. Otherwise, it is non-oscillatory.
Throughout this paper, the following conditions are assumed to hold.
(H1) $\left\{a_{n}\right\}$ is a positive non-decreasing sequence such that $\sum_{n=n_{0}}^{\infty} \frac{1}{a_{n}}=\infty$.
(H2) $\left\{d_{n}\right\}$ is a positive non-decreasing sequence.
(H3) $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are positive real sequences for $n \geq n_{0}$.
(H4) β is the ratio of odd positive integers, $\tau_{1}, \tau_{2}, \sigma_{1}$ and σ_{2} are non-negative integers.
(H5) $\left\{b_{n}\right\},\left\{c_{n}\right\}$ are real sequences such that $0 \leq b_{n} \leq b$ and $0 \leq c_{n} \leq c$ with $b+c<1$.

II. Preliminary Lemmas

We need the following lemmas to prove the main results. For simplicity, we use the following notations:
$y_{n}=x_{n}+b_{n} x_{n-\tau_{1}}+c_{n} x_{n+\tau_{2}}, \quad R_{n}=Q_{n}+P_{n}$,
$Q_{n}=\min \left\{q_{n}, q_{n-\tau_{1}}, q_{n+\tau_{2}}\right\}, \quad P_{n}=\min \left\{p_{n}, p_{n-\tau_{1}}, p_{n+\tau_{2}}\right\}$.
$\eta_{n}=\left(\frac{d}{4}\right)^{\beta-1} \frac{k\left(n-\sigma_{1}\right)^{\beta}}{2^{\beta}} R_{n}$ for some $k \in(0,1)$ and $d>0$.

Lemma: 2.1

Assume $A \geq 0, B \geq 0, \beta \geq 1$ and $A, B \in R$. Then $(A+B) \leq 2^{\beta-1}\left(A^{\beta}+B^{\beta}\right)$.

Lemma: 2.2

Let $\left\{x_{n}\right\}$ be a positive solution of equation (1.1). Then there are only two cases for $n \geq n_{1} \in N$ sufficiently large:
(i) $y_{n}>0, \Delta y_{n}>0, \Delta\left(d_{n} \Delta y_{n}\right)>0, \Delta\left(a_{n}\left(d_{n} \Delta y_{n}\right)\right) \leq 0$.
(ii) $y_{n}>0, \Delta y_{n}<0, \Delta\left(d_{n} \Delta y_{n}\right)>0, \Delta\left(a_{n}\left(d_{n} \Delta y_{n}\right)\right) \leq 0$.

Proof.

Let $\left\{x_{n}\right\}$ be a positive solution of equation (1.1). Then we can find an integer $n_{1} \geq n_{0}$ such that $x_{n}>0, x_{n-\sigma_{1}}>0, x_{n+\sigma_{2}}>0, x_{n-\tau_{1}}>0, x_{n+\tau_{2}}>0$ for all $n \geq n_{1}$. Then $y_{n}>0$ for $n \geq n_{1}$.
From (1.1), we have
$\Delta\left(a_{n} \Delta\left(d_{n} \Delta y_{n}\right)\right)=-q_{n} x_{n+1-\sigma_{1}}^{\beta}-p_{n} x_{n+1+\sigma_{2}}^{\beta}<0$,
for $n \geq n_{1}$, which implies $\Delta\left(a_{n} \Delta\left(d_{n} \Delta y_{n}\right)\right)$ is strictly decreasing for $n \geq n_{1}$.
We claim $\Delta\left(d_{n} \Delta y_{n}\right)>0$ for $n \geq n_{1}$. If not, then there exists $n_{2} \geq n_{1}$ and $M<0$ such that
$a_{n} \Delta\left(d_{n} \Delta y_{n}\right) \leq a_{n_{2}} \Delta\left(d_{n_{2}} \Delta y_{n_{2}}\right) \leq M$,
for $n \geq n_{2}$.
Summing the last inequality from n_{2} to $n-1$, we get
$d_{n} \Delta y_{n} \leq d_{n_{2}} \Delta y_{n_{2}}+M \sum_{s=n_{2}}^{n-1} \frac{1}{a_{s}}$,
which implies $\Delta y_{n} \rightarrow-\infty$ as $n \rightarrow \infty$. Then there exists $n_{3} \geq n_{2}$ such that $\Delta y_{n}<0$ for $n \geq n_{2}$. This implies $y_{n} \rightarrow-\infty$ as $n \rightarrow \infty$, which is a contradiction and so $\Delta\left(d_{n} \Delta y_{n}\right)>0$ for $n \geq n_{1}$.
Hence the proof is complete.

Lemma 2.3.

Let $y_{n}>0, \Delta y_{n}>0, \Delta^{2} y_{n}>0, \Delta^{3} y_{n} \leq 0$ for all $n \geq N_{1} \in N$. Then for any $k \in(0,1)$ and for some integer N_{1}, one has $\frac{y_{n+1}}{\Delta y_{n}} \geq \frac{(n-N)}{2} \geq \frac{k n}{2}$, for $n \geq N_{1} \geq N$.

Proof.

Since
$\Delta y_{n}=\Delta y_{N}+\sum_{s=N}^{n-1} \Delta^{2} y_{n}$,
we have $\Delta y_{n} \geq(n-N) \Delta^{2} y_{n}$.
Summing the last inequality, we have $y_{n} \geq y_{N}+(n-N) \Delta y_{n}-y_{n}+y_{N}$
or
$y_{n+1} \geq \frac{(n-N)}{2} \Delta y_{n} \geq \frac{k n}{2} \Delta y_{n}$
for $n \geq N_{1} \geq N$. Hence the proof is completed.

Lemma: 2.4

Let $\left\{x_{n}\right\}$ be a positive solution of equation (1.1) and the corresponding y_{n} satisfies Lemma 2.2(ii). If
$\sum_{n=n_{0}}^{\infty}\left(\frac{1}{d_{n}} \sum_{s=n}^{\infty}\left(\frac{1}{a_{s}} \sum_{t=s}^{\infty}\left(q_{t}+p_{t}\right)\right)\right)=\infty$
holds, then $\lim _{n \rightarrow \infty} x_{n}=0$.

Proof.

Let $\left\{x_{n}\right\}$ be a positive solution of equation (1.1). Since $y_{n}>0$ and $\Delta y_{n}<0$, then $\lim _{n \rightarrow \infty} y_{n}=l \geq 0$ exists. We claim $l=0$. If not, then $l>0$.
Then for any $\in>0$, we have $l+\in>y_{n}$ eventually. Choose $0<\in<\frac{l(1-b-c)}{b+c}$.
Now

$$
\begin{aligned}
x_{n} & =y_{n}-b_{n} x_{n-\tau_{1}}-c_{n} x_{n+\tau_{2}} \\
& >l-(b+c) z_{n-\tau_{1}} \\
& >l-(b+c)(l+\in) \\
& =k(l+\in)>k y_{n},
\end{aligned}
$$

where $k=\frac{l-(b+c)(l+\in)}{(l+\in)}>0$.
Using the above inequality in (2.1), we obtain
$\Delta\left(a_{n}\left(d_{n} \Delta y_{n}\right)\right) \leq-q_{n} k^{\beta} y_{n+1-\sigma_{1}}^{\beta}-p_{n} k^{\beta} y_{n+1+\sigma_{2}}^{\beta} \leq-k^{\beta}\left(q_{n}+p_{n}\right) y_{n+1-\tau_{1}}^{\beta}$.
Summing the last inequality from n to ∞, we get
$-\Delta\left(d_{n} \Delta y_{n}\right) \leq(-k l)^{\beta}\left[\frac{1}{a_{n}} \sum_{s=n}^{\infty}\left(q_{s}+p_{s}\right)\right]$,
which implies
$\Delta\left(d_{n} \Delta y_{n}\right) \geq(k l)^{\beta}\left[\frac{1}{a_{n}} \sum_{s=n}^{\infty}\left(q_{s}+p_{s}\right)\right]$.
Summing again from n to ∞, we obtain
$-d_{n} \Delta y_{n} \geq(k l)^{\beta} \sum_{s=n}^{\infty} \frac{1}{a_{s}} \sum_{t=s}^{\infty}\left(q_{t}+p_{t}\right)$.
This implies
$-\Delta y_{n} \geq(k l)^{\beta} \frac{1}{d_{n}} \sum_{s=n}^{\infty}\left(\frac{1}{a_{s}} \sum_{t=s}^{\infty}\left(q_{t}+p_{t}\right)\right)$.
Summing the above inequality from n_{1} to ∞, we have
$y_{n} \geq(k l)^{\beta} \sum_{n=n_{1}}^{\infty}\left(\frac{1}{d_{n}} \sum_{s=n}^{\infty}\left(\frac{1}{a_{s}} \sum_{t=s}^{\infty}\left(q_{t}+p_{t}\right)\right)\right)$,
which contradicts (2.3). Therefore, $l=0$.
Also the inequality $0 \leq x_{n} \leq y_{n}$. This implies $\lim _{n \rightarrow \infty} x_{n}=0$ and hence the proof .

Theorem: 2.5

Assume that condition (2.3) holds, $\sigma_{1} \geq \tau_{1}$ and $\beta \geq 1$. If there exists a positive real sequence $\left\{\rho_{n}\right\}$ and an integer $N_{1} \in N$ with
$\lim _{n \rightarrow \infty} \sup \sum_{s=N_{1}}^{n-1}\left[\rho_{s} \eta_{s} \frac{d_{s-\sigma_{1}}}{d_{s+1-\sigma_{1}}}-\frac{\left(1+b^{\beta}+\frac{c^{\beta}}{2^{\beta-1}}\right) a_{s-\sigma_{1}}\left(\Delta \rho_{s}\right)^{2}}{4 \rho_{s}}\right]=\infty$
holds, then every solution $\left\{x_{n}\right\}$ of equation (1.1) oscillates or $\lim _{n \rightarrow \infty} x_{n}=0$.

Proof:

Let $\left\{x_{n}\right\}$ be a non-oscillatory solution of equation (1.1). Without loss of generality,
wemay assume that there exists an integer $N \geq n_{0}$ such that $x_{n}>0, x_{n-\sigma_{1}}>0$, $x_{n+\sigma_{2}}>0, x_{n-\tau_{1}}>0, x_{n+\tau_{2}}>0$ for all $n \geq N$. Then $y_{n}>0$ and (2.1) holds for all $n \geq N$. From (1.1) for all $n \geq N$, we have

$$
\begin{aligned}
& \Delta\left(a_{n} \Delta\left(d_{n} \Delta y_{n}\right)\right)+q_{n} x_{n+1-\sigma_{1}}^{\beta}+p_{n} x_{n+1+\sigma_{2}}^{\beta}+b^{\beta} \Delta\left(a_{n-\tau_{1}} \Delta\left(d_{n-\tau_{1}} \Delta y_{n-\tau_{1}}\right)\right) \\
& \quad+b^{\beta} q_{n-\tau_{1}} x_{n+1-\tau_{1}-\sigma_{1}}^{\beta}+b^{\beta} p_{n-\tau_{1}} x_{n+1-\tau_{1}+\sigma_{2}}^{\beta}+\frac{c^{\beta}}{2^{\beta-1}} \Delta\left(a_{n+\tau_{2}} \Delta\left(d_{n+\tau_{2}} \Delta y_{n+\tau_{2}}\right)\right)(\\
& \quad+\frac{c^{\beta}}{2^{\beta-1}} q_{n+\tau_{2}} x_{n+1+\tau_{2}-\sigma_{1}}^{\beta}+\frac{c^{\beta}}{2^{\beta-1}} p_{n+\tau_{2}} x_{n+1+\tau_{2}+\sigma_{2}}^{\beta}=0
\end{aligned}
$$

Using Lemma 2.1 in (2.5), we have
$\Delta\left(a_{n} \Delta\left(d_{n} \Delta y_{n}\right)\right)+b^{\beta} \Delta\left(a_{n-\tau_{1}} \Delta\left(d_{n-\tau_{1}} \Delta y_{n-\tau_{1}}\right)\right)+\frac{c^{\beta}}{2^{\beta-1}} \Delta\left(a_{n+\tau_{2}} \Delta\left(d_{n+\tau_{2}} \Delta y_{n+\tau_{2}}\right)\right)$
$+\frac{Q_{n}}{4^{\beta-1}} z_{n+1-\sigma_{1}}^{\beta}+\frac{P_{n}}{4^{\beta-1}} z_{n+1+\sigma_{2}}^{\beta} \leq 0$.
By Lemma 2.2, there are two cases for $\left\{y_{n}\right\}$. Assume case (i) holds for $n \geq N_{1} \geq N$.
Since $\Delta y_{n}>0$, we have $y_{n+\sigma_{2}} \geq y_{n-\sigma_{1}}$. Therefore, from (2.6), we have
$\Delta\left(a_{n} \Delta\left(d_{n} \Delta y_{n}\right)\right)+b^{\beta} \Delta\left(a_{n-\tau_{1}} \Delta\left(d_{n-\tau_{1}} \Delta y_{n-\tau_{1}}\right)\right)$
$+\frac{c^{\beta}}{2^{\beta-1}} \Delta\left(a_{n+\tau_{2}} \Delta\left(d_{n+\tau_{2}} \Delta y_{n+\tau_{2}}\right)\right)+\frac{R_{n}}{4^{\beta-1}} y_{n+1-\sigma_{1}}^{\beta} \leq 0$.
Define
$w_{1}(n)=\rho_{n} \frac{a_{n} \Delta\left(d_{n} \Delta y_{n}\right)}{d_{n-\sigma_{1}} \Delta y_{n-\sigma_{1}}}, \quad$ for $n \geq N_{1}$.
Then $w_{1}(n)>0$ for $n \geq N_{1}$. From (2.8), we can see that
$\Delta w_{1}(n)=\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{1}(n+1)+\rho_{n} \frac{\Delta\left(a_{n} \Delta\left(d_{n} \Delta y_{n}\right)\right)}{d_{n-\sigma_{1}} \Delta y_{n-\sigma_{1}}}-w_{1}(n+1) \frac{\rho_{n}}{\rho_{n+1}} \frac{\Delta\left(d_{n-\sigma_{1}} \Delta y_{n-\sigma_{1}}\right)}{d_{n-\sigma_{1}} \Delta y_{n-\sigma_{1}}}$.
By (2.1), we have $a_{n-\sigma_{1}} \Delta\left(d_{n-\sigma_{1}} \Delta y_{n-\sigma_{1}}\right) \geq a_{n+1} \Delta\left(d_{n+1} \Delta y_{n+1}\right)$. Therefore, from (2.8), we get
$\Delta w_{1}(n) \leq \frac{\Delta \rho_{n}}{\rho_{n+1}} w_{1}(n+1)+\rho_{n} \frac{\Delta\left(a_{n} \Delta\left(d_{n} \Delta y_{n}\right)\right)}{d_{n-\sigma_{1}} \Delta y_{n-\sigma_{1}}}-\frac{\rho_{n}}{\rho_{n+1}^{2}} \frac{w_{1}^{2}(n+1)}{a_{n-\sigma_{1}}}$.
Next, we define
$w_{2}(n)=\rho_{n} \frac{a_{n-\tau_{1}} \Delta\left(d_{n-\tau_{1}} \Delta y_{n-\tau_{1}}\right)}{d_{n-\sigma_{1}} \Delta y_{n-\sigma_{1}}}, \quad$ for $n \geq N_{1}$.
Then $w_{2}(n)>0$ for $n \geq N_{1}$. Note that $\sigma_{1} \geq \tau_{1}$.

Also from (2.1), we find that $a_{n-\sigma_{1}} \Delta\left(d_{n-\sigma_{1}} \Delta y_{n-\sigma_{1}}\right) \geq a_{n+1-\tau_{1}} \Delta\left(d_{n+1-\tau_{1}} \Delta y_{n+1-\tau_{1}}\right)$.
Then from (2.10), we have
$\Delta w_{2}(n) \leq \frac{\Delta \rho_{n}}{\rho_{n+1}} w_{2}(n+1)+\rho_{n} \frac{\Delta\left(a_{n-\tau_{1}} \Delta\left(d_{n-\tau_{1}} \Delta y_{n-\tau_{1}}\right)\right)}{d_{n-\sigma_{1}} \Delta y_{n-\sigma_{1}}}-\frac{\rho_{n}}{\rho_{n+1}^{2}} \frac{w_{2}^{2}(n+1)}{a_{n-\sigma_{1}}}$.
Also we define
$w_{3}(n)=\rho_{n} \frac{a_{n+\tau_{2}} \Delta\left(d_{n+\tau_{2}} \Delta y_{n+\tau_{2}}\right)}{d_{n-\sigma_{1}} \Delta y_{n-\sigma_{1}}}$, for $n \geq N_{1}$.
Then $w_{3}(n)>0$ for $n \geq N_{1}$.
By (2.1), we get $a_{n-\sigma_{1}} \Delta\left(d_{n-\sigma_{1}} \Delta y_{n-\sigma_{1}}\right) \geq a_{n+1+\tau_{2}} \Delta\left(d_{n+1+\tau_{2}} \Delta y_{n+1+\tau_{2}}\right)$.
From (2.12), we can find that
$\Delta w_{3}(n) \leq \frac{\Delta \rho_{n}}{\rho_{n+1}} w_{3}(n+1)+\rho_{n} \frac{\Delta\left(a_{n+1+\tau_{2}} \Delta\left(d_{n+1+\tau_{2}} \Delta y_{n+1+\tau_{2}}\right)\right)}{d_{n-\sigma_{1}} \Delta y_{n-\sigma_{1}}}-\frac{\rho_{n}}{\rho_{n+1}^{2}} \frac{w_{3}^{2}(n+1)}{a_{n-\sigma_{1}}}$.
Therefore, (2.9), (2.11) and (2.13) imply that

$$
\begin{align*}
\Delta w_{1}(n)+b^{\beta} \Delta w_{2}(n)+\frac{c^{\beta}}{2^{\beta-1}} \Delta w_{3}(n) \leq & -\rho_{n} \frac{R_{n}}{4^{\beta-1}} \frac{y_{n+1-\sigma_{1}}^{\beta}}{d_{n-\sigma_{1}} \Delta y_{n-\sigma_{1}}} \\
& +\left(\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{1}(n+1)-\frac{\rho_{n}}{\rho_{n+1}^{2}} \frac{w_{1}^{2}(n+1)}{a_{n-\sigma_{1}}}\right) \\
& +b^{\beta}\left(\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{2}(n+1)-\frac{\rho_{n}}{\rho_{n+1}^{2}} \frac{w_{2}^{2}(n+1)}{a_{n-\sigma_{1}}}\right) \tag{2.14}\\
& +\frac{c^{\beta}}{2^{\beta-1}}\left(\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{3}(n+1)-\frac{\rho_{n}}{\rho_{n+1}^{2}} \frac{w_{3}^{2}(n+1)}{a_{n-\sigma_{1}}}\right)
\end{align*}
$$

Since $\left\{a_{n}\right\}$ is non-decreasing and $\Delta^{2} y_{n}>0$ for $n \geq N_{1}$, we have $\Delta^{3} y_{n} \leq 0$ for $n \geq N_{1}$.
Then by Lemma 2.3, we find for any $k \in(0,1)$ and n for sufficiently large
$\frac{y_{n+1-\sigma_{1}}}{\Delta y_{n-\sigma_{1}}} \geq \frac{k\left(n-\sigma_{1}\right)}{2} \frac{d_{n-\sigma_{1}}}{d_{n+1-\sigma_{1}}} \quad$ (by 2.2)
Since $y_{n}>0, \Delta y_{n}<0, \Delta\left(d_{n} \Delta y_{n}\right)>0$ for $n \geq N_{1}$, we have
$y_{n}=y_{N_{1}}+\sum_{s=N_{1}}^{n-1} \Delta y_{s} \geq\left(n-N_{1}\right) \Delta y_{N_{1}} \geq \frac{l n}{2}$,
for some $l>0$ and n for sufficiently large. From (2.15), (2.16) and $\beta \geq 1$, we have
$\frac{y_{n+1-\sigma_{1}}^{\beta}}{\Delta y_{n-\sigma_{1}}} \geq \frac{l^{\beta-1}\left(n-\sigma_{1}\right)}{2^{\beta}} \frac{d_{n-\sigma_{1}}}{d_{n+1-\sigma_{1}}}$.

Combining the inequality (2.17) with (2.14) and summing the resulting inequality from $N_{2} \geq N_{1}$ to $n-1$, we obtain

$$
\sum_{s=N_{1}}^{n-1}\left[\rho_{s} \eta_{s} \frac{d_{s-\sigma_{1}}}{d_{s+1-\sigma_{1}}}-\frac{\left(1+b^{\beta}+\frac{c^{\beta}}{2^{\beta-1}}\right) a_{s-\sigma_{1}}\left(\Delta \rho_{s}\right)^{2}}{4 \rho_{s}}\right] \leq w_{1}\left(N_{2}\right)+b^{\beta} w_{2}\left(N_{2}\right)+\frac{c^{\beta}}{2^{\beta-1}} w_{3}\left(N_{2}\right)
$$

Taking lim sup for the above inequality, we get a contradiction to (2.4).
Assume that Lemma 2.2(ii) holds. Then by Lemma 2.4, we can obtain $\lim _{n \rightarrow \infty} x_{n}=0$.
Hence the proof is complete.
Let $\rho_{n}=n$ and $\beta=1$. Then from Theorem 2.5, we obtain the following corollary.

Corollary 2.6.

Assume that condition (2.3) holds and $\sigma_{1} \geq \tau_{1}$. If there is an integer $N_{1} \in \mathrm{~N}$ with
$\limsup _{n \rightarrow \infty} \sum_{s=N_{1}}^{n-1}\left[s \eta_{s} \frac{d_{s-\sigma_{1}}}{d_{s+1-\sigma_{1}}}-\frac{(1+b+c) a_{s-\sigma_{1}}}{4 s}\right]=\infty$
holds, then every solution $\left\{x_{n}\right\}$ of the equation (1.1) oscillates or $\lim _{n \rightarrow \infty} x_{n}=0$.

Theorem 2.7.

Assume that condition (2.3) holds, $\sigma_{1} \leq \tau_{1}$ and $\beta \geq 1$. If there exists a positive real sequence $\left\{x_{n}\right\}$ and an integer $N_{1} \in \mathrm{~N}$ with
$\lim _{n \rightarrow \infty} \sup \sum_{s=N_{1}}^{n-1}\left[\rho_{s} \eta_{s} \frac{d_{s-\tau_{1}}}{d_{s+1-\tau_{1}}}-\frac{\left(1+b^{\beta}+\frac{c^{\beta}}{2^{\beta-1}}\right) a_{s-\sigma_{1}}\left(\Delta \rho_{s}\right)^{2}}{4 \rho_{s}}\right]=\infty$,
holds, then every solution $\left\{x_{n}\right\}$ of the equation (1.1) oscillates or $\lim _{n \rightarrow \infty} x_{n}=0$.

Proof.

Proceeding as in the proof of Theorem 2.5, we get (2.6). Assume Lemma 2(i) holds for all $n \geq N_{1} \geq N$. Then we obtain (2.7). Now consider the following transformations

$$
\begin{aligned}
& w_{1}(n)=\rho_{n} \frac{a_{n} \Delta\left(d_{n} \Delta y_{n}\right)}{d_{n-\tau_{1}} \Delta y_{n-\tau_{1}}}, \quad \text { for } n \geq N_{1} . \\
& w_{2}(n)=\rho_{n} \frac{a_{n-\tau_{1}} \Delta\left(d_{n-\tau_{1}} \Delta y_{n-\tau_{1}}\right)}{d_{n-\tau_{1}} \Delta y_{n-\tau_{1}}}, \quad \text { for } n \geq N_{1} . \\
& w_{3}(n)=\rho_{n} \frac{a_{n+\tau_{2}} \Delta\left(d_{n+\tau_{2}} \Delta y_{n+\tau_{2}}\right)}{d_{n-\tau_{1}} \Delta y_{n-\tau_{1}}}, \quad \text { for } n \geq N_{1} .
\end{aligned}
$$

and as in the proof of Theorem 2.5, we can get

$$
\begin{align*}
\Delta w_{1}(n)+b^{\beta} \Delta w_{2}(n)+\frac{c^{\beta}}{2^{\beta-1}} \Delta w_{3}(n) \leq & -\rho_{n} \frac{R_{n}}{4^{\beta-1}} \frac{y_{n+1-\tau_{1}}^{\beta}}{d_{n-\tau_{1}} \Delta y_{n-\tau_{1}}} \\
& +\left(\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{1}(n+1)-\frac{\rho_{n}}{\rho_{n+1}^{2}} \frac{w_{1}^{2}(n+1)}{a_{n-\tau_{1}}}\right) \\
& +b^{\beta}\left(\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{2}(n+1)-\frac{\rho_{n}}{\rho_{n+1}^{2}} \frac{w_{2}^{2}(n+1)}{a_{n-\tau_{1}}}\right) \tag{2.19}
\end{align*}
$$

By Lemma 2.3, for any $k \in(0,1)$, we find
$\frac{y_{n+1-\sigma_{1}}}{\Delta y_{n-\tau_{1}}} \geq \frac{k\left(n-\tau_{1}\right)}{2} \frac{d_{n-\tau_{1}}}{d_{n+1-\tau_{1}}}$
and $\Delta\left(d_{n} \Delta y_{n}\right)>0$ for $n \geq N_{2}$. Then proceeding as in the proof of Theorem 2.1, we get

$$
\sum_{s=N_{2}}^{n-1}\left[\rho_{s} \eta_{s} \frac{d_{s-\tau_{1}}}{d_{s+1-\tau_{1}}}-\frac{\left(1+b^{\beta}+\frac{c^{\beta}}{2^{\beta-1}}\right) a_{s-\sigma_{1}}\left(\Delta \rho_{s}\right)^{2}}{4 \rho_{s}}\right] \leq w_{1}\left(N_{2}\right)+b^{\beta} w_{2}\left(N_{2}\right)+\frac{c^{\beta}}{2^{\beta-1}} w_{3}\left(N_{2}\right)
$$

Taking lim sup on both sides of the last inequality, we obtain a contradiction with (2.18).
Assume that case(ii) holds. Then by Lemma 2.4, we obain $\lim _{n \rightarrow \infty} x_{n}=0$ and hence the proof.
Let $\rho_{n}=n$ and $\beta=1$. Then we get the following corollary.

Corollary 2.8.

Assume that condition (2.3) holds and $\sigma_{1} \leq \tau_{1}$. If
$\limsup _{n \rightarrow \infty} \sum_{s=N}^{n-1}\left[s \eta_{s} \frac{d_{s-\tau_{1}}}{d_{s+1-\tau_{1}}}-\frac{(1+b+c) a_{s-\tau_{1}}}{4 s}\right]=\infty$
holds for all sufficiently large N , then every solution $\left\{x_{n}\right\}$ of the equation (1.1) oscillates or $\lim _{n \rightarrow \infty} x_{n}=0$.

III. Example

Example 3.1.

Consider the third order difference equation
$\Delta^{3}\left(x_{n}+\frac{1}{4} x_{n}+\frac{1}{4} x_{n+1}\right)+\left(\frac{16}{3}\right) 9^{n} x_{n+1}^{3}+(144) 9^{n} x_{n+2}^{3}=0$.
Let $a_{n}=d_{n}=1, b_{n}=c_{n}=\frac{1}{4}, q_{n}=\left(\frac{16}{3}\right) 9^{n}, p_{n}=(144) 9^{n}$
and $\tau_{1}=0, \tau_{2}=1, \sigma_{1}=0, \sigma_{2}=1$.
Then condition (2.3) holds and condition (2.4) also holds. Therefore all conditions of Theorem 2.5 hold, and hence every solution of equation (3.1) is oscillatory or tends to zero as $n \rightarrow \infty$. One such solution is $x_{n}=\frac{1}{3^{n}}$.

References

[1]. R. P. Agarwal, P. J. Y. Wong, Advanced Topics in Difference Equations, Kluwer Academic Publishers, Dordrecht, 1997.
[2]. R. P. Agarwal, Martin Bohner, Said R. Grace, DonalO'Regan, Discrete Oscillation Theory, Hindawi, New York, 2005.
[3]. R. P. Agarwal, Said R. Grace, DonalO'Regan, Oscillation Theory for Difference and Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 2000.
[4]. R. P. Agarwal, Difference Equations and Inequalities - Theory, Methods and Applications, 2nd edition, Marcel Dekker, New York, 2000.
[5]. R. P. Agarwal, S. R. Grace, Oscillation of certain third order difference equations, Comp. Math.Appl, 42(2001), 379-384.
[6]. R. P. Agarwal, S. R. Grace, E. A. Bohner, On the oscillation of higher order neutral difference equations of mixed type, Dynam. Syst.Appl, 11, 2002, 459-470.
[7]. S. R. Grace, Oscillation of certain neutral difference equations of mixed type, J Math. Anal.Appl, 224(1998), 241-254.
[8]. S. Kaleeswari, B. Selvaraj and M. ThiyagarajanA New Creation of Mask From Difference Operator to Image Analysis, Journal of Theoretical and Applied Information Technology, Vol. 69(1), 2014, pp. 211-218.
[9]. S. Kaleeswari, B. Selvaraj and M. Thiyagarajan Removing Noise Through a Nonlinear Difference Operator, International Journal of Applied Engineering Research, Vol.9(21), 2014, pp. 5100-5106.
[10]. W. G. Kelley, A. C. Peterson, Difference Equations an Introduction with Applications, Academic Press, Boston, 1991.
[11]. B. Selvaraj, P. Mohankumar and V. Ananthan, Oscillatory and Non-oscillatory Behavior of Neutral Delay Difference Equations, International Journal of Nonlinear Science, Vol. 13 (2012), No.4, pp. 472-474.
[12]. B. Selvaraj and G. GomathiJawahar, Oscillation of Neutral Delay Difference Equations with Positive and Negative Coefficients, Far East Journal of Mathematical Sciences (FJMS), Vol.41, Number 2, 217-231 (2010).
[13]. B. Selvaraj and I. Mohammed Ali Jaffer, Oscillation Theorems of Solutions for Certain Third Order Functional Difference Equations with Delay, Bulletin of Pure and Applied Sciences, Volume 29E, Issue 2 (2010), P. 207-216.
[14]. B. Selvaraj and S. Kaleeswari, Oscillation of Solutions of Certain Nonlinear Difference Equations, Progress in Nonlinear Dynamics and Chaos, Vol. 1, 2013, 34-38.
[15]. B. Selvaraj and S. Kaleeswari, Oscillation Theorems for Certain Fourth Order Nonlinear Difference Equations, International Journal of Mathematics Research, Volume 5, Number 3 (2013), pp. 299-312.
[16]. B. Selvaraj and S. Kaleeswari, Oscillation of Solutions of second Order Nonlinear Difference Equations, Bulletin of Pure and Applied Sciences, Volume 32 E (Math and Stat.) Issue (No.1), 2013, P. 107-117.
[17]. E. Thandapani and B. S. Lalli Oscillations Criteria for a Second Order Damped Difference Equations, Appl.math.Lett,8(1995)(1):16.
[18]. E. Thandapani,I. Gyori and B. S. Lalli An Application of Discrete Inequality to Second Order Non-linear Oscillation, J.Math.Anal.Appl.,186(1994):200-208.
[19]. E. Thandapani and S. Pandian On The Oscillatory Behaviour of Solutions of Second Order Non-linear Difference Equations, ZZA13(1994):347-358.
[20]. E. Thandapani and S. Pandian Oscillation Theorem for Non- linear Second Order Difference Equations with a Nonlinear Damping term, Tamkang J.math, 26(1995):49-58.
[21]. E. Thandapani and B. Selvaraj, Oscillatory and Non-oscillatory Behaviour of Fourth order Quasi-linear Difference Equation, Far East Journal of Mathematical Sciences, 17(2004)(3):287-307.
[22]. E. Thandapani and B. Selvaraj, Oscillatory Behaviour of Solutions of Three dimensional Delay Difference System, RadoviMathematicki, 13(2004):39-52.
[23]. E. Thandapani and B. Selvaraj, Existence and Asymptotic Behavior of Non Oscillatory Solutions of Certain Nonlinear Difference Equations, Far East Journal of Mathematical Sciences (FJMS), 14 (2004), 9-25.
[24]. E. Thandapani and B. Selvaraj, Behavior of oscillatory and non-oscillatory Solutions of Certain Fourth Order Quasilinear Difference Equations, The Mathematics Education,Vol XXXIX(2005)(4):214-232.

Department of Science and Humanities, Nehru Institute of Engineering andTechnology, Coimbatore, Tamil Nadu, India. E-mail address: professorselvaraj@gmail.com

Department of Science and Humanities, Nehru Institute of Engineering andTechnology, Coimbatore, Tamil Nadu, India. E-mail address: kaleesdesika@gmail.com

