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Abstract: Malaria is a life threatening blood disease which is caused by parasites transmitted to humans 

through the bite of the Anopheles mosquito. An infected mosquito bites a human and transmits the parasites 

which multiply in the host’s liver before infecting and destroying red blood cells. In this research work, the 

model equations were obtained using several known clinical and biological information with the human 

population subdivided into susceptible, infected, recovered and therapy classes while the vector population is 

divided into the susceptible and infected classes. The equilibrium states were obtained and the endemic state 

analysed for stability. The result shows that the non-zero equilibrium state will be stable if 𝐹(0)𝐺 ′ (0) > 𝑂 and 

unstable when otherwise.  
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I. Introduction 
 Malaria is a vector-borne disease. Instead of transmitted directly from human to human, its parasites 

are transferred between human through mosquitoes. The malaria parasite life cycle is divided into two parts, one 

is within host (human) body and the other within vector (mosquito) body. Human infection starts from a blood 

meal of an infectious female mosquito. The parasites existing in the infectious mosquito’s saliva, called 

sporozoites at this stage, enter the bloodstream of the human through mosquito bites and migrate to the liver. 

Within minutes after entering the human body, sporozoites infect hepatocytes and multiply asexually and 

asymptomatically in liver for a period of 5 – 30 days [1] and [2]. 

 Mathematical models can help understand the dynamics of transmission and spread of the infectious 

disease and thereby, provide guides and suggestions for the control of the disease. According to Hoshen et al 

[3], the first person to use mathematical model to quantitatively investigate the spread of malaria was Ross. His 

model was later extended and studied by Mc-Donald which led to the Ross-McDonald Model [4]-[6].  

 There are different modeling methodologies which include individual-based models [7], habitat-based 

models [8], integrated models [9] and [10] and others [11]-[16]. The methodology used in this case is 

predominantly differential equation-based. Using known clinical and biological information on malaria, a set of 

differential equation is derived based on the human population subdivided into four compartments of susceptible 

human (𝑆ℎ), infected human (𝐼ℎ), recovered human (𝑅ℎ) and the therapy class (𝑉ℎ) while the vector popupation 

is divided into two compartments of the susceptible vector (𝑆𝑉) and infected vector 𝐼𝑉 . The endemic equilibrium 

state is examined for stability. 

 

II. Model Equations 
The formulation of the model results in the following model equations.  
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The model consists of six compartments  

𝑆ℎ  = Susceptible human  

𝐼ℎ  = Infected human  

𝑅ℎ  = Recovered human  

𝑆𝑉  = Susceptible vector  

𝐼𝑉  = Infected vector  

𝑉ℎ  = Therapy class   

The parameters are  

Λ𝑉  = Birth rate for the vector population  

Λℎ  = Birth rate for the human population  

𝛽 = Transmission rate from Sℎ  to Iℎ  

𝛿 = Transmission rate from Iℎ  to Rℎ  

𝑒 = Transmission rate from S𝑉  to I𝑉  

𝜃 = Transmission rate from Vℎ  to Sℎ  

𝜙 = Transmission rate from Sℎ  to Vℎ  

μ𝑜  = Natural death in human population  

μℎ  = Death resulting from infection in human  

μ𝑉  = Natural death in  vector population  

𝑟 = Rate of flow from Rℎ  to Sℎ    

𝑃 = Recruitment term. 

 

III. Equilibrium State 
At equilibrium state 
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Substituting (14) and (15) into (13) and simplifying gives 
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Simplifying equation (17) gives 
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Suppose hR ≠0 

0 hhh rSI                                                                                                                        (19) 

Put equation (18) into (19) 

0)
)(

)(
(

0

0

2





hh

hv

hhv rS
e

vse





                                                                (20) 

Simplifying (20) gives  
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Substituting (21) into (18) and simplifying  
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Similarly, substituting (22) into (14) 
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Similarly, substituting (21) and (23) into (15) 
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Now from equation (11) 
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Simplifying (25) and making hv the subject  
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Putting (21) into (26) 
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Also from equation (8) 
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Simplifying (28) and making hR  the subject 
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Putting (21), (24) and (27) into (29) 
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IV. Stability Analysis of the Endemic Equilibrium 
The characteristic equation is obtained by  

A =   
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Which gives 
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Bellman and Cooke’s theorem is used to establish the stability or otherwise of the model. 

Theorem  

Let ),()( zezPZH   where ),( wzp
 is 

a polynomial with principal term. 

Suppose ,),( RyiyH   is separated into its real and imaginary parts, 

)()()( yiGyFzH 
                                                                                                            

(33) 
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If all zeros of )(zH have negative real parts, then the zeros of )()( yandGyF  are real, simple and alternate 

and  

)0(')0()0()0(' FGFG  ˃0 for all Ry .                                                                           (34) 

Conversely, all zeros of )(yH will be in the left-half plane provided that either of the following conditions is 

satisfied: 

(i) All the zeros of )(yF and )(yG are real, simple, and alternate and the inequality (34) is satisfied 

for at least one y. 

(ii) All the zeros of )(yF  are real and, for each zero, the relation (34) is satisfied  

(iii) All the zeros of )(yG are real and, for each zero, the relation (33) is satisfied.  

From (32) let  
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Simplifying in powers of ( ) 
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Let ip  

H (ip) =  
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Resolving into real and imaginary  
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Differentiating (39) and (40) with respect to p and setting 0p  
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Setting p = 0 into (39) and (40) gives   







542114

2

5

2

2

414

22

5

2

3

4525

))()(

(()(

)())()(()0(







hvvh

vvvhhhv

hhhhvv

sIsev

esesIsveIse

rsRseIsreIrF

                                               (43) 

0)0( G                                                                                                                                                    (44)  

Hence 0)0(')0( GF
                                                                                                                             (45) 
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Therefore, the non –zero state will be stable when 0* S  and unstable if otherwise. 

 

V. Conclusion 
 This paper proposes a mathematical model on the spread of malaria using a system of ordinary 

differential equations with six compartments. The equilibrium states were obtained and the endemic state 

analysed for stability. It is observed from the mathematical analysis that the non-zero equilibrium state will be 

stable when 𝐹(0)𝐺 ′ (0) > 0 and unstable otherwise.  
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