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Abstract: Empirical investigation of return dynamics leads searchers to introduce CGMY model with a
particular parameter useful in characterizing the fine structure of several type of stochastic process whether the
data are free or include diffusion component and whether the process contains indefinite activities and finite/in
finite variation. In this paper, we summarize theoretical searcher work; this provides a CGMY-FT closed form
solution algorithm for pricing option. For ac- curacy and validation we implement our method to price
European call options and compare the results to a numerical simulation.

Math. Subject Classification: 60H15

Key Words and Phrases: CGMY model, Option pricing, Levy process, Fourier transform ...

I.  Introduction

The risk neutral approach introduced by Black & Scholes to pricing option is 2 a paradigm in nance.
Although this model remains one of the most widely used frameworks nowadays, the real prices show properties
which contradict the assumptions of this model. Firstly, asset log return have been modeled in continuous time
as diffusion, however, empirical studies reveal that return dynamics are devoid of diffusion component (see.
Cox Ross [1976]). Secondly, asset return increments are normally distributed, yet, The distribution of price
dynamics display that the increments are skewed to the left and have a fat tail than those of normal distribution
(see. Fama [1963]). Finally, the implied volatility should be constant, nevertheless, it is widely recognized that
the implied volatility curve reassembles a smile/skew meaning it is a convex curve of the strike price. This
arguments lead to the conjecture confirmed on option data, that the risk neutral process should
e  be free of diffusion component,
e model the local motion of return using both skewed and excess of kurtosis,
e count disparity phenomenon known as the volatility smile/skew.

Nowadays, recent search have been proposed CGMY process as the most suitable and ecient model to
catch up assumptions fail. The model name refers to mathematician names; Carr, Geman, Madan and Yor [3]
allowing to take into account both phenomenon, indefinite activity (process incorporate frequent small moves
and rares large jumps) and finite/infinite variation. CGMY maodel has been employed to study statistical process
needed to assess risk-neutral process to pricing option though the characteristic function of return price.
Through this paper, we describe the ne structure of the process, then, we introduce FT technigue to learn more
about the distribution. Finally, we cheek whether we can dispense with diffusion so long as the process used is
one of infinite activity finite variation.

Il. The CGMY model
To obtain a clear overview of the CGMY model, we shall brie y review VG process since CGMY process
extend this last by adding parameter permitting finite/infinite activity and finite/infinite variation.

2.1 The variance Gamma process

The idea have been displayed by Geman, Maden and Yor [|]. They argument
that asset price return may be regarded as Brownian motion subordinated to
a random clock which give rise to the name Variance Gamma process. The
random clock, i.e. Gamma subordinator, is interpreted as time changed by
increasing Lévy process.

Gamma subordinator with Lévy triplet (0,0, o)
Let (£2, Fic(o,00) . P) be a filtered probability space and let G'(¢;, 1, v) be Gamma
process with mean rate unity and variance . The Lévy density of Gamma
subordinator is given by

1 exp(—1x) 1

plz) = =05 (1)
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following the Lévy-Khinchin representation, Laplace exponent is given by
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Lw) = / (e~ 1)p(da),
/(ewr 1)3@053:: (2)

r

= —— ln(l — rw),
v

since Gamma density 1s given by

. (D7 ey
Gammay(g) = F(t/y)gy le=9/"1 w0, (3)

Variance Gamma as normal tempered O-stable process Let (2, Ficp o). P)
be a filtered probability space. Variance Gamma process Xy a(t: o, v, 0) with
parameters o, v, and 0 1s defined as

Xva(t;o,v,0) = 0G(t;v) + 0 Bgia)- (4)

The characteristic function of Brownian motion with drift 6t + ¢ B, 1s given

by

{.f}ﬂt-l-O'Bg (w) = exp{ggw - 2 }:

Characteristic function of Variance Gamma process i1s obtained by substi-
tuting Brownian motion characteristic exponent into Gamma subordinator
Laplace exponent G(t;v) to get

dve(w) = exp{tL( Uea+cha( )}

e H { o -“”4}1’ )
ll—i— 2; ESUWl_;,

therefore, VG density is obtained by multiplying Gamma density in equation
(3) to normal density of Brownian motion with drift 6t + o B,

G(it‘-t):‘/o.x\/ﬁexp{ {20' ;Q) } ()"

which leads to MCC [1998] equation,

gv e vdg,  (6)

t
— 1 S om
Vet - Y2 () | (46|
(z2) = viivo/ml(t/v) | 22 4 g2 i3 o? (D)

K is a modified Bessel function of the second kind.

The necessity to extend Variance Gamma due to the fact that the process
deals only with the case infinite activity and finite variation.
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2.2 The CGMY process

Contrary to Variance Gamma process represented as time changed Brownian
motion, CGMY process is unknown through such representation, it is only
known by its Lévy measure.

Let (€2, Fiejo.0), P) be a filtered probability space, we define CGMY process
Xeeuy (8, C,G, M,Y) as Lévy process with Lévy triplet (A* = 0, p* 6" = 0)
and measure

. _ Cexp!=ClD N C exp!~M®) @®)
Poamy = 7|_I|1+y 0T Ty 0

where C =0, G >0, M > 0 and YV < 2. The parameter C' controls overall
arrival rate of jumps, i.e. the larger value of ' result in the larger overall
arrival rate of jumps. G and M are the exponential decay rates on the right
and left of the Lévy measure leading to skewed distribution when they are
unequal, when G = M, the lévy measure is symmetric. For G < M, the
tail of X; distribution is heavier than the right tail, we say that the arrival
rate of negative jumps is higher than that of large jumps. The most inter-
esting parameter is Y, it was studied by Vershik and Yor [11], it allows to
understand the structure of process since it describe the behavior of Lévy
measure whether is completely monotone, has finite/infinite activity and fi-
nite/infinite variation. Table below summarizes the role of the parameter Y.

Y values Structure of CGMY process Lévy process

Y Description of the pro- Measure pecury Lévy process
cess CGMY

Y <0 Finite number of jumps Completely Compound Pois-
in any finite time pe- monotone at son process.
riod. (—1,0).

Y €(0,1) Process exhibits infi- Completely CGMY process.

nite activity between monotone.
big jumps and finite

variation.
Y €(1,2) Process has trajectories Completely Subordinated
of infinite activity and monotone. Brownian motion.

finite variation.

The table Based on the Table [3]

the illustration below show Lévy measure behavior with various values for G
and M

As we show before, CGMY Lévy measure is the only information we dis-
pose to identify structure of the process, since we are interested to decrypt
distribution behavior, we introduce characteristic function through this the-
orem.

Theorem 1 (CGMY characteristic function). Let (Q, Ficjo.c), P) be a
filtered probability space, characteristic function for infinitely divisible pro-
cess Xieo,oc) With independent increments and Lévy density is given by equa-
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Plot of Lévy measure of CGMY process at different values of G, M
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Figure 1: Parameters fixed are C =1.2and Y = 1.0
tion (8)

dcemy (W, t;C,G,M,Y) = exp{tCGYI‘(—Y) {(1 + — w

+tCMYT(-Y) {(1 — %")" -1+ ﬂ} }.

Proof. Characteristic exponent of CGMY process with characteristic triplet
(AT =0, p*,b® = 0) is obtained by using Lévy-Khinchin representation with-
out truncation of large jumps

Yx(w) = / {exp(iwz) — 1 —iwz} peemy (z;C, G, M, Y )dz, (10)
first of all, we consider the positive half of Lévy measure

/ {exp(iwz) — 1 —iwz }Oexp( M’:r)d:r:cz(zw) / " Y e Mgy,
z v Jo

)n Y —n
— M (- Y),

_ Oi (iw

Liw, 2=V iw, 2-Y)3—M) iw,
aar) T Gt 4 G T

so such the expression in braces appears as the power series

=CM*T(2-Y) {

Y2
(I+9y)" —l+ny+n(n—1)—r

=
then
o M iw\ " iwY
/ {exp(iwz) — 1 — iwe }CM.:: —oM'T(-V){ (1) —1+ 22
S0 jvlf _‘I
(11)
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Next, we treat at the same manner the negative half of Lévy measure, where,
|z| = —=z.

. 0 0
/ {exp(iwz) — 1 — iwz }Ciﬂﬁl |15;|35|)d$ = /_1 {exp(—iw(—z)) — 1+ -iw{—r)}Cw
= /x {—exp(—iwr) + 1 —iwz} C&fo}d;r?
- D

until interchanging integral in the positive half we have

exp(—Glz|) Vo 1 iw)” iwY
—1—iwr}C———Zdr=CG"T(-Y 14—} —-1——
/ {exp(iwz) iwr} s T (=Y) Ta G
(12)

assembling both parts of Lévy measure to obtain characteristic function of
CGMY process ¢y (w) as

. Y : ] Y J
_— w) | wY e Wy wY
tCG T( Y){(1+ G) l-— }+tCM N Y){(l M) 1+ M}
(13)

I11. European call option pricing under CGMY model
3.1 CGMY asset price process

exp

Let (€2, Fieor), Q) a filtered risk neutral probability space. Asset price dy-
namics Siejpz) 1S an exponential Lévy process Ly of the form

S; = Spexp Ly,
the choice of the Lévy process is the CGMY process plus a drift
Lt = {(T‘ — | )f + XCGUY {f’ CQ GQ ?LIQ }Q)} {14)

where r > 0 is the mean rate of return on the asset and [ is the convexity
correction in CGMY model takes the next form

ﬁ = @GG:‘UY (—l, t, C.. Gﬂf, Y)J

Yy -
— CoGRT(—Yy) (1+ L) X |
Ge Go (15)

Yo
op oy [ (12 L)L X
+ CoMy T ( }@{(1 M@) 1+%},

3.2 Characteristic function formulation for solution

In this section, we are motivated to pursue closed-form solutions to know
more about process structure and pricing option under CGMY model. The
risk-neutral log asset price dynamics can be obtained from the equation (14)
as

InS; =In Sy + (r — B)t + Xcemy (t; Co, Go, Mo, Yo), (16)

since the density of the process X, is expressed in the equation (8) and with
the rearrangement
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the characteristic function of log asset price In S, is obtained by substituting
formula of the equation (8) and added the drift term (r — 3)t as

dms, (w) = exp{iwn Sy + (r — 5t}

x exp{tCoGreT(~Yo) [(1 + éi)"lz —1- “"—Q]
Q

Co (18)

® . Wy, iwY]
+tCe M2l (= Yy) [(1 - %@)Vo -1+ lﬂ_ »-1.@@] 2

[ is as defined in the equation (15).
Without lost of generality, let £t = T and In St = s7, then, drop @ we have

or(w) = exp{iwse + (r — 5)T'}

oY gL wy WY VYT _lwiy wY
xexp{TCG T(-Y) [(1+G) 1 G}+TCM I(-Y) {(1 ) 1t U”
(19)
3.3 Moments of CGMY model
The standardized moments are computed as indicate above
E[Xt} = 0:
o
Var[Xy] :/ 2 pocuy (z)de,
=tCT(2-Y)(G" 7+ M%),
Skeuness[X;) 2/ pceuy (z)de,
e R : (20)
tCT(B-Y)(=GY * + MY ¥
Var[X¢)2 '

Kurtosis[X;] = / ' pocary (x)de,

_HCT(A—Y)(E " + MY
B Var[X:]? :

3.4 Fourier transform inversion

We substitute the characteristic function in the equation (18), we obtain
CGMY-FT call pricing formula

e—ak oo e T op(w — (a+ 1)i)
c T K) = —iwk d 21
camy (T, K) o /_ ¢ @ ra—w?t i(20 + 1w “ @

o0

where ¢r(w) is as defined in equation (19).
IV. Numerical Results

We implement the CGMY Fourier transform formula (21) with decay rates
parameters G = 2.0, M = 3.5, overall arrivalrate C' = 0.5and ¥ = 1.34. We
consider the common parameters Sy = 100.0, r = 0.05. While w,, (resp. kp)
varies from w, = 1,..,N (resp. in the range (—b,b)) and which we assume
to be equal in length. Considering the maturity T" = 1.0, time grid M = 50
and finally, simulation size I = 10000.

We implement CGMY model in PYTHON. The illustration below shows
dynamic of stock price in market free-arbitrage.
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Figure 2: FT-CGMY option pricing

V. Conclusion

We calibrate FT-CGMY option pricing approach with the modified call price.
The calibration result suggests that the extra parameters of CGMY model

allow the negative skewness and the excess of kurtosis (leptokurtic). More-
over, the dynamics of implied Lévy density is asymmetric and has an infinite
activity. Despite the efficiency of CGMY process, all option pricing models
are biased (see. [1]). In fact, unbiased model would produce errors which are
on average equal to zero. For that reason, our work is summarized in how
much we could reduce the degree of misspecification. Adding jumps is the
first station in this course.
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