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Abstract: To analyze single data set-based benchmark experiments using R. Exploratory and inferential 

methods are used to compare the distributions and to finally set up mathematical (order) relations between the 

algorithms. I reviewed the theoretical framework of the current work for inference problems in benchmark 

experiments. Benchmarking UCI and Grasshopper domains presented two domain-based benchmark 

experiments. A large number of regression diagnostic tests showing the problems and solution of diagnostics 

and procedures and Outlier diagnostics and procedures have been proposed in the econometrics literature. 

MATLAB and Gauss code for implementing these methods can be found on many sources. 
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I. Introduction 
Benchmarking UCI and Grasshopper domains using R, I presented two domain-based benchmark 

experiments one for each application scenario we sketch in the introduction. The UCI domain serves as a domain 

for the scenario when comparing a newly developed algorithm with other well-known algorithms on a well-

known domain. The Grasshopper domain serves as domain where we want to find the best candidate algorithm 

for predicting whether a grasshopper species is present or absent in a specific territory. The algorithm is then used 

as a prediction component in an enterprise application software system in R [1]. 

 

UCI domain:  
The UCI domain is defined by 21 data sets binary classification problems available from Asuncion and 

Newman (2007). I am interested in the behavior of the six common learning algorithms linear discriminant 

analysis (lda, purple),k-nearest neighbor classifiers, (knn, yellow), classification trees (rpart,red), support vector 

machines (svm, blue), neural networks (nnet, green), and random forests (rf, orange); see all, for example, Hastie 

et al. (2009). The benchmark experiment is defined with B = 250 replications, bootstrapping as resampling 

scheme to generate the learning samples and the out-of-bag scheme for the corresponding validation 

samples Misclassification on the validation samples is the performance measure of interest[6]. The results are 

21 fi 6 fi 1 estimated performance distributions the corresponding pair-wise comparisons based on mixed 

effects models and test decisions for a given fi = 0:05, and the resulting preference 

relations Note that we present selected results, the complete results are available in 

the supplemental material.  

 

Grasshopper domain: 

In this application example we are interested in finding the best algorithm among the candidate 

algorithm as a prediction component of an enterprise application software system. The domain is the domain of 

grasshopper species in Bavaria (Germany), the task is to learn whether a species is present or absent in a specific 

territory. The quadrants where a species is present are positively classified; as negatively classified quadrants we 

draw random samples from the remaining ones. If enough remaining quadrants are available we create a balanced 

classification problem, otherwise we use all remaining quadrants. I only used data sets with more than 300 

positively classified quadrants {so, the Grasshopper domain is finally defined by 33 data sets[3-4]. 
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Figure 1: Trellis graphic with box plot of the candidate algorithms' misclassification error on the Grasshopper 

domain. Each data set is one grasshopper species. 

 
Figure 2: (a) The Grasshopper domain's benchmark summary graph; the color of the nodes indicate the 

algorithm with the minimum median misclassification error. (b) The Grasshopper domain's simultaneous 95% 

confidence intervals for multiple significant comparisons for a fitted linear mixed-effects model on the 

algorithms' misclassification errors. 

 

The benchmark experiment is defined with B = 100 replications, bootstrapping as re-sampling scheme to 

generate the learning samples  and the out-of-bag scheme for the corresponding validation samples  

Misclassification on the validation samples is the performance measure of interest. Note that I presented selected 

results; the complete results are available in the supplemental material. Above figure shows the Trellis plot with 

box plots for the six algorithms' mis- classification errors. I see that for most data sets the relative order of the 

candidate algorithms seems to be similar, but that the individual datasets are differently \hard" to solve. The 

locally computed preference relations   contains no transitive relations; therefore, a visualization 

using the benchmark summary plot is not possible. Now, one possibility is to plot the asymmetric part of the 

transitive reduction for each of the 33 relations in a Trellis plot. However, such a plot is very hard to read and the 

benchmark summary graph provides a simpler visualization (albeit with less information).Figure 4.9a shows the 

bsgraph with the six smallest distance levels visible[7]. 
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II. Regression Diagnostics and procedures 
Simply stated, the collinearity problem is that near linear relations among the explanatory variable 

vectors tends to degrade the precision of the estimated parameters. Degraded precision refers to a large variance 

associated with the parameter estimates. Why should this be a matter of concern? Quite often the motivation for 

estimating an economic model is hypothesis testing to draw inferences about values of the model parameters. A 

large variance, or a lack of precision, may inhibit our ability to draw inferences from the hypothesis tests [9-10]. 

 

III. Suggestion of the problem 
One way to illustrate the increase in dispersion of the least-squares estimates is with a Monte Carlo 

experiment. We generate a collection of y vectors from a model wherever the informative variables are 

moderately orthogonal, involving no close to linear dependencies. Different sets of y vectors are then generated 

from a model wherever the informative variables become more and more collinear. An examination of the 

variances of the 


estimates from these experimental models should illustrate the increase in dispersion of the 

estimates arising from increasing the severity of the collinear relations between the explanatory variables. The 

specific experiment concerned victimization three informative variables during a model shown in (1). 

1 2 3 (1)Y X X X         

Initially, the three explanatory variables X1,X2,X3, were generated as random numbers from a uniform 

distribution. This ensures that they will be reasonably orthogonal or independent, not involved in any near linear 

dependencies. We followed a typical Monte Carlo procedure, producing 1000 different y vectors by adding a 

normally distributed random " vector to the same three fixed X's multiplied times the parameters , ,   , 

whose values were set to unity[13]. 

After estimating the parameters for the 1000 data sets we find the mean and variance of the distribution of the 

1000 sets of estimates. The mean and variance of each parameter will characterize the distribution of outcomes 

from parameter estimation for a model that obeys the Gauss-Markov assumptions and contains no collinearity 

problems. This also provides a 

benchmark against which to judge the impact on the distribution of estimates from near linear dependencies that 

we introduce next [14]. 

To create collinear relations we used the scheme shown in (2) where we no longer generate the X2 and X3 

vectors independently. 

X2 = X3 + u          (2) 

Instead, we generate the X2 vector from the X3 vector with an added random  error vector u. Equation (2) 

represents X2 as a near linear combination of X3 where the strength of the linear dependency is determined by 

the size of the u vector[7-8]. To generate information sets with an increasing quantity of collinearity between X2 

and X3, we tend to adopted the subsequent strategy: 

1. first set the variance of the random normal error vector u at 1.0 and generate the X2 vector from the X3 

vector. 

2. Use the 3 vectors X1,X2,X3 to get a group of 1000 Y vectors by adding the precise same " vector that we 

have a tendency to utilized in the benchmark generation to those three mounted X's. The virtue of victimization 

the " vector from the benchmark is that, we have a tendency to hold the noise within the information generation 

process constant. This should provide a ceteris paribus experiment where the only change between these 1000 Y 

vectors and those from the benchmark generation is the collinear nature of the X2 and X3 vectors. 

3. Two additional sets of 1000 Y vectors were generated in the same manner based on the same X3 and X1 

vectors, but with two new versions of the X2 vector generated from X3. The new X2 vectors were produced by 

decreasing the variance of the random vector u to0.5 and 0.1, respectively. In summary, we have four sets of 

1000 Y vectors, one benchmark set, where the three explanatory variables are reasonably independent, and three 

sets where the collinear relation between the X2 and X3 vectors becomes increasingly severe. The MATLAB 

code to produce this experiment is: 

 

Application 1 Collinearity experiment 

% ----- Application 1 Collinearity experiment 

n=100; k=4; u1 = randn(n,1); u2=u1*0.5; u3 = u1*0.1; 

x1 = [ones(n,1) rand(n,k-1)]; % orthogonal x's 

x2 = [x1(:,1:2) x1(:,4)+u1 x1(:,4)]; % collinear set 1 

x3 = [x1(:,1:2) x1(:,4)+u2 x1(:,4)]; % collinear set 2 

x4 = [x1(:,1:2) x1(:,4)+u3 x1(:,4)]; % collinear set 3 

ndraws = 1000; beta = ones(k,1); 

bsave1 = zeros(ndraws,k); bsave2 = zeros(ndraws,k); 

bsave3 = zeros(ndraws,k); bsave3 = zeros(ndraws,k); 
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for i=1:ndraws; % do 1000 experiments 

e = randn(n,1); 

y = x1*beta + e; res = ols(y,x1); b1save(i,:) = res.beta'; 

y = x2*beta + e; res = ols(y,x2); b2save(i,:) = res.beta'; 

y = x3*beta + e; res = ols(y,x3); b3save(i,:) = res.beta'; 

y = x4*beta + e; res = ols(y,x4); b4save(i,:) = res.beta'; 

end; 

% compute means and std deviations for betas 

mtable = zeros(4,k); stable = zeros(4,k); 

mtable(1,:) = mean(b1save); mtable(2,:) = mean(b2save); 

mtable(3,:) = mean(b3save); mtable(4,:) = mean(b4save); 

stable(1,:) = std(b1save); stable(2,:) = std(b2save); 

stable(3,:) = std(b3save); stable(4,:) = std(b4save); 

% print tables 

in.cnames = strvcat('alpha','beta','gamma','theta'); 

in.rnames = strvcat('beta means','bench','sigu=1.0','sigu=0.5','sigu=0.1'); 

in.fmt = '%10.4f'; 

mprint(mtable,in); 

in.rnames = strvcat('stand dev','bench','sigu=1.0','sigu=0.5','sigu=0.1'); 

mprint(stable,in); 

 

IV. The results of the experiment 
It showing both the means and standard deviations from the distribution of estimates are: 

beta means   alpha      beta   gamma  theta 

benchmark   1.0033  1.0027  1.0047  0.9903 

sigu=1.0   1.0055  1.0027  1.0003  0.9899 

sigu=0.5   1.0055  1.0027  1.0007  0.9896 

sigu=0.1   1.0055  1.0027  1.0034  0.9868 

standard_dev     alpha               beta   gamma  theta 

benchmark   0.3158  0.3285  0.3512  0.3512 

sigu=1.0   0.2697  0.3286  0.1025  0.3753 

sigu=0.5   0.2697  0.3286  0.2049  0.4225 

sigu=0.1   0.2697  0.3286  1.0247  1.1115 

Table 1. The Distribution of Estimates 

 

A first point to note about the experimental outcomes is that the means of the estimates are unaffected 

by the collinearity problem. Collinearity creates problems with regard to the variance of the distribution of the 

estimates, not the mean. A second point is that the benchmark data set produced precise estimates, with standard 

deviations for the distribution of outcomes around 0.33. These standard deviations would result in t-statistics 

around 3, allowing us to infer that the true parameters are significantly different from zero. Turning attention to 

the standard deviations from the three collinear data sets we see a clear illustration that increasing the severity of 

the near linear combination between X2 and X3 produces an increase in the standard deviation of the resulting 

distribution for the  and  estimates associated with X2 and X3. The increase is about three-fold for the worse 

case where 2

u = 0.1 and the strength of the collinear relation between X2 and X3 is the greatest. 

A diagnostic technique presented of Regression Diagnostics by Belsley, Kuh, and Welsch (1980) is 

implemented in the function bkw. The diagnostic is capable of determining the number of near linear 

dependencies in a given data matrix X, and the diagnostic identifies which variables are involved in each linear 

dependency. This diagnostic technique is based on the Singular Value Decomposition that decomposes a matrix 
1X UDV , where U contains the eigenvectors of X and D is a diagonal matrix containing eigenvalues. For 

diagnostic purposes the singular value decomposition is applied to the variance-covariance matrix of the least-

squares estimates and rearranged to form a table of variance-decomposition proportions[11]. The procedure for 

a k variable least-squares model is described in the following. The variance of the estimate k


can be expressed 

as shown in (3). 



Data Analysis and Interpretation of the Problem  

DOI: 10.9790/5728-1304027684                                         www.iosrjournals.org                                     80 | Page 

2 2 2

1

var( ) / (3)
U KJ J

K

k

J

V  




   

The diagnostic value of this expression lies in the fact that it decomposes var( k


) into a sum of components, 

each associated with one of the k singular values ¸2j that appear in the denominator. Expression (4) expands the 

summation in (3) to show this more clearly. 

2 2 2 2 2

11 1 12 2 13 3 1var( ) {( / ) ( / ) ( / ) ..... ( / )} (4)k K KV V V V     


      

Since small ¸j are associated with near linear dependencies, an unusually large proportion of the variance of the 

coefficients of variables involved in the linear dependency will be concentrated in the components associated 

with the small 
j . The table is formed by defining the terms φ and  shown in (5) and (6). 
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 

  

The term ji is called a variance-decomposition proportion. These magnitudes are placed in a table as shown 

in Table 1. 

 
Table 2: Variance-decomposition proportions table 

 

It is shown in Belsley, Kuh and Welsch (1980) that a large value of the condition index, k(X) = 

¸ max/¸ iis associated with each near linear dependency, and the variates involved in the dependency are those 

with large proportions of their variance associated with large k(X) magnitudes. Empirical tests performed of 

Belsley, Kuh, and Welsch (1980) determined that variance-decomposition proportions in excess of 0.5 indicate 

the variates involved in specific linear dependencies. The joint condition of magnitudes for k(X) >30, and 

ij values >0.5 diagnose the presence of strong collinear relations as well as determining the variants involved. 

Table 3 shows an example of how the variance-decomposition proportions table might look for an actual data 

set. The example in the table would indicate that there exists one condition index, k(X), of 87 and another of 98. 

For these two condition indices we examine the variance proportions looking for those that exceed 0.5. We find 

that for k(X) = 87, two variance-proportions exceed 0.5 pointing towards a near linear relationship between the 

x1 and x5 variable. The k(X) = 98 also contains two variance-proportions that exceed 0.5 indicating the presence 

of a collinear relation involving x2 and x6. From Table 3  then we would conclude that two possible near linear 

relations existed in the data set. 

 

 
Table 3: BKW collinearity diagnostics 
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The function allows a variable name vector and format as optional inputs. As a convenience, either a 

variable name vector with names for the variables in the data matrix X or one that includes a variable name for y 

as well as the variables in X can be used. This is because the bkw function is often called in the context of 

regression modeling, so we need only construct a single variable name string vector that can be used for printing 

regression results as well as labeling variables in the bkw output. As an example of using the bkw function to 

carry out tests for collinearity, the program below generates a collinear data set and uses the bkw function to test 

for near linear relationships. 

 

Application 2 Using the bkw() function 

% ----- Application 2 Using the bkw() function 

n = 100; k = 5; 

x = randn(n,k); 

% generate collinear data 

x(:,1) = x(:,2) + x(:,4) + randn(n,1)*0.1; 

bkw(x); 

 

V. The results of the program 
They notice the close to linear relationship between variables one, two and four that we have a tendency to 

generated within the information matrix X. Belsley, Kuh, Welsch Variance-decomposition 
K(x) var1 var2 var3 var4 var5 

1 0 0 0 0 0 

15 0 0 0.26 0 0.4 

17 0 0 0.24 0 0 

20 0 0 0.47 0 0.59 

31 1 0.99 0.03 0.99 0.01 

Table 4. To Linear relationship between variables 

 

A common corrective procedure for this problem is ridge regression, which is implemented by the 

function ridge. Ridge regression attacks the problem of small eigenvalues in the X X matrix by augmenting or 

inflating the smallest values to create larger magnitudes. The increase in small 

eigenvalues is accomplished by adding a diagonal matrix γIkto the X X matrix before inversion. The scalar 

term γis called the `ridge' parameter. The ridge regression formula is shown in (7). 

 
1

(7)R KX X I X y 



    

Recall that X X is of dimension (k x k), where k is the number of explanatory variables in the model. 

Of the k eigenvalues associated with X X , the smallest are presumably quite small as a result of the collinear 

relationship between some of the explanatory variables. To see how addition of the diagonal matrix γIk to the 

X X matrix increases the smallest eigenvalues, consider using the singular value decomposition of X X . This 

allows us to rewrite (7) as: 

 
1

(8)R KV DV I X y 



    

 

Since γIk is a diagonal matrix, containing zeros on the off-diagonal elements, adding this to the 

V DV matrices will only affect the elements of the diagonal matrix D. Noting this, we find that the ridge 

estimation formula can be written as in (9) 

 
1

( ) (9)R KV DV I V X y 



    

 

he diagonal matrix D from the Singular Value Decomposition contains the eigenvalues of the 

X X matrix, and equation (9) shows that the ridge parameter γis added to each and every eigenvalue on the 

diagonal of the matrix D. An expansion of the matrix (D +γIk) shown in (10) should make this clear. 

  

      (10) 
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To illustrate how addition of the  parameter to the eigenvalues impacts the estimates, consider the 

following numerical example.  As an example of using this function, consider the following program where we 

recover the ridge parameter determined using the Hoerl and Ken-nard formula, double it and produce a trace 

plot using values between θ= 0 and 2 θ. A value of θ= 0 represents least-squares estimates, and 2 θis twice the 

value we found using the Hoerl-Kennard formula. 

 

Application 3 Using the rtrace() function 

% ----- Application 3 Using the rtrace() function 

n = 100; k = 5; 

x = randn(n,k); e = randn(n,1); b = ones(k,1); 

% generate collinear data 

x(:,1) = x(:,2) + x(:,4) + randn(n,1)*0.1; 

y = x*b + e; 

% ridge regression 

res = ridge(y,x); 

theta = res.theta; 

tmax = 2*theta; 

ntheta = 50; 

vnames = strvcat('y','x1','x2','x3','x4','x5'); 

rtrace(y,x,tmax,ntheta,vnames); 

 

VI. The results from Ridge trace plot 
To the extent that the parameter values vary greatly from those associated with values of θ= 0, we can 

infer that a great deal of bias has been introduced by the ridge regression. A graph produced by rtraceis shown 

in Figure 3, indicating a fair amount of bias associated with 3 of the 5 parameters in this example. 

 

 
Figure 3: Ridge trace plot 

 

The user can specify subjective prior information in the form of a normal prior for the parameters  in 

the model. Theil and Goldberger showed that this prior information can be expressed as stochastic linear 

restrictions taking the form: 

c = R + u,   (11) 

These matrices are used as additional dummy or fake data observations in the estimation process. The original 

least-squares model in matrix form can be rewritten as in (12) to show the role of the matrices defined above. 

                    (12) 

The partitioning symbol, (…), in the matrices and vectors of (12) designates that we are adding the 

matrix R and the vectors c and u to the original matrix X and vectors y and ε. These additional observations 

make it clear we are augmenting the weak sample data with our prior information.  
 

VII. Outlier diagnostics and procedures 
Outlier observations are best-known to adversely impact least-squares estimates because the aberrant 

observations generate large errors. The least-squares criterion is such that observations associated with large 

errors receive more weight or exhibit more influence in determining the estimates of β. A number of procedures 

have been proposed to diagnose the presence of outliers and numerous alternative estimation procedures exist 

that attempt to “robustify” or down weight aberrant or outlying observations. Function dfbeta produces a set of 

diagnostics discussed in Belsley, Kuh and Welsch (1980). They suggest examining the change in least-squares 

estimates 


that arise when we omit each observation from the regression sample sequentially. The basic idea is 
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that eliminating an influential observation will produce a large change in the 


estimates, allowing us to detect 

these observations graphically.  

An example where we generate a data set and then artificially create two outliers at observations #50 

and #70 is shown below. The graphical output from pltdfb in Figure shows a graph of the change in 




associated with omitting each observation. We see evidence of the outliers at observations #50 and #70 in the 

plot. 

 

Application 5 Using the dfbeta() function 

% ----- Application 5 Using the dfbeta() function 

n = 100; k = 4; 

x = randn(n,k); e = randn(n,1); b = ones(k,1); 

y = x*b + e; 

% now add a few outliers 

y(50,1) = 10.0; y(70,1) = -10.0; 

vnames = strvcat('y','x1','x2','x3','x4'); 

res = dfbeta(y,x); 

plt_dfb(res,vnames); 

pause; 

plt_dff(res); 

 

VIII. The results from the regression data set 
The figure 1.3 shows another diagnostic `dffits' produced by the function dfbeta that indicates how the 

fitted values change when we sequentially eliminate each observation from the regression data set. A similar 

function diagnose computes many of the traditional statistics from the regression diagnostics literature and 

prints this information for candidate outlier observations. 

 

 
   Figure 4. Dfbeta plots                       Figure 5. Dffits plots 

 

The function incorporates four alternative weighting schemes that have been proposed in the literature 

on iteratively re-weighted regression methods. The routine olst performs regression based on an assumption that 

the errors are t-distributed rather than normal, which allows for \fat-tailed" error distributions. 

 

Application 6 Using the pairs() function 

% ----- Application 6 Using the pairs() function 

n = 100; 

y1 = randn(n,1); 

y2 = 2*y1 + randn(n,1); 

y3 = -2*y2 + randn(n,1); 

y4 = randn(n,1); % uncorrelated with y1,y2,y3 

y5 = randn(n,1).^4; % leptokurtic variable 

y = [y1 y2 y3 y4 y5]; 

vnames = strvcat('apples','oranges','pairs','ha ha','leptoku'); 

pairs(y,vnames); 
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IX. The Results Pairwise Scatterplot 
The documentation was altered to conform to that for other functions in the Econometrics Toolbox and 

a variable names capability was added to the function. The following program illustrates use of this function and 

Figure 6 shows the resulting pairwise scatterplot. 

 

 
Figure6. Pairwise scatter plots 

 

X. Conclusion 
These methods to use on analyze single data set-based benchmark experiments. Exploratory and 

inferential methods are used to compare the distributions and to finally set up mathematical (order) relations 

between the algorithms. The UCI domain's simultaneous 95% confidence intervals for multiple Significant and 

relevant comparisons for a fitted linear mixed-effects model on the algorithms' misclassification errors. 

Archetypes of the domain present a different approach to analyze the performances pmbkj of a set of candidate 

algorithms ak on a domain D. Benchmarking UCI and Grasshopper domains presented two domain-based 

benchmark experiments. A large number of regression diagnostic tests showing the problems and solution of 

diagnostics and procedures and Outlier diagnostics and procedures have been proposed in the econometrics 

literature. MATLAB and Gauss code for implementing these methods can be found on many sources. The 

Econometrics Toolbox design allows these routines to be implemented and documented in a way that provides a 

consistent user interface for printing and plotting the diagnostics. 

 

References 
[1]. Gilks, W.R., S. Richardson and D.J. Spiegelhalter. 1996. Markov Chain Monte Carlo in Practice, (London: Chapman & Hall). 

[2]. Goldfeld S.M. and R. E. Quandt 1973. \A Markov model for switching regressions", Journal of Econometrics, Vol. 1, pp. 3-16. 

[3]. Hastings, W. K. 1970. \Monte Carlo sampling methods using Markov chains and their applications," Biometrika, Vol. 57, pp. 97-
109. 

[4]. Hoerl A.E., and R.W. Kennard, 1970. \Ridge Regression: Biased Estimation and Applications for Nonorthogonal Problems," 

Technometrics,Vol. 12, pp. 55-82. 
[5].  Hoerl A.E., R.W. Kennard and K.F. Baldwin, 1975. “Ridge Regression: Some Simulations," Communications in Statistics, A, Vol. 

4, pp.105-23. 

[6]. Shoesmith, Gary L. 1995. \Multiple Cointegrating Vectors, error Correction, and Litterman's Model" International Journal of 
Forecasting,Vol. 11, pp. 557-567. 

[7]. Simon, S.D., and J.P. LeSage, 1988a. \The Impact of Collinearity Involving the Intercept Term on the Numerical Accuracy of 

Regression, “Computational Statistics in Economics and Management Science, Vol.1 no. 2, pp. 137-152. 
[8]. Simon, S.D., and J.P. LeSage, 1988b. \Benchmarking Numerical Accuracy of Statistical Algorithms," with Stephen D. Simon, 

Computational Statistics and Data Analysis, Vol. 7, pp. 197-209. 

[9]. Kenneth J. Arrow. Social Choice and Individual Values. Yale University Press, second edition,   1963. ISBN 0300013647. 
[10]. A. Asuncion and D.J. Newman. UCI machine learning repository, 2007. URL  http://www.ics.uci.edu/~mlearn/MLRepository.html. 

[11]. Douglas Bates and Martin Maechler. lme4: Linear Mixed-Effects Models using S4Classes, 2010. URL http://CRAN.R-

project.org/package=lme4. R packageversion 0.999375-33. 
[12]. Richard A. Becker, William S. Cleveland, and Ming-Jen Shyu. The visual design and control of Trellis display. Journal of 

Computational and Graphical Statistics, 5(2):123{155, 1996. doi: 10.2307/1390777. 

[13]. Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995. ISBN 0198538642. 
[14]. Becker, R. A., Cleveland, W. S., and Shyu, M.-J. (1996). The visual design and control of Trellis display. Journal of Computational 

and Graphical Statistics, 5(2), 123–155. 

 

 

 
 

 

 
 

S MD Riyaz Ahmad. “Data Analysis and Interpretation of the Problem .” IOSR Journal of 

Mathematics (IOSR-JM) , vol. 13, no. 4, 2017, pp. 76–84. 


