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 Abstract: In this paper we shall study fuzzy transportation problem, and we introduce an approach for solving 

a wide range of such problem by using a method which apply it for ranking of the fuzzy numbers. Some of the 

quantities in a fuzzy transportation problem may be fuzzy or crisp quantities. In many fuzzy decision problems, 

the quantities are represented in terms of fuzzy numbers may be triangular or trapezoidal. Thus, some fuzzy 

numbers are not directly comparable. First, we transform the fuzzy quantities as the cost, supply and demands, 

into crisp quantities by using Centroid ranking method [9] and then by using the VAM algorithm to solve and 

obtain the solution of the problem. 
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I. Introduction 
 A fuzzy transportation problem is a transportation problem in which the transportation cost, supply and 

demand quantities are fuzzy quantities.  The objective of the fuzzy transportation problem is to determine the 

shipping schedule that minimizes the total fuzzy transportation cost while satisfying fuzzy supply and demand 

limits.  Very first basic transportation problem was developed by Hitchcock [1].  In 1965, Zadeh [2] introduced 

the notation of fuzziness that was reinforced by Bellman and Zadeh [3].  Zimmermann [4,5] has discussed about 

the effective solutions of fuzzy set theory, Fuzzy linear programming with several objective functions.  In 1981 

R.R. Yager [6] procedure for ordering fuzzy subsets of the unit interval, S.H. Chen [7] (1985) Ranking fuzzy 

numbers with maximizing set and minimizing set.  S. Chanas, D. Kuchta [8] (1996) solved Fuzzy integer 

transportation problem.  Defuzzification is a process that converts a fuzzy set or fuzzy number into a crisp value 

or number. On the centorids of fuzzy numbers by Wang [9]. P. Fortemps and M. Roubens [10] (1996) work on  

Ranking and defuzzification methods based on area compensation.  S. Abbasbandy and T. Hajjari [11], A new 

approach for ranking of trapezoidal Fuzzy numbers (2009).  A. Nagoor Gani and K. Abdul Razak [12] (2006) 

have solved fuzzy transportation problem in two stages.  Then P. Pandian and G. Natrajan [13] (2010) has 

solved fuzzy transportation problem of trapezoidal numbers with algorithms and zero point method.  A new 

method on ranking generalized trapezoidal fuzzy numbers based on centroid point and standard deviations by 

Chen and Chen [14] was derived. A new approach for ranking fuzzy numbers by distance method by 

C.H.Cheng[15].   

In this paper we investigate more realistic problems, namely the transportation problem with fuzzy 

costs.  Since the objective is to minimize the total cost or to maximize the total profit, subject to some fuzzy 

constraints, the objective function is also considered as a fuzzy number.  First we transform the fuzzy quantities 

as the cost, supply and demands, into crisp quantities by centroid ranking method, and then by classical 

algorithms, obtain the optimum solution of the problem.  This method is a systematic procedure, easy to apply 

and can be utilized for the all the type of transportation problem. 

 This paper is organized as follows: In section 2 deals with some basic definitions.  In section 3 new 

ranking functions are discussed.  In section 4 provides the mathematical formulation of fuzzy transportation 

problem and  MODI methods is adopted to solve Fuzzy transportation problems ,  illustrate the proposed 

ranking  method with numerical example . In section 5 the paper ends with a conclusion. 
 

II. Preliminaries 

2.1 Definition Let U be a universe of discourse.A fuzzy set A
~

of U is defined by a membership function 

],1,0[::~ Uf
A
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2.2 Definition 
A fuzzy number is a convex fuzzy subset of the real line R and is completely defined by its 

membership function. Let A
~

 be a fuzzy number, whose membership function )(~ xf
A

can be defined as [9] 
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Where  is a constant, ],0[],[: 21~ aaf L

A
and ],0[],[: 43~ aaf R

A
are two strictly 

monotonically and continuous mapping R to closed interval  If ,then A
~

is a normal fuzzy 

number; otherwise it is said to be a non normal fuzzy number. If the membership function )(~ xf
A

is piecewise 

linear, then A
~

is referred to as a trapezoidal fuzzy number and is usually denoted by 

);,,,(
~

4321 aaaaA  .In particular, when 32 aa   ,the trapezoidal fuzzy number is reduced to a triangular 

fuzzy number denoted by );,,(
~

431 aaaA  .So, triangular fuzzy numbers are special cases of trapezoidal 

fuzzy numbers. 

          

       Since )(~ xf L

A
and )(~ xf R

A
are both strictly monotonically and continuous functions, their inverse functions 

exists and should also be continuous and strictly monotonical .Let ],[],0[: 21~ aag L

A
 and 

],[],0[: 43~ aag R

A
 be the inverse functions of )(~ xf L
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and )(~ xf R
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respectively. Then )(~ yg L
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should exists. In the case of trapezoidal fuzzy number the inverse functions 
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can be analytically expressed as  

 


yaa
ayg L

A

)(
)( 12

1~


   y0,  

 ,
)(

)( 34

4~



yaa
ayg R

A


  y0  

 

 Consider a generalised fuzzy number );,,,(
~

4321 aaaaA   whose membership function is defined 

as  





























othewise0

axa if
)a(a

x)(a

axa if

axa if
)a(a

)a(x

(x)f

43

34

4

32

21

12

1

A
~






 

In order to determine centriod point ))
~

(~),
~

(~( 00 AyAx  of a fuzzy number A
~

,and Wang[9] provided following 

centroid formulae: 
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Where )
~

(~
0 Ax and )

~
(~

0 Ay  is the centroid of the general trapezoidal fuzzy number. 

 

2.3 Properties of Trapezoidal fuzzy numbers   

 Let ),,,(
~

4321 aaaaA  , ),,,(
~

4321 bbbbB   be two trapezoidal fuzzy numbers, then the fuzzy 

numbers addition, fuzzy numbers subtraction and fuzzy members multiplication are defined as follows. 

(i) B
~

A
~
  = ),,,(),,,( 43214321 bbbbaaaa   = ),,,( 44332211 babababa   

(ii) B
~

A
~
  = ),,,(),,,( 43214321 bbbbaaaa   = ),,,( 14233241 babababa   

(iii) B
~

A
~
  = ),,,(),,,( 43214321 bbbbaaaa  = ),,,( 4321 tttt  

        Where ),,,min( 441441111 babababat   

        ),,,min( 332332222 babababat   

        ),,,max( 332332223 babababat   

        ),,,max( 441441114 babababat   
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III. Proposed Ranking Method 
               An efficient approach for comparing the fuzzy numbers is by use of a ranking function 

,)(: RRFR   where )(RF  is a fuzzy numbers defined on set of real numbers, which maps each fuzzy 

number into a real number, where natural order exists. Wang [9] used a centroid based distance approach to rank 

fuzzy numbers. 

For trapezoidal fuzzy number );,,,(
~

4321 aaaaA  , the ranking function is defined as  
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For any two trapezoidal fuzzy numbers ),,,(
~

4321 aaaaA   , ),,,(
~

4321 bbbbB  then we have 
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IV. Mathematical Formulation Of Fuzzy Transformation Problem 
The fuzzy transportation problems, in which a decision maker is uncertain about the precise value of 

transportation cost, availability and demand, can be formulated as follows 
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Where m = total number of sources 

n = total number of destinations 

ia~  = the fuzzy availability of the product at ith source 

ib
~

 = the fuzzy demand of the product at jth destination 

ijc~  = the fuzzy transportation cost for unit quantity of the product from ith source to jth destination 

ijx~  = the fuzzy quantity of the product that should be transported from ith source to jth destination to minimize 

the total fuzzy transportation cost 

 

m

1i ia~  = total fuzzy availability of the product 

 

n

1j jb
~

 = total fuzzy demand of the product 

  

m

1i

n

1j ijijx
~c~  = total fuzzy transportation cost 

If  


n

1j j

m

1i i b
~

a~  then the fuzzy transportation problem is said to be balanced fuzzy transportation 

problem, otherwise it is called unbalanced fuzzy transportation problem. 

 

4.1. Algorithm for Vogel Approximation method 

 

Step 1. Find the crisp value of the given Fuzzy Transportation problem by using centroid ranking method. 
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Step 2. Balance the given fuzzy transportation problem if either (total supply > total demand) or (total supply < 

total demand). 

Step 3. Determine the penalty cost for each row and column by subtracting the lowest cell cost in the row or 

column from the next cell cost in the same row or column. 

Step 4. Select the row or column with the highest penalty cost (breaking tiles arbitrarily or choosing the lowest 

cost cell). 

Step 5. Allocate as much as possible to the feasible cell with the lowest transportation cost in the row or 

column with the highest penalty cost. 

Step 6. Repeat 3 and 4 until all requirements have been meet. 

Step 7. Compute total transportation cost for the feasible allocations. 

 

4.2 Numerical Examples 
Consider the fuzzy transportation problem, 

 The following table shows all the necessary information on the availability of supply to each 

warehouse, the following requirement of each market and unit transportation cost (in Rs) from each warehouse 

to each market.  Here cost value, supplies and demands are trapezoidal fuzzy numbers.  Here FAi and FRi are 

fuzzy supply and fuzzy demand.  The given problem is balanced transportation problem. There exists fuzzy 

initial basic feasible solution. 

Table 1 
 FR1 FR2 FR3 FR4 Fuzzy Supply 

FA1 (1, 2, 3, 4) (1, 3, 4, 6) (9, 11, 12, 14) (5, 7, 8, 11) (1, 6, 7, 12) 

FA2 (0, 1, 2, 4) (1, 0, 1, 2) (5, 6, 7, 8) (0, 1, 2, 3) (0, 1, 2, 3) 

FA3 (3, 5, 6, 8) (5, 8, 9, 12) (12, 15, 16, 19) (7, 9, 10, 12) (5, 10, 12, 17) 

Fuzzy Demand (5, 7, 8, 10) (1, 5, 6, 10) (1, 3, 4, 6) (1, 2, 3, 4)  

 

By using new ranking method of the trapezoidal fuzzy numbers, 
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For taking 1 ,we have 

(1, 2, 3, 4) = 2.54 (0, 1, 2, 4) = 1.84 (3, 5, 6, 8) = 5.51 

(1, 3, 4, 6) = 3.52 (1, 0, 1, 2) = 0.65 (5, 8, 9, 12) = 8.51 

(9, 11, 12, 14) = 11.51 (5, 6, 7, 8) = 6.51 (12, 15, 16, 19) = 15.51 

(5, 7, 8, 11) = 7.82 (0, 1, 2, 3) = 1.56 (7, 9, 10, 12) = 9.51 

Rank of all Supply: (1, 6, 7, 12) = 6.51, (0, 1, 2, 3) = 1.56, (5, 10, 12, 17) = 11.01 

Rank of all fuzzy Demand: (5, 7, 8, 10) = 7.51, (1, 5, 6, 10) = 5.51, (1, 3, 4, 6) = 3.52,  

(1, 2, 3, 4) = 2.54. 

 

Substitute these values in fuzzy transportation problem; we get the crisp transportation problem which is shown 

following table. 

 

Table 2 
 FR1 FR2 FR3 FR4 Fuzzy available 

FA1 2.54 3.52 11.51 7.82 6.51 

FA2 1.84 0.65 6.51 1.56 1.56 

FA3 5.51 8.51 15.51 9.51 11.01 

Fuzzy requirement 7.51 5.51 3.52 2.54 19.08 

 

 

The fuzzy transportation problem is balanced.  After applying the  VAM procedure for Initial Basic Feasible 

solution, the allocations are as follows 
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Table 3 
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6.51 

5.51 

 

8.51 

3.52 

15.51 

0.98 

9.51 

 

11.01 

 

Fuzzy 
requirement 

 

7.51 5.51 3.52 2.54 19.08 

. 

Minimum Transportation cost = (2.54  1) + (3.52  5.51) + (1.56  1.56) + (5.51  6.51) + 

             (15.51  3.52) + (9.51  0.98) = 124.1539. 

which is not optimal solution. 

Using MODI method, the optimal solution is given by 

 
Table 4 

  

Table 5 
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3.52 

1 
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1.84 
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1.56 

 

FA3 

 

7.51 

5.51 

 

8.51 

0.96 

15.51 

2.54 

9.51 

 

The above table satisfies the rim conditions with (m+n1) non negative allocations at independent positions. 

Thus the optimal allocation is 

x12 = 5.51,   x13 = 1,   x23 = 1.56,   x31 = 7.51,   x33 = 0.96,   x34 = 2.54 

 

The crisp value of the fuzzy transportation problem is: 

Total cost = (3.52  5.51) + (11.51  1) + (6.51  1.56) + (5.51  7.51) + (15.51  0.96) + (9.51  2.54) 

    = 121.4859. 
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u2 = 7.95 

 

FA3 
 

6.51 

5.51 

6.49 

8.51 
2.02 

3.52 

15.51 

0.98 

9.51 

u3 = 0 

 

 

v1 = 5.51 

 

v2 = 6.49 v3 = 15.51 v4 = 9.51  
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V. Conclusion 
 In this paper, the transportation costs are considered as imprecise numbers by fuzzy numbers which are 

more realistic and general in nature.  More over fuzzy transportation problem of trapezoidal fuzzy number has 

been transformed into crisp transportation problem using ranking method.  A numerical example shows that by 

this method we can have the optimal solution. 
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