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Abstract: Approaches to an analytic description of vertex located discrete sets are presented. They are based 

on algebraic-topological features of the sets and properties of functions over them. One is a polyhedral-surface 

approach that represents a set as an intersection of its convex hull (a combinatorial polytope) and a 

circumscribed surface. Another one describes a set as an intersection of surfaces. These are applied for deriving 

various analytic representations of such sets as the Boolean set, binary set, permutation matrices set, the set of 

Boolean vectors with a given number of ones, and the cross-polytope vertex set. Among the sets’ 

representations, polyhedral-spherical ones represent the sets by a quadratic system of constraints and tangent 

representations – by polynomial equations of a degree less or equal to four. These results open new 

opportunities for applying standard continuous optimization methods to combinatorial problems on vertex 

located sets, as well as for developing novel approaches, which use a specific of the sets and problems. Amongst 

relaxation techniques, the most promising directions are surface relaxations and algorithms that combine 

polyhedral and surface relaxations. In the sphere of reformulation approaches, it is important to develop new 

ways to convexify the original problem and then solve it to the optimum. 

Keywords: Combinatorial Set, Continuous Functional Representation, Discrete Optimization, Lagrangian, The 

Boolean Set, The Permutation Set  
 

I. Introduction 
The traditional approach to constructing continuous relaxations of discrete problems is switching to 

optimization over the corresponding polyhedron. For that purpose, the problem of analytic description of the 

polyhedrons is solved. The problem is the main challenge in Polyhedral Combinatorics [1], [2], [3]. Among 

discrete sets mapped onto Euclidean space, there is a special class of vertex located sets [4] for whom there is 

applicable another type of relaxation – optimization on smooth convex surfaces circumscribed around them. A 

search of such surfaces along with finding extrema of some classes of functions is a type of problems deserving 

special attention. 

We study issues of an analytic description of combinatorial sets mapped onto Euclidean space. Such 

sets, called Euclidean combinatorial sets [4], allows using geometric properties of the sets and the corresponding 

combinatorial polytopes in optimization over them. We use the geometric approach and describe the sets 

analytically as an intersection of surfaces and bodies, and the description we call a functional representation of 

the sets. We present classification of the sets' representations, in particular, we introduce concepts of tangent and 

irredundant representations. We describe two approaches to their construction and apply them to some 

combinatorial sets such as the Boolean set, the permutation set, the set of permutation matrices, and so forth. 

The common feature of the sets is, in addition to vertex locality, inscription into a hypersphere. It allows 

constructing a number of their functional representations: as an intersection of polytopes with surfaces 

(polyhedral-spherical representations); as an intersection of surfaces, in particular, tangent representations. The 

functional representations can be applied in optimization, namely, in reformulations of discrete problems in 

continuous variables, constructing continuous relaxations of the problems, regularizations of objective functions 

and so on. A traditional approach to the construction of continuous relaxations of discrete problems is to transfer 

them to optimization over the corresponding polytope [1]. In order to do this, an H-representation of the 

polytope is found. This, in itself, is the main challenge in Polyhedral Combinatorics [1]-[3]. 

Amongst discrete sets mapped onto Euclidean space (referred to as Euclidean combinatorial sets), there 

are a special class of vertex located sets [4] for which it is possible to apply another relaxation – optimization on 

smooth convex surfaces circumscribed around them. Our focus is to find such surfaces along with extrema of 

some classes of functions over these surfaces. 

For a given vertex located set E , an equation of the circumscribed surface with an H-representation of the 

polytope P convE  yields an analytic description of E . This allows reformulating optimization problems 

over E  in terms of continuous variables. 
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However, other ways of continuous representations of discrete sets and, respectively, continuous reformulations 

of discrete problems are possible. We investigate the issues of an analytic description of vertex located sets with 

the aid of geometric features of the sets and properties of functions on the sets. 
 

II. Problem Statement 
Consider a discrete optimization problem over a finite set:  

min ( )f x ,         (2.1) 

nx E R  ,                  (2.2)  

| |E   .         (2.3) 

Let {1,..., }nJ n . Likewise to any optimization problem, the feasible set of this discrete problem can be 

represented in the following form: 

{ : ( ) 0,  ( ) 0, \ };  n

i m i m mE x D R f x i J f x i J J        .   (2.4) 

Traditionally, the condition x D  is referred to as regional, and the rest are the functional constraints [5]: 

( ) 0  , {1,..., }
  i mf x i J m ,       (2.5) 

 ( ) 0, \  i m mf x i J J .        (2.6) 

 

Depending on a choice of regional and functional constraints, different formulations of (2.1)-(2.3) are 

possible. For discrete problems, the set D  is usually discrete. Thus, the regional constraints describe 

discreteness of the feasible region, while (2.5), (2.6) are additional continuous conditions. As a consequence, 

firstly, combinatorial properties of D  are studied and underlie optimization techniques to (2.1)-(2.4). 

At the same time, there is a standard form (2.1),(2.5),(2.6) of an optimization problem [6], which corresponds to 
nD R . If this form is chosen, firstly, it implies investigating properties of functions ( )f x , ( ),i mf x i J  

over the feasible set and applying in optimization techniques. 

If the standard form of the discrete optimization problem (2.1)-(2.3) was found, then continuous methods could 

be applied. For instance, if the hard constraints (2.5),(2.6) contain only the equality constraints (2.5)  

( m m ), then the method of Lagrange multipliers [7] can be used. In the case of presence of inequality 

constraints (2.6) ( m m  ), first-order necessary conditions for a solution such as the Karush-Kuhn-Tucker 

conditions (KKT) can be applied [7]. 

An issue is to find the standard form of discrete problems (referred to as Problem 1). If this form is not 

uniquely defined, which form should be chosen? We will refer to the problem as Problem 2. Another issue is 

that Problems 1, 2 require a specific solution for each type of discrete sets. The goal of our study is to find a 

solution of Problem 1 for several classes of combinatorial sets. Different solutions of the Problem will be 

presented along with their comparison, which is, in fact, an initial step to the solution of Problem 2. 

We restrict our study to discrete sets coinciding with a vertex set of their convex hull: 

( ) E vert conv E .        (2.7) 

called vertex located sets [4] and consider Problems 1,2 on them. 

Vertex located sets have many specific properties that can be applied efficiently in optimization techniques 

[2],[4],[8],[9]. There are known much vertex located combinatorial sets such as the Boolean set nB  [10]-[13], 

the general permutation set ( )nkE G  [2],[4],[14]-[16], some classes of partial permutations and combinations 

[14], permutation matrices set [17], even permutations [2], cyclic permutations [18], [19], vertices of co-cube 

[20], half-cube [21] and other 0 1 -polytopes [22]. Thus, the problem (2.1), (2.7) covers a wide class of 

discrete problems – the unconstrained binary problems, optimization on permutations and so on. These have 

plenty real-world applications [2],[4],[11],[14],[23]. 

 

III. Related Work 
In [13],[16],[24]-[26], functional representations of discrete sets have been considered and their classification 

was introduced. Here, we outline some terminologies necessary for presenting this material. 

Definition. A functional representation of a set E  is its representation in the form (2.5), (2.6). 

Thus, Problem 1 is a problem of a search of a functional representation of E . 

Denote sets of points in 
nR  given by (2.5), (2.6) as { }

mi i JS  : 

{ : ( ) 0},n

i i mS x R f x i J     ,      (3.1) 
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{ : ( ) 0}, \n

i i m mS x R f x i J J     .      (3.2) 

Then (2.5), (2.6) can be rewritten as: 

m
i

i J
E S


  .         (3.3) 

Depending on a type of functions in (2.5), (2.6) the functional representations can be linear and non-linear, 

continuous and differentiable, smooth, convex (on a convex set) and so on. 

The functional E -representation is called: 

 strict if m m  , otherwise non-strict; 

 irredundant if eliminating of any constraint from (2.5), (2.6) leads to a violation of  (3.3): 

,m
m i

i J i j
j J S E

 
    , 

otherwise, it is redundant. 

The number , ,m m m m   is the order of a functional representation, its strict and non-strict parts, 

respectively. 

Concerning the number of functions in the strict part (2.5) of an irredundant representation of a discrete set, the 

representation is called: 

 intersecting if m n   (this implies that E  is formed as an intersection of n  surfaces); 

 tangent if 2m   and E  is a subset of touching points of 1 2,S S  that satisfies  (2.6); 

 one-component if 1m  ;  

 otherwise mixed. 

 

A solution of Problem 1 is a way to reformulate an original discrete problem in terms of continuous 

variables. In other words, it is a way of its continuous reformulations. These approaches can be found in 

literature [10],[11]. Indeed, methods of combinatorial optimization are roughly divisible into discrete and 

continuous [11]. Continuous algorithms, in turn, are classified into continuous relaxations and reformulations 

[10]. 

Let us consider a class of the unconstrained binary problems (UBP). In our notations, it is (2.1), (2.2) on  

nE B . Moreover, this problem belongs to the class (2.1), (2.7) since points of nB  are vertices of the unit 

hypercube [0,1]n

nPB  .  

Outline some continuous approaches to (UBP): a typical relaxation is semi-definite [27] and one way of 

continuous reformulation is to lift into a higher dimensional space by adding new variables. For instance, 

instead of the discrete constraint: 

nx B ,          (3.4) 

 the following lifting technique can be used [10]:  

1, 0, , 0, ,i i i i i i nx y x y x y i j J      . 

 If ( )f x  is quadratic, 

,

( ) ij i j i i

i j i

f x a x x b x   , the change of variables ij i jy x x  allows transforming 

(UBP) into linear in an extended space by  
2

nC  ijy -variables [28]. 

Also, an alternating analytic representation of nB  is known and widely applied in optimization [10], [11],[13]: 

( ) ( 1) 0,i i i nf x x x i J    .       (3.5) 

In our classification, (3.5) is a strict, continuous, convex, quadratic, irredundant, intersecting functional 

representation of nB . The problem (2.1), (3.5) is an equivalent reformulation of (UBP) in the original space and 

a Problem 1 solution. 

Now, continuous optimization approaches, such as the method of Lagrangian multipliers, penalty methods, their 

combinations such as the augmented Lagrangian method, smoothing techniques [7], [11] and so forth become 

applicable to (UBP). 

For instance, an equivalent reformulation of (2.1), (3.5) in a higher dimensional space is to minimize the 

Lagrangian: 

 
2( , ) ( ) ( ) min, ( )

ni i i i i J

i

x f x x x          .    (3.6) 
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 The problem (3.6) can be solved explicitly for simple ( )f x , in other cases, numerical schemes should be 

applied [10]. 

The penalty method with a quadratic penalty function [13],[24] utilizes the representation (3.5) in the following 

way: 

 
2 2( , ) ( ) ( ) min.i i

i

x f x x x           (3.7) 

The problems (2.1) and (3.7) are equivalent only on E . However, if the penalty method is applied to the 

problem (3.7) for an increasing sequence of  , it approaches a local minimizer of (UBP) with any prescribed 

accuracy. 

 Also, penalty methods may be combined with other techniques. For example, in [11] the quadratic penalty 

function (3.7) and 
nPB -constrains (boxing constraints) are used to smooth and convexify an objective function. 

As a result, (UBP) is reduced to a series of convex subproblems. 

One more (UBP) relaxation [10],[13],[24] based on (3.5) is the following: 

 

2

2 1
( , ) ( ) ( ) ( ) min.

2 4
i i i

i i

n
x f x x x f x x

  
             

     (3.8) 

It is seen that in (3.8), (UBP) is reduced to optimization over a hypersphere circumscribed around nPB .  

 An interesting property of (3.8) is that an appropriate choice of   allows making ( , )x   either convex or 

concave. Namely, if 
2( ) ( )nf x C R  then there are , ,min max min max    , such that the problem (3.8) is 

convex max   and concave min    [7],[10]. This allows usage of convex and concave methods to 

(3.8). Moreover, the regularization term 
2( 0.5) 0.25i

i

x n
 

  
 
  can be added to (3.6), (3.7) as well. 

Then, for fixed ,  , a choice of   allows making ( ), ( )     convex or concave and again to apply 

continuous methods to (UBQ). 

Note that this technique allows also forming equivalent reformulations of (UBP). For instance, if   is chosen 

such that ( , )x   is concave then adding the boxing constraints to (3.8) transforms the problem into 

equivalent to (UBP). 

 

IV. Approaches to Problem  
Construction of functional representations can be done in a different way resulting different solutions of 

Problem 1 [12-16]. Outline three of them applicable to vertex located sets (2.7). 

Approach 1 (a polyhedral-surface approach) includes two stages. Firstly, an H-representation 
( ' 1) ( )  { : , , ,  }m n m m nP x Ax b A x b A R A R

          ,   (4.1) 

of the polytope P   is found. 

Then a surface S  circumscribed around E  is derived: 

    1 1: 0 :  E S,  S x f x f x    – is strongly convex.    (4.2) 

Strong convexity of 1( )f x  ensures that E  is formed as an intersection of the polytope (4.1) and surface (4.2): 

 E P S .         (4.3) 

Hence, the linear system of P  with the non-linear equation of S  gives a non-linear, convex, non-strict 

functional representation of E  (called a polyhedral-surface E-representation [25]) and a solution of Problem 1. 

Remark 1. Note a particular case of polyhedral-surface representations when S  is a hypersphere. 

Let E  be inscribed in a hypersphere:  
0( )rE S x ,                 (4.4) 

where 
0 0 2 2( ) { : ( ) }n

rS x x R x x r          (4.5) 
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is a hypersphere of the radius r  centered at 
0 nx R . Then the set (4.4) is called sphere located  [8]. Also, the 

representation (4.3) is the polyhedral-spherical representation (PSR) of E [16],[25] if it contains the equation 

(4.5) of a circumscribed sphere: 
0( ) ( )rPSR E P S x  . 

 (PSR) is important since many combinatorial sets are sphere located and H-representations of their polytopes 

are known [1],[2],[4],[14],[15],[17]. Also, properties of spheres allow developing specific approaches to 

(2.1)-(2.3),(4.4) such as the polyhedral-spherical method (PSM) [13] of combinatorial optimization over sphere 

located sets. 

Note, the representation (4.1)-(4.3) is irredundant if and only if (4.1) is an irredundant system of P. This implies 

that eliminating of any number of restrictions from the E -representation leads to a continuous relaxation of the 

original problem. 

For instance, relaxing the condition x S  yields the standard polyhedral relaxation of (2.1),(2.7) 

( ) min
P

f x  . A relaxation of the condition x P  yields another continuous relaxation of the problem called 

a surface relaxation that is an optimization problem over a convex surface S : ( ) min
S

f x  . 

The combination of both these relaxations is a core of a (PSM)-generalization called the polyhedral-surface 

method to (2.1),(2.7) [25]. 

Next two approaches are based on exploring properties of non-linear functions over a set E , deriving those of 

them that take constant values over the set, and construction of E -representations from these functions. 

Approach 2. Similarly to Approach 1, two main stages can be extracted: 1) constructing a system of equations, 

a solution of which is a discrete set E E  ; 2) if necessary, cut off points of \E E   and adding the cuts to 

the constraints found in the first stage. 

Note that in n -dimensional space a discrete set is formed by an intersection of at most n  surfaces. Thus the 

first stage may be reduced to consideration of systems of order m n  . When stage 2 has been completed, a 

redundancy of the resulting functional representation may be investigated, and the order m  of its strict part can 

be decreased. 

This approach is rather complicated as it requires solving non-linear systems analytically. However, it is the 

only known way to derive a strict representation of such sets as ( )nkE G  [26]. 

The next approach allows forming an irredundant representation directly.  

Approach 3 is representing E  as a set of touching points of two surfaces 1 2,S S : 

 1 2E S S  ,         (4.6) 

where 

{ : ( ) 0}, ( )n

i i iS x R f x f x    are differentiable, 1,2i  .   (4.7) 

Let us assume that the equations (4.7) of surfaces circumscribed around E  are known. Then there are two ways 

to derive the representation (4.6). 

The first one is to solve the following problems: 

2 1
1 2( ) min, ( ) min

S S
f x f x  .       (4.8) 

If a solution of one of them is attained at E , the tangent representation (4.6) has been found.  

Another way is to find all extrema of one of the functions, 1( )f x  or 2( )f x , over another surface, e.g. 

1

2 ( )
S

f x extr .         (4.9) 

 

V. Notations 

Let  
nE R . Introduce some notations and terminologies: 

 x  is a n -vector, X  is a n n -matrix: [ ]T n

ix x R  , [ ] n n

ijX x R   ; 

 a  is a n -vector of a -s, 
nA  a  is a n n -matrix of a -s: [ ]T na R a , [ ] n nA a R   , where 

a R ; 

 
mE  is the Cartesian power of E , 

m

m

i J
E E


 ; 

 { : }R E x x E      ;  
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 G  is a n -element multiset, which the underlying set { }
kj j Je   consists of k  different elements with 

multiplicities jn , 
kj J , such that j

j

n n : 

{ }j

k

n

j j JG e  .         (5.1) 

We will consider the following vertex located combinatorial sets induced by a multiset (5.1) 

[2],[4],[14],[15],[17],[20]:  

1. ( )nkE G   – is the general permutation set induced by (5.1). 

2. {0,1} ,  { 1,1}n n

n nB B    are sets of Boolean/binary n -vectors (the Boolean set and binary set), 

respectively. For them, the induced  multisets are {0 ,1 }n nG  , { 1 ,1 }n nG   , correspondingly; 

3. ( )nB m  is a set of Boolean n -vectors that sum to m : 

0( ) { : }, .T

n n nB m x B x m m J   1  

Interestingly that ( )nB m  is simultaneously a subset of 
nB  and the general permutation set: 

( )n nB m B , 2( ) ( )n nB m E G , {0 ,1 }n m mG  . 

In particular, (1)nB  is a set of 0 1 -permutations with one unit: 

2(1) ( )n nB E G ,        (5.2) 

where  
1{0 ,1}nG  ;                       (5.3) 

4. a set ( )nCE b  of n -vectors induced by 1n   zeros, 0b   and :b  

   2 2( ) (1)n n n nCE b b B E b G E b G         where G  is defined by (5.3); 

5. a set n  of n -permutation matrices:  

  : ,  0,1 ,   n n T

n ij nX R X X x i, j J      1 1 1 .   (5.4) 

Notice, that if a matrix nX  , then its vector-rows [ ] ( )
ni ij j J nx x i J   and vector-columns 

[ ] ( )
nj ij i J nx x j J

    are elements of the set (5.2): 

, (1), , i j n nx x B i j J   .       (5.5) 

We map the matrix X  into 
2nR : X x  where 

n

i
i J

x x


   and safe double indices for its coordinates. 

Similarly, a 
2n -vector corresponds to 

TX X  :  X x   where 
'

n

T

J
j

i
x x


   . The map of n  into 

2nR  

denote n
 . There is a one-to-one correspondence between the pairs X  and x . Therefore, instead of matrices, 

we can consider their images as points in the Euclidean space 
2nR . Sets of objects of arbitrary nature that allow 

mapping into the Euclidean space, alongside with the images, are called the Euclidean combinatorial sets [4]. In 

this manner, to the image  n
  of the whole set (5.4) we will refer as called the Euclidean combinatorial set of 

permutation matrices. It can be represented in two ways: 

{ ( (1)) : ' };

{ ( (1)) : }.

 

 

n

n n

n

n n

x B X

x B X

   

    

1 1

1 1
       (5.6) 

 

VI. 
', (1), (1),n n n nB B CE   FUNCTIONAL REPRESENTATIONS 

 In this section, Problem 1 is solved for the following combinatorial sets: 
'{ , (1), (1), }n n n nE B B CE  .       (6.1) 

First, in Sect. VI.1 Approach 1 to the construction of functional representations is applied to the sets (6.1). Then, 

in Sect. VI.2 tangent representations of three combinatorial sets are constructed with the aid of Approach 3. 

Finally, in Sect. VI.3 some tangent and other strict representations of the sets (6.1) are presented along with their 
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comparison. 

 

 

6.1  THE SETS' POLYHEDRAL-SPHERICAL REPRESENTATIONS 

It turns out, a common feature of the combinatorial sets (6.1) is a sphere locality [4],[13],[25],[26]. Also, an 

H-representation of the corresponding polytopes are known [2],[10],[17],[20]. Thus, Approach 1 can be applied 

to their analytic representation and yields polyhedral-spherical representations of these sets. To specify each of 

them, list the polytopes H-representations in the form (4.1) and parameters of hyperspheres (4.5). 

 Some of the sets (6.1) are inscribed into families of hyperspheres. Among them, we will indicate a sphere  

( )rS 0  centered at the origin and a minimum circumscribed sphere 
minS . 

So, for the sets (6.1), the polytope P  and sphere 
0( )rS x  in (PSR) are defined by: 

1. 
nE B :  

0

2

{ : },  ( )n min

n r n
P PB x R x S x S S

 
       

 

1
0 1

2
, 

2. (1)nE B : 

 ( (1)) (1)n nP conv B PB   – is a unit 1n  -simplex  

(1) { : , 1}.n T

nPB x R x x   0 1  

0( )rS x  is not uniquely defined. There is a family of circumscribed spheres for (1)nB : a R    

0 2

( )( ) ( ),  ( ) 2 1r r aS x S r a n a a    a .     (6.2) 

In particular, (6.2) includes 1( )S 0  and  

1 1/

min

n
S S



 
  

 

1

n
;        (6.3) 

3. (1)nE CE : ( (1)) (1)n nP conv CE CP   – is the cross-polytope [20]: 

  (1) { :| | 1}n T

nCP x R x  1 ,       (6.4) 

where | | (| |)
ni i Jx x  , 

0

1( ) ( ) ;min

rS x S S 0  

4.   
'

nE    – is the Euclidean combinatorial set of permutation matrices. A convex hull of the set of 

permutation matrices ( )n nD conv   – is the Birkhoff polytope [17]:  

{ : ( ), }n n n T

nD X R X X X    0 1 1 1 , 

hence  

' '

1 1

{ :  0,  ;  1,  ;  1,  }
n n

n

n n ij n ij n ij n

i j

D conv x R x i, j J x j J x i J
 

           .  (6.5) 

By (5.6), (6.2), the set 
'

n  is inscribed into a family of hyperspheres, 
'

( ) ( )n

n r aS   a , which can be derived 

from (6.2): 

2 2

( ) ( ), ( ) | | ( ) 2n

r aS r a n r a n a a n n
       a .    (6.6) 

The family (6.6) includes the following hyperspheres of our interest – ( )n

n
S 0  and 

1
(( / ) )min n

n
S S


 1 n . 

The above H-representations are irredundant, except for 
'

nD . (6.5) becomes irredundant after eliminating 

anyone constraint from: 
TX X 1 1 1 .         (6.7) 

Complementing each of the H-representation by an equation of 
0( )rS x , we get irredundant representations of 

the sets (6.1). Moreover, for (1)nB  and n  families of such representations are obtained. 

Example 1. For 3n  , a graphical illustration of the sets (6.1), their polyhedrons, and (PSR) is given in 
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Figs.1,2:  

 the hypercube 3PB  is in Fig. 1.a); the cross-polytope 3(1)CP  – is in Fig. 1.b); the 2 -simplex 
3(1)PB  – 

is in Fig. 1.c); 

  (PSR) of: 
3B  is shown in Fig. 2.a); 

3(1)CP  – is in Fig.2.b); 
3(1)B  – is in Fig. 2.c). It includes  a sphere 

1( )S 0 . 

 

    

(a) The hypercube 3PB   (b) The cross-polytope 3(1)CP   (c) The 3 -simplex 3(1)PB  

Fig. 1. The polytopes 3 3 3, (1), (1)PB PA PB  

   

(a) 3B      (b) 3(1)CP    (c) 3(1)B  

Fig. 2. The polyhedral-spherical representations 

 

6.2 TANGENT REPRESENTATIONS OF ,  ( ),  (1)
n n nB A n B  

We search for a tangent representation using the second way presented in Sect. IV and rewriting (4.9) in the 

form:  

( )
x S

f x extr


 ,         (6.8) 

where the surface 1{ : ( ) 0}S x f x  , 2( ) ( )f x f x . 

 For minimization and maximization version of (6.8), denote its solutions: 

min ( ), ( ) min min

S S

z f x X Argmin f x ; max ( ), ( ) max max

S S

z f x X Argmax f x . 

Now, we formulate main results of the paper. 

Theorem 1. The solution of (6.8) with 

4

1

( )



n

i

i

f x x                 (6.9) 

over a hypersphere 

( ) 0
n

S S          (6.10) 

is 
min min ',  ;  nz n X B         (6.11) 

max 2 max,  ( )nz n X CE n  .       (6.12) 

Proof. The problem (6.8)-(6.10) is equivalent to the following: 
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2 4 2

1 1 1

( , ) ( )
  

   
         

   
  

n n n

i i i

i i i

H x f x n x x n x extr   .   (6.13) 

Setting the gradient , ( , )x H x  0   we get the following system for determining stationary points of 

( , )H x  : 

34 2 0,  ;


     


i i n

i

H
x x i J

x
        (6.14) 

2

1

0.



  




n

i

i

H
n x


         (6.15) 

Denote a stationary point as 
* *( , )x  . Then (6.13) gives: 

 
* *

*
* *2 * *

( , )

2 2 0 0 , ,  
2

   
         

   
i i i n

i x

H
x x x i J

x



 .  (6.16) 

Let I  be a set of indices of non-zero 
*x -coordinates and m  be a number of such indices: 

* 0  : ;n iI J i I x m I     .      (6.17) 

Then, in our case, 

*
*{ : }

2
iI i x  


 and I    that follows from (6.15).  

From (6.15),

*
*2 *2 *2

1 2  

     
n

i i i

i i I i I

x x x m n


 wherefrom 

* 2


n

m
 .         (6.18) 

Moreover, by (6.16), 

*

* ,  ,
2

0,  otherwise.


   

 



i

n
i I

x m


       (6.19) 

Substitution of (6.18), (6.19) into the Lagrangian yields: 
2 2

* * *4 * *2 *( , ) .
 

     
             

    
 i i

i I i I

n n n
H x x n x m n m

m m m
    

Thus, (6.13) and, respectively, the original problem (6.8) are equivalent to the following one: 

 

So, the problems  and, respectively, (6.8), are equivalent to the following: 

 
2

*


 

nm J

n
h m extr

m
.        (6.20) 

Thus, the original problem was reduced to optimization of the function 
*h  of one variable, which is decreasing 

and attains the extrema at endpoints of  1, n  Namely, by (6.18) and (6.19), 

 the minimum of (6.20) occurs at m n  and, hence  nI J : 

 
min min * *2,   1,  min  ( ) ( )

n

min

n i
m J

i J x h h m h n n


        ;   (6.21) 

 its maximum occurs at 1m  implying that  0 01 and :        nI i J I i . Correspondingly, 

0
max max * 2,  ,

2 ,   max ( ) (1)
0,  otherwise;

.
n

max

n i
m J

n i i
n i J x h h m h n



 
      


  (6.22) 
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Due to an equivalence of (6.8)-(6.10) and (6.20): a) from  (6.21) we have 
min

nX B  , 
*min minz h n  , thus 

(6.11); b) from (6.22), ( )max

nX CE n , 
* 2max maxz h n  , hence (6.12) holds. 

Corollary 1. The sets 
'

nB , ( )nCE n  have the following convex tangent representations in the form (2.5): 

' 2 4

1 2:  ( ) 0,  ( ) 0
n n

n i i

i J i J

B f x x n f x x n
 

       ;    (6.23) 

2 4 2

1 2( ) : ( ) 0, ( ) 0  
n n

n i i

i J i J

CE n f x x n f x x n
 

       .   (6.24) 

Theorem 2. The solution of (6.8) with  

3

1

( )



n

i

i

f x x          (6.25) 

over a hypersphere 

2

1

{ : 1}


 
n

i

i

S x x         (6.26) 

is 
min min1,  (1);    nz X B        (6.27) 

max max1,  (1)  nz X B .       (6.28) 

Proof. Prove the theorem in similar way to Theorem 1. The Lagrangian of (6.8), (6.9), (6.26) is 

2 3 2

1 1 1

( , ) ( ) 1 1
  

   
         

   
  

n n n

i i i

i i i

H x f x x x x extr   .  (6.29) 

Setting the gradient of (6.29) equal to 0 , we obtain: 

23 2 0,  


     


i i n

i

H
x x i J

x
 ;      (6.30) 

2

1

1 0



  




n

i

i

H
x


.        (6.31) 

From (6.30): 

 
* *

* * * *

( , )

2
3 2 0 0 , ,  

3

  
        

  
i i i n

i x

H
x x x i J

x


  .   (6.32) 

Respectively, from (6.31) and (6.32) 

2

*2 *2 * *2

1

2 4
1

3 9 

 
     

 
 

n

i i

i i I

x x m m  . As a consequence, 

0m   and 

* 3

2
 

m
 .         (6.33) 

According to (6.17), (6.32), and (6.33), 

*

*

2 1
,  ,

3

0,  otherwise.


   

 



i

i I
x m


       (6.34) 

The set I  is divisible into to subsets ,I I 
 of indices of positive and negative 

*x -coordinates: 

* 1
{ : }iI i x

m

   , 
* 1

{ : }iI i x
m

    . Also, denote | |I m  , then | |I m m   . 

Now, (6.34) can be rewritten in the form: 
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*

1
,  ,

1
,  ,

0,  otherwise.











  





i

i I
m

x i I
m

        (6.35) 

Substituting (6.35) into (6.29) we have: 
3 3

* * *3

1.5

1 1 2
( , )

   

    
       

   
  i

i I i I i I

m m
H x x

mm m
 .   (6.36) 

It is seen, the problem of optimizing the function (6.36) has been reduced to optimization of a function 

*

1.5

2
( , )

m m
h m m

m

 
   of two variables. Within 0 m nm   , it attains: 

 the maximum at ( , ) (1,1)m m  : 
*(1,1) 1maxh h  ; 

 the minimum – at ( , ) (1,0)m m  : 
*(1,0) 1minh h   . 

Respectively, the extrema of ( )f x  – 1max maxz h  , 1min minz h    – occur at ,max minX X :  

0
max

0

0
min min

0

1,  ,
: (1);

0,  otherwise,

1,  ,
: (1).

0,  otherwise,

  

  

max max max

n i n

min min

n i n

i i
x X i J x X B

i i
x X i J x X B

 
      



 
       



 

Hence, (6.27) and (6.28) hold. 

Corollary 2. The set (1)nB  has a tangent representation: 

2 3

1 2(1) : ( ) 1    0, ( ) 1 0
 

      
n n

n i i

i J i J

B f x x f x x .    (6.37) 

 

6.3 STRICT REPRESENTATIONS OF 
', (1), (  , 1)n n n nB B CE   

In this section, the results of Sect. VI.2 are used for the construction of functional representations of the sets 

(6.1). New functional representations are formed from above by shifting, scaling and them applying them to 

specific sets of variables:  

1. Bn :  

a.  Representation 1.1 – making in (6.23) the change of variables 
1

,
2

 i
i n

x
x i J


  , we obtain a 

tangent representation of nB : 

2 4

1 2

1 1
:  ( ) 0, ( ) 0

2 4 2 1
  

6
n n

n i i

i J i J

n n
B f x x f x x

 

   
          

   
  ;  (6.38) 

These representations of the Boolean sets for dimensions 2,3n  are illustrated in Fig.3, e.g., in Fig.3 a) there 

is the representation (6.23) for 2B ; for 3B  there are Representation 1.1 and Representation 1.2 in Figs.3 b), 

3 c). 
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`   

 

(a) 
2
B ,   (b) 

3B : Representations 1.1 (c) 
3B : Representations 1.2 

Fig. 3. 
2
B : the representation (6.23), 

3B : Representations 1.1 and 1.2 

 

b. Representation 1.2 is the mentioned in Sect.III intersecting representation (3.5) where nB  is 

represented as an intersection of pairs of parallel hyperplanes. 

Example 2. The representation (6.23) of 
'

2B  is shown in Fig. 3.a). The two above representations of the Boolean 

set for 3n   – Representation 1.1 and Representation 1.2 – are illustrated in Figs. 3.b),c), respectively. 

2. ( )B 1n : in addition to the tangent representation (6.37) (referred to as Representation 2.1), two mixed 

strict representations are derivable by using the fact that (1)nB  lies in the plane 1Tx 1  and the hypersphere 

(6.3). So, adding their equations to Representation 1.1, we obtain: 

a. Representation 2.2 of (1)nB : Representation 1.1 plus 

3( ) 1 0
n

i

i J

f x x


   ;        (6.39) 

b. Representation 2.3 of (1)nB : Representation 1.1 plus 

2

3

1 1
( ) 1 0

n

i

i J

f x x
n n

 
     

 
       (6.40) 

Example 3.  An illustration of Representation 2.1 for 2 (1)B ,  3(1)B  is given in Figs. 4.a), 4.b). 3(1)B –

Representation 2.3 is shown in Fig. 4.c).  

   

(a) 2 (1)B    (b) 3(1)B  – Repr.2.1  (c) 3(1)B  – Repr.2.3 

Fig. 4. Representation 2.1 ( 2,3n ), Representation 2.3 ( 3n ) 

3. (1)nCE : Representation 3 is a tangent representation of (1)nCE  obtained from (6.24) by the change 

of variables , i
i n

x
x i J

n
  : 

2 4

1 2(1) : ( ) 1    0, ( ) 1 0
n n

n i i

i J i J

CE f x x f x x
 

       .    (6.41) 
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Example 4. Representation 3 is demonstrated: for 
2(1)CE  in Fig.5.a), for 

3(1)CE  in Fig. 5.b). Based on 

Representation 3 and the fact that (1) (1)n n nB B CE  ,  new (1)nB -representation can be formed: 

a) Representations 1.1 and 3; b) Representations 3 plus (6.39); c) Representations 3 plus (6.40).  

   

(a) 2(1)CE      (b) 
3(1)CE  

Fig. 5. Representation 3 ( 2,3n ) 

4.  
'

n :   

Representation 4.1  is formed by the linear system (6.7) and a generalization of Representation 1.1 from a 

Boolean n -vector x  into a Boolean 
2n -vector: 

2 42 2

1 2

, ,

1 1
( ) 0;  ( ) 0

2 4 2 16
n n

ij ij

i j J i j J

n n
f x x f x x

 

   
          

   
  .  (6.42) 

a. Representation 4.1 is of order 2 2n  , its components are linear and convex quadratic and 

biquadratic polynomials. So, it is a mixed, nonlinear, polynomial, convex, and smooth analytic representation of 

n , which is redundant due to the redundancy of (6.7). Similarly to the 
nD -system of constraints (see (6.5)), 

eliminating any constraint from (6.7) converts Representation 4.1 into irredundant. 

b. Representation 4.2 is formed from Representation 4.1 by replacing the linear part (6.7) with quadratic. 

Namely, we use the property (5.5) wherefrom there follows an inscription of , , , ,i j nx x i j J   into a 

hypersphere (6.3) and get the representation (6.42) plus: 
2

2

2

2

( ) ( 1/ ) 1 1/ 0, ;

( ) ( 1/ ) 1 1/ 0,  .

n

n

j j ij n

i J

n i i ij n

j J

f x x n n j J

f x x n n i J





 



      

     




 

Similarly to Representation 4.1, the order of Representation 4.2 is 2 2n  . Its components are quadratic and 

biquadratic only. Thus, it is a mixed, polynomial, biquadratic, convex, and smooth n -representation. Its 

redundancy needs an additional investigation.  

c. Representation 4.3 is also based on (5.5) and applying Representation 3 to the rows and columns of  a 

matrix X  associated with a vector x : 
2 3

2 3

2 3

( ) 1 0,  ( ) 1 0, ;

( ) 1 0, ( ) 1 0, .

n n

n n

j j ij n j j ij n

i J i J

n i i ij n i i ij n

j J i J

f x x f x x j J

f x x f x x i J



 

 

 

       

      

 

 
 

Representation 4.1 is also mixed, of order 4n , cubic, convex in 
2



nR , and smooth. 

Comparing the strict n -representations, we observe that the first two are of less order and higher degree, 

while the last has more order and fewer degree.   

A comparison of all these strict representations with (PSR) given in Sect. VI.1 demonstrates that the first ones 

have much less components and higher degree of polynomials. The order of the strict representations decreases 

as the highest degree of polynomials in these representations increases. At the same time, the last ones are 
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polynomial representations of the minimal degree. It is due to linear representations of discrete sets if they are 

one point ones do not exist. The next simplest case is quadratic. 

 

VII. Conclusion 
In the paper, approaches to an analytic description of the Euclidean combinatorial sets were studied. 

For the sets, such as 
nB , (1)nB , 

nB , (1)nCE ,  and the Euclidean combinatorial set 
'

n  of permutation 

matrices, a number of strict and non-strict,  tangent and mixed functional representations were derived. 

The results allow to develop new continuous algorithms of optimization over these sets that are based on new 

continuous reformulations and relaxations of the combinatorial problems, which apply the derived continuous 

representations of the sets. 
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