On Scalar Pseudo Commutativity of Algebras over a Commutative Ring

G.Gopalakrishnamoorthy ${ }^{1}$, R.veega ${ }^{2}$ and S.Geetha ${ }^{3}$
${ }^{1}$ Principal, Sri Krishnasamy Arts and Science college, Sattur - 626 203Tamilnadu. India.
${ }^{2}$ Asst. Professor in Mathematics, Dr. G. R. Damodaran College of Education, Coimbatore, Tamilnadu, India.
${ }^{3}$ Dept. of Mathematics, Pannai College of Eng. \& Tech, Sivagangai, Tamilnadu, India.

Abstract

The concept of scalar commutativity defined in an algebra over a ring is mixed with the concept of pseudo commutativity defined in a near - ring to define the new concept of scalar pseudo commutativity in an algebra over a ring and many interesting results are obtained.

I. Introduction

Let A be an algebra (not necessarily associative) over a commutative ring R. A is called scalar commutative if for each $x, y \in A$, there exists $\alpha \in R$ depending on x and y such that $x y=\alpha x y$. Rich [8] proved that if A is scalar commutative over a field F , then A is either commutative or anti - commutative. Koh, Luh and Putcha [6] proved that if A is scalar commutative with identity 1 and if R is a Principal ideal domain, then A is commutative. A near ring N is said to be pseudo commutative [9] if $x y z=z y x$ for all $x, y, z \in N$. In this paper we define scalar pseudo commutativity in an algebra A over a commutative ring R and prove many interesting results.

II. Preliminaries

2.1 Definition [9]

Let N be a near ring. N is said to be pseudo commutative if $\mathrm{xyz}=\mathrm{zyx}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{N}$.

2.2Definition

Let N be a near ring N is said to be pseudo anti - commutative if $x y z=-z y x$ for all $x, y, z \in N$.

2.3 Definition [8]

Let A be an algebra (not necessarily associative) over a commutative ring R. A is called scalar commutative if for each $\mathrm{x}, \mathrm{y} \in \mathrm{A}$, there exists a scalar $\alpha=\alpha(\mathrm{x}, \mathrm{y}) \in \mathrm{R}$ depending on x and y such that $\mathrm{xy}=\alpha \mathrm{xy}$. It is said to be scalar anti - commutative if $x y=-\alpha y x$.

2.4 Lemma [5]

Let N be a distributive near - ring. If $\mathrm{xyz}= \pm \mathrm{zyx}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{N}$, then N is either pseudo commutative or pseudo anti - commutative.

III. Main Results

3.1 Definition

Let A be an algebra over a commutative ring R . A is said to be scalar pseudo commutative if for every $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$, there exists a scalar $\alpha=\alpha(x, y, z) \in R$ depending on $x, y, z \in A$ such that $x y z=\alpha z y x .$. It is said to be scalar pseudo anti - commutative if $x y z=-\alpha z y x$.

3.2 THEOREM:

Let A be an algebra (not necessarily associative) over a field F. If A is scalar pseudo commutative, then A is either pseudo commutative or pseudo anti-commutative.

Proof:

Suppose $\mathrm{xyz}=\mathrm{zyx}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$, there is nothing to prove
Suppose not, we will prove that $x y z=-z y x$ for all $x, y, z \in A$,
We shall first prove that if $x, y, z \in A$ such that $x y z \neq z y x$, then $x y x=z y z=0$
Let $x, y, z \in A$ such that $x y z \neq z y x$.
Since A is scalar pseudo commutative, there exist scalars $\alpha=\alpha(x, y, z) \in F$ and $\beta=\beta(x+z, y, z) \in F$ such that
$\mathrm{xyz}=\alpha \mathrm{zyx}$
$(x+z) y z=\beta z y(x+z)$
(1) - (2) gives

$$
\begin{equation*}
x y z-x y z-z y z=\alpha z y x-\beta z y x-\beta z y z \tag{2}
\end{equation*}
$$

$(\beta-1) \mathrm{zyz}=(\alpha-\beta) \mathrm{zyx}$

Now zyx $\neq 0$ for if zyx $=0$ then from (1)
$x y z=0$ and so $x y z=z y x$, a contradiction to our assumption that $x y z \neq z y x$.
Also $\beta \neq 1$ for if $\beta=1$, then from (3) we get $\alpha-\beta=0$. Hence $\alpha=\beta=1$.
Then from (1) we get $x y z=z y x$, again a contradiction.
From (3), we get, $\mathrm{zyz}=\frac{\alpha-\beta}{\beta-1} \mathrm{zyx}$

> That is, zyz $=\gamma z y x$ for some $\gamma \in F \ldots \ldots$ Similarly xyx $=\delta$ zyx for some $\delta \in F \ldots \ldots \ldots \ldots$ Now, corresponding to each choice of $\alpha_{1,}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in F$, th $=\eta\left(\alpha_{3} x+\alpha_{4} z\right) y\left(\alpha_{1} x+\alpha_{2} z\right)$ $\left(\alpha_{1} x y+\alpha_{2} z y\right)\left(\alpha_{3} x+\alpha_{4} z\right)=\eta\left(\alpha_{3} x y+\alpha_{4} z y\right)\left(\alpha_{1} x+\alpha_{2} z\right)$

Now, corresponding to each choice of $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in F$, there exists $\eta \in F$ such that $\left(\alpha_{1} X+\alpha_{2} z\right)$ y $\left(\alpha_{3} x\right.$ $\left.+\alpha_{4} \mathrm{z}\right)=\eta\left(\alpha_{3} \mathrm{X}+\alpha_{4} \mathrm{z}\right) \mathrm{y}\left(\alpha_{1} \mathrm{x}+\alpha_{2} \mathrm{z}\right)$
$\alpha_{1} \alpha_{3} \mathrm{xyx}+\alpha_{1} \alpha_{4} \mathrm{xyz}+\alpha_{2} \alpha_{3} \mathrm{zyx}+\alpha_{2} \alpha_{4} \mathrm{zyz}=\eta\left(\alpha_{3} \alpha_{1} \mathrm{xyx}+\alpha_{3} \alpha_{2} \mathrm{xyz}+\alpha_{4} \alpha_{1} \mathrm{zyx}+\alpha_{4} \alpha_{2} \mathrm{zyz}\right)$
$\alpha_{1} \alpha_{3} \delta z y x+\alpha_{1} \alpha_{4} \mathrm{xyz}+\alpha_{2} \alpha_{3} \mathrm{zyx}+\alpha_{2} \alpha_{4} \gamma \mathrm{zyx}$

$$
\begin{equation*}
=\eta\left(\alpha_{3} \alpha_{1} \delta z y x+\alpha_{3} \alpha_{2} x y z+\alpha_{4} \alpha_{1} z y x+\alpha_{4} \alpha_{2} \gamma z y x\right) \tag{6}
\end{equation*}
$$

(using (4)
and
$\left(\alpha_{1} \alpha_{3} \delta \alpha^{-1}+\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3} \alpha^{-1}+\alpha_{2} \alpha_{4} \gamma \alpha^{-1}\right) \mathrm{xyz}$

$$
\begin{equation*}
=\eta\left(\alpha_{3} \alpha_{1} \delta+\alpha_{3} \alpha_{2} \alpha+\alpha_{4} \alpha_{1}+\alpha_{4} \alpha_{2} \gamma\right) \mathrm{zyx} \tag{5}
\end{equation*}
$$

(using (1))
Taking $\alpha_{3}=0, \alpha_{4}=\alpha_{2}=1, \alpha_{1}=-\gamma$, the RHS of (6) is Zero. Where as the LHS of (6) becomes

$$
\left(-\gamma+\gamma \alpha^{-1}\right) \mathrm{xyz}=0
$$

$$
\text { Ie., } \gamma\left(\alpha^{-1}-1\right) \mathrm{xyz}=0
$$

Since $\mathrm{xyz} \neq 0$ and $\alpha \neq 1$, We get $\gamma=0$.
Hence from (4), we get $\mathrm{zyz}=0$
Also taking $\alpha_{2}=0, \alpha_{3}=\alpha_{1}=1, \alpha_{4}=-\delta$, the RHS of (6) is Zero. Whereas the LHS of (6) becomes

$$
\begin{equation*}
\left(\delta \alpha^{-1}-\delta\right) \mathrm{xyz}=0 \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\text { ie., } \delta\left(\alpha^{-1}-1\right) x y z=0 \tag{8}
\end{equation*}
$$

Since $\mathrm{xyz} \neq 0$ and $\alpha \neq 1$, We get $\delta=0$.
Hence from (5), we get $x y x=0$
Now (6) becomes,
$\alpha_{1} \alpha_{4} \mathrm{xyz}+\alpha_{2} \alpha_{3} \mathrm{zyx}=\eta\left(\alpha_{3} \alpha_{2} \mathrm{xyz}+\alpha_{4} \alpha_{1} \mathrm{zyx}\right)$
$\alpha_{1} \alpha_{4} \mathrm{xyz}+\alpha_{2} \alpha_{3} \alpha^{-1} \mathrm{xyz}=\eta\left(\alpha_{3} \alpha_{2} \mathrm{xyz}+\alpha_{4} \alpha_{1} \alpha^{-1} \mathrm{xyz}\right) \quad \operatorname{sing}$ (1)
$\left(\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3} \alpha^{-1}\right) \mathrm{xyz}=\eta\left(\alpha_{3} \alpha_{2}+\alpha_{4} \alpha_{1} \alpha^{-1}\right) \mathrm{xyz}$
This is true for all choice of $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in F$.
Taking $\alpha_{1}=\alpha_{3}=\alpha_{4}=1$ and $\alpha_{2}=-\alpha^{-1}$ the RHS of (9) is Zero.
The LHS of (9) becomes

$$
\left(1-\left(\alpha^{-1}\right)^{2}\right) \mathrm{xyz}=0
$$

Since $x y z \neq 0,1-\left(\alpha^{-1}\right)^{2}=0$. Hence $\alpha= \pm 1$
Since $\alpha \neq 1$, we get $\alpha=-1$.
Hence $\mathrm{xyz}=-\mathrm{zyx}$ for $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$
Thus A is either Pseudo commutative or Pseudo anti commutative.

3.3 Lemma

Let A be an algebra (not necessarily associative) over a commutative ring R. Suppose A is scalar pseudo commutative. Then for all $x, y, z \in A, \alpha \in R, \alpha x y z=0$ iff $\alpha z y x=0$.Also $x y z=0$ iff $z y x=0$

Proof:

Let $x, y, z \in A$ and $\alpha \in R$ such that $\alpha x y z=0$. Since A is scalar pseudo commutative there exists $\beta=\beta(z, y, \alpha x)$ $\epsilon \mathrm{R}$ such that

$$
\begin{aligned}
z y(\alpha x)= & \beta(\alpha x) y z=\beta \alpha x y z=0 \\
& \text { ie. } \alpha z y x=0
\end{aligned}
$$

Similarly if $\alpha z y x=0$, then there exists $\gamma=\gamma(\alpha x, y, z) \in R$ such that
$\alpha x y z=\gamma z y(\alpha x)=\gamma \alpha z y x=0$
Thus $\alpha x y z=0$ iff $\alpha z y x=0$.
Assume $x y z=0$. Since A is pseudo commutative there exists
$\delta=\delta(\mathrm{z}, \mathrm{y}, \mathrm{x}) \in \mathrm{R}$ such that $\mathrm{zyx}=\delta \mathrm{xyz}=0$.
Similarly if zyx , there exists $\gamma=\gamma(\mathrm{x}, \mathrm{y}, \mathrm{z})$ such that $\mathrm{xyz}=\gamma \mathrm{zyx}=0$
Then $\mathrm{xyz}=0$ iff $\mathrm{zyx}=0$.

3.4 LEMMA

Let A be an algebra over a commutative ring R. Suppose A is scalar pseudo commutative. Let $x, y, z, u \in A, \alpha$,$\beta \in R$ such that $u y x=x y u$, and $z y x=\alpha x y z$ and $(z+u) y x=\beta x y(z+u)$. Then $(u-\alpha u) y(x-\beta x)=0$.

Proof:

```
Let \(x, y, z, u \in A\)
Given zyx = \(\alpha x y z\)
\((z+u) y x=\beta x y(z+u)\)
uyx = xyu (3)
\(z y x+u y x=\beta x y z+\beta x y u\)
\(\alpha x y z+u y x=\beta x y z+\beta x y u\) (using (1))
\(\alpha x y z+x y u=` \beta x y z+\beta x y u\) (using (3))
\(x y(\alpha z+u-\beta z-\beta u)=0\)
```

From (2), we get

By lemma 3.3, we get
$(\alpha z+u-\beta z-\beta u) y x=0$
$\alpha z y x+u y x-\beta z y x-\beta u y x=0$
$\alpha z y x+u y x-\alpha \beta x y z-\beta u y x=0$
From (2), we get
$z y x+u y x-\beta x y z-\beta x y u=0$
Multiplying by α
$\alpha \mathrm{zyx}+\alpha \mathrm{uyx}-\alpha \beta \mathrm{xyz}-\alpha \beta \mathrm{xyu}=0$
From (4) and (5), we get
uyx $-\beta$ uyx $-\alpha$ uyx $+\alpha \beta$ xyu $=0$
uyx $-\alpha u y x-\beta$ uyx $+\alpha \beta$ uyx $=0($ using (3))
$(u-\alpha u) y x-(u-\alpha u) \beta y x=0$
$(u-\alpha u)(y x-\beta y x)=0$
$(u-\alpha u) y(x-\beta x)=0$
Hence proved.

3.5 Corollary:

Taking $u=x$, we get
$(x-\alpha x) y(x-\beta x)=0$

3.6 Lemma:

Let A be an algebra over a commutative ring R. Suppose A has no zero divisors. If A is scalar pseudo commutative, then A is pseudo commutative.

Proof:

Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$, since A is scalar pseudo commutative, there exists scalars
$\alpha=\alpha(z, y, x) \in R$ and $\beta=\beta(z+x, y, x) \in R$ such that

$$
\begin{equation*}
\mathrm{zyx}=\alpha \mathrm{xyz} \tag{1}
\end{equation*}
$$

and $\quad(\mathrm{z}+\mathrm{x}) \mathrm{yx}=\beta \mathrm{xy}(\mathrm{z}+\mathrm{x})$
From (2), we get

$$
\begin{align*}
& \mathrm{zyx}+\mathrm{xyx}=\beta \mathrm{xyz}+\beta \mathrm{xyx} \tag{2}\\
& \alpha \mathrm{xyz}+\mathrm{xyx}=\beta \mathrm{xyz}+\beta \mathrm{xyx}(\operatorname{using}(1)) \\
& \mathrm{xy}(\alpha z+\mathrm{x}-\beta \mathrm{z}-\beta \mathrm{x})=0
\end{align*}
$$

By lemma 3.3, we get

$$
\begin{align*}
& (\alpha z+x-\beta z-\beta x) y x=0 \\
& \alpha z y x+x y x-\beta z y x-\beta x y x=0 \\
& \alpha z y x+x y x-\alpha \beta x y z-\beta x y x=0 \tag{3}
\end{align*}
$$

Also from (2), we get

$$
z y x+x y x=\beta x y z+\beta x y x
$$

Multiplying by α

$$
\begin{equation*}
\alpha \mathrm{zyx}+\alpha \mathrm{xyx}-\alpha \beta \mathrm{xyz}-\alpha \beta \mathrm{xyx}=0 \tag{4}
\end{equation*}
$$

$\alpha \mathrm{zyx}-\alpha \beta \mathrm{xyx}=\alpha \beta \mathrm{xyz}-\alpha \mathrm{xyx}$
From (3) and (4), we get

$$
\begin{aligned}
& \mathrm{xyx}-\beta \mathrm{xyx}+\alpha \beta \mathrm{xyx}-\alpha \mathrm{xyx}=0 \\
& \mathrm{xyx}-\alpha \mathrm{xyx}-\beta \mathrm{xyx}+\alpha \beta \mathrm{xyx}=0
\end{aligned}
$$

$$
\begin{align*}
& (x-\alpha x) y x-\beta(x-\alpha x) y x=0 \\
& (x-\alpha x) y x-(x-\alpha x) \beta y x=0 \\
& \text { i.e, }(x-\alpha x)(y x-\beta y x)=0 \\
& \text { i.e, }(x-\alpha x) y(x-\beta x)=0 \ldots \tag{5}
\end{align*}
$$

Since A has no zero divisors, $x=\alpha x$ or $x=\beta x$.
If $\mathrm{x}=\alpha \mathrm{x}$, then from (1), we get $\mathrm{zyx}=\mathrm{xyz}$
If $x=\beta x$, then from (2), we get

$$
\begin{aligned}
& (\mathrm{z}+\mathrm{x}) \mathrm{yx}=\mathrm{xy}(\mathrm{z}+\mathrm{x}) \\
& \mathrm{zyx}+\mathrm{xyx}=\mathrm{xyz}+\mathrm{xyx} \\
& \text { ie., } \mathrm{zyx}=\mathrm{xyz}
\end{aligned}
$$

Thus A is pseudo commutative.
Hence proved.

3.7 Definition:

Let R be any ring and $x, y, z \in R$. We define $x y z-z y x$ as the pseudo commutator of x, y, z.

3.8 Theorem:

Let A be an algebra over a commutative of ring R. Let A be scalar pseudo commutative. If A has an identity, then the square of every pseudo commutator is zero ie., $(x y z-z y x)^{2}=0$ for all $x, y, z \in A$

Proof:

Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$. since A is pseudo commutative, there exists scalars

$$
\alpha=\alpha(\mathrm{z}, \mathrm{y}, 1) \in \mathrm{R} \text { and } \beta=(\mathrm{z}+1, \mathrm{y}, 1) \in \mathrm{R} \text { such that }
$$

$$
z y .1=\alpha 1 . y z
$$

$$
\begin{equation*}
z y=\alpha y z \ldots \ldots \ldots \ldots \ldots . .(1) \tag{2}
\end{equation*}
$$

and $\quad(z+1) y .1=\quad \beta 1 . y(z+1)$ $(z+1) y=\beta y(z+1)$
From (2), we get
$z y+y=\beta y z+\beta y$
$\alpha y z+y-\beta y z-\beta y=0(\operatorname{using}(1))$
$1 . y(\alpha z+1-\beta z-\beta)=0$
Hence proved.

3.9 Definition:

Let R be a P.I.D and A be an algebra over R. Let a $\in A$. Then the order of a denoted as $O(a)$ is defined to be the generator of the ideal $\mathrm{I}=\{\alpha \in \mathrm{R} / \alpha \mathrm{a}=0\} . \mathrm{O}(\mathrm{a})$ is unique upto associates and $\mathrm{O}(\mathrm{a})=1$ if and only if $\mathrm{a}=0$.

3.10 Lemma :

Let A be an algebra with identity over a principal ideal domain R. If A is scalar pseudo commutative, y
ϵR and $O(y)=0$, then y is in the center of A.

Proof :

Let $\mathrm{y} \in \mathrm{A}$ such that $\mathrm{O}(\mathrm{y})=0$. Let $\mathrm{x} \in \mathrm{A}$ be any element.
Now there exist scalars $\alpha=\alpha(1, y, x) \in R$ and $\beta=\beta(x+1, y, 1) \in R$ such that $1 . y x=\alpha x y=1$. That is $y x=\alpha x y$
\qquad
$(x+1) y .1=\beta .1 \cdot y(x+1)$. That is $(x+1) y=\beta y(x+1)$
From (2) weget
$x y+y-\beta y x-\beta y=0$
$x y+y-\alpha \beta x y-\beta y=0($ using (1))
$(\mathrm{x}+1-\alpha \beta \mathrm{x}-\beta) \mathrm{y} .1=0$
By Lemma 3.3 ,we get

1. $y(x+1-\alpha \beta x-\beta)=0$
$y x+y-\alpha \beta y x-\beta y=0$
Also from (2) weget
$x y+y-\beta y x-\beta y=0$
Multiply by α

$$
\begin{align*}
& \alpha \mathrm{xy}+\alpha \mathrm{y}-\alpha \beta \mathrm{yx}-\alpha \beta \mathrm{y}=0 \\
& \mathrm{yx}+\alpha \mathrm{y}-\alpha \beta \mathrm{yx}-\alpha \beta \mathrm{y}=0 . . \tag{4}
\end{align*}
$$

From (3) and (4), we get
$y-\beta y-\alpha y+\alpha \beta y=0$
$y(1-\beta)-\alpha(1-\beta) y=0$
Ie., $(1-\beta)(y-\alpha y)=0$

$$
(1-\beta) y(1-\alpha)=0
$$

Since $O(y)=0$, we get $(1-\alpha)=0$ or $(1-\beta)=0$
Ie., $\alpha=1$ or $\beta=1$
If $\alpha=1$, from (1), we get $y x=x y$
If $\beta=1$, from (2), we get $(x+1) y=y(x+1)$

$$
\begin{aligned}
& x y+y=y x+y \\
& x y=y x
\end{aligned}
$$

Thus y commutes with every $\mathrm{x} \in \mathrm{A}$.
Hence y belongs to the center of A.

3.11 Lemma:

Let A be an algebra with unity over a P.I.D R . If A is scalar pseudo commutative, $y \in A$ such that $O(y)=0$, then $x y z=z y x$ for all $y, z \in A$.

Proof:

Let $\mathrm{y} \in \mathrm{A}$ with $\mathrm{O}(\mathrm{y})=0$
For $\mathrm{x}, \mathrm{z} \in \mathrm{A}$, there exists scalars $\alpha=\alpha(\mathrm{z}, \mathrm{y}, \mathrm{x}) \in \mathrm{R}$ and $\beta=\beta(\mathrm{x}+1, \mathrm{y}, \mathrm{z}) \in \mathrm{R}$ such that \qquad (1)

$$
\begin{equation*}
(x+1) y z=\beta z y(x+1) \tag{2}
\end{equation*}
$$

From (2), we get

$$
\begin{aligned}
\mathrm{xyz}+\mathrm{yz}= & \beta \mathrm{zyx}+\beta \mathrm{zy} \\
& =\alpha \beta x y z+\beta z y \\
& =\alpha \beta x y z+\beta y z \quad \text { (using Lemma 3.10) }
\end{aligned}
$$

$\mathrm{xyz}+\mathrm{yz}-\alpha \beta \mathrm{xyz}-\beta \mathrm{yz}=0$
$(x+1-\alpha \beta x-\beta) y z=0$
ie., $z y(x+1-\alpha \beta x-\beta)=0$
ie., $z y x+z y-\alpha \beta z y x-\beta z y=0$
Also from (2), we get
$x y z+y z-\beta z y x-\beta z y=0$
Multiplying α

$$
\alpha x y z+\alpha y z-\alpha \beta z y x-\alpha \beta z y=0
$$

$$
\begin{equation*}
z y x+\alpha y z-\alpha \beta z y x-\alpha \beta z y=0 \text { (using (1)). } \tag{4}
\end{equation*}
$$

From (3) and (4), we get

$$
\begin{align*}
& \mathrm{zy}-\beta \mathrm{zy}+\alpha \mathrm{yz}-\alpha \beta \mathrm{zy}=0 \\
& \mathrm{yz}-\beta \mathrm{yz}+\alpha \mathrm{yz}-\alpha \beta \mathrm{yz}=0 \quad(\text { since } \mathrm{O}(\mathrm{y})=0 \text { using Lemma 3.10) } \\
& (1-\beta-\alpha+\alpha \beta) \mathrm{yz}=0 \\
& (1-\alpha)(1-\beta) \mathrm{yz}=0 \text { for all } \mathrm{z} \in \mathrm{~A} \ldots \ldots \ldots \ldots \ldots(5) \tag{5}
\end{align*}
$$

Thus for each $\mathrm{z} \in \mathrm{A}$, there exists scalars $\gamma \in \mathrm{R}, \delta \in \mathrm{R}$ such that

$$
\begin{align*}
& \quad \begin{array}{l}
\mathrm{yz}=0 \ldots \ldots \ldots \ldots(6) \text { and } \\
\delta \mathrm{y}(\mathrm{z}+1)=0 \ldots \ldots \ldots(7) \\
\delta \mathrm{yz}+\delta \mathrm{y}=0
\end{array}
\end{align*}
$$

Multiplying by γ

$$
\begin{equation*}
\gamma \delta y \mathrm{z}+\gamma \delta \mathrm{y}=0 \tag{8}
\end{equation*}
$$

From (6), we get $\gamma \delta$ y $z=0$
(8) and (9) gives
$\gamma \delta \mathrm{y}=0$. Since $\mathrm{O}(\mathrm{y})=0$, we get $\gamma=0$ or $\delta=0$
Hence from (5), we get $1-\alpha=0$ or $1-\beta=0$
Then $\alpha=1$ or $\beta=1$
If $\alpha=1$, from (1) we get, $\mathrm{zyx}=\mathrm{xyz}$
If $\beta=1$, from (2) we get

$$
\begin{aligned}
& (x+1) y z=z y x+z y \\
& X y z+y z=z y x+z y \\
& x y z+y z=z y x+y z(\text { using Lemma 3.7) } \\
& x y z=z y x
\end{aligned}
$$

Hence A is pseudo commutative

3.12 Lemma:

Let A be an algebra with identity over a commutative ring R. Then
(i) A is scalar pseudo commutative iff A is scalar weak commutative
(ii) A is scalar pseudo commutative iff A is scalar quasi weak commutative
(iii) A is scalar weak commutative iff A is scalar quasi weak commutative

Proof :

(i) Assume A is scalar pseudo commutative

$$
\text { Let } \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{~A}
$$

Now xyz = x (yz. 1)

$$
\begin{aligned}
& =\mathrm{x}(\alpha 1 \mathrm{zy}) \text { for some } \alpha=\alpha(\mathrm{y}, \mathrm{z}, 1) \in \mathrm{R} \\
& \quad \text { (Since A is scalar pseudo commutative) } \\
& =\alpha \mathrm{xzy}
\end{aligned}
$$

Thus A is scalar weak commutative.
Conversly assume A is scalar weak commutative
Then for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$

$$
\begin{aligned}
\mathrm{xyz}= & \mathrm{x}(1 . \mathrm{yz}) \\
= & \mathrm{x}(\alpha 1 \mathrm{zy})(\text { since } \mathrm{A} \text { is scalar weak commutative) } \\
= & \alpha \mathrm{xzy} \\
= & \alpha(1 . \mathrm{xz}) \mathrm{y} \\
& =\alpha(\beta 1 \mathrm{zx}) \mathrm{y} \quad \text { (since } \mathrm{A} \text { is scalar weak commutative) } \\
& =\alpha \beta \mathrm{zxy} \\
& =\alpha \beta \mathrm{z}(1 . \mathrm{xy}) \\
& =\alpha \beta \mathrm{z}(\gamma 1 . \mathrm{yx}) \text { (since } \mathrm{A} \text { is scalar weak commutative) } \\
& =\alpha \beta \gamma \mathrm{zyx} \\
\mathrm{xyz} \quad & =\delta \mathrm{zyx} \text { for some } \delta \in \mathrm{R}
\end{aligned}
$$

Hence A is scalar pseudo commutative.
The proof of (ii) and (iii) are straight forward.

3.13 Lemma:

Let A be any ring with identity. Then
(i) A is weak commutative iff A is pseudo commutative
(ii) A is pseudo commutative iff A is quasi weak commutative
(iii) A is quasi weak commutative iff A is weak commutative

Proof :

(i) Assume A is weak commutative.

$$
\text { Let } \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{~A}
$$

$\mathrm{xyz} \quad=\mathrm{x}(1 . \mathrm{yz})$
$=x(1 . z y) \quad$ (since A is weak commutative)
$=(1 . \mathrm{xz}) \mathrm{y} \quad$ (since A is weak commutative)
$=(1 . z x) y$
$=\mathrm{z}(1 \mathrm{xy})$
$=\mathrm{z}(1 \mathrm{yx})$ (since A is weak commutative)
$=\mathrm{zyx}$
Thus A is weak commutative implies pseudo commutative.
Conversly assume A is pseudo commutative.
Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}$
$\mathrm{xyz} \quad=\mathrm{x}(1 \mathrm{yz})$

$$
\begin{aligned}
& =x(z y 1) \quad \text { (since A is pseudo commutative) } \\
& =x z y
\end{aligned}
$$

Thus A is weak commutative
The proof of (ii) and (iii) are straight forward.

3.14 Lemma:

Let A be an algebra with identity over a P.I.D R. Suppose that A is scalar pseudo commutative. Assume further that there exists a prime $p \in R$ and positive integer $m \in Z^{+}$such that $p^{m} A=0$. Then A is pseudo commutative.

Proof :

Let A be an algebra with identity over a commutative ring R .
Then A is scalar pseudo commutative implies A is scalar weak commutative (By lemma3.12) and so A is weak commutative.
Again A is weak commutative implies A is pseudo commutative.
Hence proved.

3.15 Theorem :

Let A be an algebra with identity over a P.I.D R. If A is scalar pseudo commutative, then A is pseudo commutative.

Proof :

A is scalar pseudo commutative implies A is scalar weak commutative (Lemma 3.12 (i))
A is scalar weak commutative implies A is weak commutative.
A is weak commutative implies A is pseudo commutative (Lemma 3.13(i))
Hence proved.

References

[1]. R.Coughlin and M.Rich, On Scalar dependent algebras, Canada J. Mathe, 24 (1972), 696-702.
[2]. R.Coughlin, K.Klein field and M.Rich, Scalar dependent algebras, Proc.Amer.Math.Soc, 39 (1973),69-73.
[3]. G. Gopalakrishnamoorthy, S. Geetha and S. Anitha, On Quasi - weak m - power commutative Near-rings and Quasi - weak (m,n) power commutative near - rings, IOS R.J. of Mathematics vol 12 (4) ver II, (2016), 87 - 90 .
[4]. G. Gopalakrishnamoorthy, S. Geetha and S. Anitha, On quasi - weak commutative Boolean - like near - rings, Malaya J. of Matematik, 3(3), 2015, 318-326.
[5]. G. Gopalakrishnamoorthy and R.veega, On Pseudo m - power commutative Near - rings and pseudo (m,n) power commutative near - rings, Inst. J. of Maths. Research and science, vol 1(4), 2011, 71 - 80.
[6]. K.Koh, J.Luh and M.s. Putcha, On the associativity and commutativity of algebras over commutative rings, Pacific.J.of Maths, 63, No 2 (1976), 423 - 430.
[7]. Pliz Glinter, Near - rings, North Holland, Anetesdam, (1983).
[8]. M.Rich, A commutativity theorem for algebras, Amer. Math. Monthly, 82, (1975), 377-379.
[9]. S.Uma, R. Balakrishnan and T.Tamizhchelvam, Pseudo Commutative Near - rings, Scientia Magna, Vol 6, No 2, (2010), $75-85$.

