Lacunary Arithmetic Statistical Convergence For Double Sequences.

A. M. Brono¹ M. M. Karagama² And F. B. Ladan³

¹Department of Mathematical Sciences, University of Maiduguri, Borno State, Nigeria Email: bronoahmadu@unimaid.edu.ng ²Department of Mathematical Sciences, University of Maiduguri, Borno State, Nigeria Email: mustaphakaragama@gmail.com ³Department of Mathematical Sciences, University of Maiduguri, Borno State, Nigeria Email: falmatabladan@gmail.com

Abstract: This paper extends the recently introduced summability concept of convergence namely; arithmetic statistical convergence and lacunary arithmeticstatistical convergence, to double sequences. We shall also investigate the relationship between these concepts and prove some inclusion theorems.

Keywords and Phrases: Summability, Arithmetic statistical convergence, lacunary arithmetic statistical convergence and double sequences.

Date of Submission: 02-11-2017 Date of acceptance: 24-11-2017

I. **Introduction:**

The concept of statistical convergence was introduced by Fast [4] and it was further investigated from the sequence space point of view and linked with summability theory by Fridy [2], Connor [3], Fridy and Orhan [1], Šalát [5] and many others.

The idea of arithmetic convergence was introduced by Ruckle [9]. Yaying and Hazarika [8] used this concept of arithmetic convergence introduced arithmetic statistical convergence and lacunary arithmetic statistic convergence of single sequence. We shall use the concept of statistical convergence of double sequences. [see Mursaleen (6)] to extend the results of Yaying and Hazarika [8] to double sequences.

II. Lacunary Arithmetic Statistical Convergence.

Definition 2.1: (Yaying and Hazarika [2017]) A sequence $x = (x_k)$ is called arithmetically convergent if for each $\varepsilon > 0$ there is an integer *l* such that for every integer k we have $|x_k - x_{(k,l)}| < \varepsilon$, where the symbol $\langle k, l \rangle$ denotes the greatest common divisor of two integers k and l. We denote the sequence space of all arithmetic convergent sequence by AC.

Definition 2.2 : (Fridy and Orhan [1993])Let $\theta = (k_r)$ be a lacunary sequence. A number sequence $x = (x_k)$ is said to be lacunary statistically convergent to lor S_{θ} -convergent to l, if, for each $\varepsilon > 0$,

$$\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |x_k - l| \ge \varepsilon\}| = 0$$

In this case, one writes $S_{\theta} - \lim x_k = l$ or $x_k \rightarrow (S_{\theta})$. The set of all lacunary statistically convergence sequences is denoted by S_{θ}

Definition 2.3: (Yaying and Hazarika [2017]) A sequence $x = (x_k)$ is said to be arithmetic statistically convergent if for each $\varepsilon > 0$, there is an integer *l* such that

$$\lim_{n\to\infty}\frac{1}{n}|\{k\in n: |x_k-x_{\langle k,l\rangle}|\geq \varepsilon\}|=0$$

We shall use ASC to denote the set of all arithmetic statistical convergent sequences. Thus for $\varepsilon > 0$ and integer 1

ASC = $\{(x_k): \lim_{n \to \infty} \frac{1}{n} | \{k \in n: |x_k - x_{\langle k, l \rangle}| \ge \varepsilon \} | = 0 \}$. We shall write $ASC - \lim_{k \to \infty} x_k = x_{\langle k, l \rangle}$ to denote the sequence (x_k) is arithmetic statistically convergent to $x_{\langle k,l\rangle}$.

Definition 2.4: (Yaying and Hazarika [2017]) Let $\theta = (k_r)$ be a lacunary sequence. The number sequence $x = (x_k)$ is said to be lacunary arithmetic statistically convergent if for each $\varepsilon > 0$ there is an integer l such that

$$\lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : |x_k - x_{\langle k, l \rangle}| \ge \varepsilon\}| = 0$$

We shall write

$$ASC_{\theta} = \left\{ x = (x_k) \colon \lim_{r \to \infty} \frac{1}{h_r} \left| \left\{ k \in I_r \colon |x_k - x_{\langle k, l \rangle}| \ge \varepsilon \right\} \right| = 0 \right\}$$

We shall write $ASC_{\theta} - \lim x_k = x_{(k,l)}$ to denote the sequence (x_k) is lacunary arithmetic statistically convergent to $x_{(k,l)}$.

Definition 2.5: (Yaying and Hazarika [2017]) Let $\theta = (k_r)$ be a lacunary sequence. A lacunary refinement of θ is a lacunary sequence $\theta' = (k'_r)$ satisfying $(k_r) \subseteq (k'_r)$. (See Freedman et al. [].

Definition 2.6: (Yaying and Hazarika [2017]) A function f defined on a subset E of \mathbb{R} is said to be lacunary arithmetic statistical continuous if it preserves lacunary arithmetic statistical convergence i.e. if

 $ASC_{\theta} - \lim x_k = x_{(k,l)} \text{ implies} ASC_{\theta} - \lim f(x_k) = f(x_{(k,l)}).$

Theorem 2.1:(Yaying and Hazarika [2017]) Let $x = (x_k)$ and $y = (y_k)$ be two sequences.

(i) If $ASC - \lim x_k = x_{(k,l)}$ and $a \in \mathbb{R}$, then $ASC - \lim ax_k = ax_{(k,l)}$.

(ii) If $ASC - \lim x_k = x_{\langle k,l \rangle}$ and $ASC - \lim y_k = y_{\langle k,l \rangle}$, then $ASC - \lim x_k + y_k = (x_{\langle k,l \rangle} + y_{\langle k,l \rangle})$.

Theorem 2.2: (Yaying and Hazarika [2017]) Let $x = (x_k)$ and $y = (y_k)$ be two sequences.

(i) If $ASC_{\theta} - \lim x_k = x_{\langle k,l \rangle}$ and $a \in \mathbb{R}$, then $ASC_{\theta} - \lim cx_k = cx_{\langle k,l \rangle}$

(ii) If $ASC_{\theta} - \lim x_k = x_{\langle k,l \rangle}$ and $ASC_{\theta} - \lim y_k = y_{\langle k,l \rangle}$, then $ASC_{\theta} - \lim (x_k + y_k) = (x_{\langle k,l \rangle} + y_k)$

Theorem 2.3: (Yaying and Hazarika [2017]) If $\theta' = (k'_r)$ is a lacunary refinement of a lacunary sequence $\theta = (k_r)$ and $(x_k) \in ASC_{\theta'}$ then $(x_k) \in ASC_{\theta}$.

Theorem 2.4: (Yaying and Hazarika [2017]) Suppose $\beta = (l_r)$ is a lacunary refinement of a lacunary sequence $\theta = (k_r)$. Let $l_r = (k_{r-1}, k_r]$ and $J_r = (l_{r-1}, l_r]$, r = 1, 2, ... If there exists $\delta > 0$ such that

$$\frac{|y_j|}{|y_j|} \ge \delta$$
 for every $J_j \subseteq I_i$. Then $(x_k) \in ASC_{\theta} \Rightarrow (x_k) \in ASC_{\beta}$

Theorem 2.5: (Yaying and Hazarika [2017]) Suppose $\beta = (l_r)$ and $\theta = (k_r)$ are two lacunary sequences. Let $I_r = (k_{r-1}, k_r]$, $J_r = (l_{r-1}, l_r]$, $r = 1, 2, ..., l_{ij} = I_i \cap J_j$, i, j = 1, 2, 3... If there exists $\delta > 0$ such that

 $\frac{|I_{ij}|}{|I_i|} \geq \delta \text{ for every } i, j = 1, 2, 3, \dots, \ I_{ij} \neq \emptyset.$

Then $(x_k) \in ASC_{\theta} \Rightarrow (x_k) \in ASC_{\beta}$.

Theorem 2.6: (Yaying and Hazarika [2017])Let $\theta = (k_r), r = 1, 2, 3, ...,$ be a lacunary sequence. If lim inf $q_r > 1$, then $ASC \subseteq ASC_{\theta}$.

Theorem 2.7: (Yaying and Hazarika [2017]) Forlim sup $q_r < \infty$, we have $ASC_{\theta} ASC$.

We shall now use analogy to extend the above concepts and results to double sequences;

III. Lacunary Arithmetic Statistical Convergence For Double Sequences.

Definition 3.1: A double sequence $x = (x_{k,m})$ is called arithmetically convergent if for each $\varepsilon > 0$ there is an integer *l*, *n* such that for every integer k, m we have $|x_{k,m} - x_{\langle k,l \rangle, \langle m,n \rangle}| < \varepsilon$, where the symbol $\langle k, l, m, n \rangle$ denotes the greatest common divisor of four integers *k*, *l*, *m* and *n*. We denote the double sequence space of all arithmetic convergent sequence by $(AC)_2$

Note that: $g = \langle (\langle k, l \rangle, \langle m, n \rangle) \rangle$ where g denotes the greatest common divisor (gcd) for double sequences. Therefore we shall use g as the above equality throughout this paper.

Definition 3.2: Let $\theta = (k_{r,s})$ be a lacunary double sequence. A double sequence $x = (x_{k,m})$ is said to be lacunary statistically convergent to lor $S_{\theta_{r,s}}$ -convergent to *l*, if, for each $\varepsilon > 0$,

$$\lim_{r,s\to\infty}\frac{1}{h_{r,s}}|\{k,m\in I_{r,s}:|x_{k,m}-l|\geq\varepsilon\}|=0$$

In this case, one writes $S_{\theta_{r,s}} - \lim x_{k,m} = l$ or $x_{k,m} \rightarrow (S_{\theta_{r,s}})$. The set of all lacunary statistically convergence double sequences is denoted by $S_{\theta_{r,s}}$

Definition 3.3: A double sequence $x = (x_{k,m})$ is said to be arithmetic statistically convergent if for each $\varepsilon > 0$, there is an integer *l*, *n* such that

$$\lim_{n\to\infty}\frac{1}{n}|\{k,m\in n: |x_{k,m}-x_g|\geq \varepsilon\}|=0$$

We shall use $(ASC)_2$ to denote the set of all arithmetic statistical convergent double sequences. Thus for $\varepsilon > 0$ and integer l, n

 $(ASC)_2 = \left\{ (x_{k,m}) : \lim_{n \to \infty} \frac{1}{n} | \{k, m \in n : |x_{k,m} - x_g| \ge \varepsilon \} | = 0 \right\}.$ We shall write $(ASC)_2 - \lim_{k \to \infty} x_{k,m} = x_g$ to denote the double sequence $(x_{k,m})$ is arithmetic statistically convergent to x_q

Definition 3.4: Let $\theta = (k_{r,s})$ be a lacunary double sequence. The double sequence $x = (x_{k,m})$ is said to be lacunary arithmetic statistically convergent for double sequences if for each $\varepsilon > 0$ there is an integer l, n such that for every integer $k, m \ge l, n$

$$\lim_{r,s\to\infty}\frac{1}{h_{r,s}}|\{k,m\in I_{r,s}:|x_{k,m}-x_g|\geq \varepsilon\}|=0$$

We shall write

 $ASC_{\theta_{r,s}} = \left\{ x = (x_{k,m}) \colon \lim_{r,s \to \infty} \frac{1}{h_{r,s}} | \{k, m \in I_{r,s} \colon |x_{k,m} - x_g| \ge \varepsilon \} | = 0 \right\}.$ We shall write $ASC_{\theta_{r,s}} - \lim x_{k,m} = x_g$ to denote the double sequence $(x_{k,m})$ is lacunary arithmetic statistically convergent to x_a

Definition 3.5: Let $\theta = (k_{r,s})$ be a lacunary double sequence. A lacunary refinement of θ is a lacunary double sequence $\theta' = (k'_{r,s})$ satisfying $(k_{r,s}) \subseteq (k'_{r,s})$. (See Freedman et al. [7].)

Theorem 3.1 : Let $x = (x_{k,m})$ and $y = (y_{k,m})$ be two double sequences.

If $(ASC)_2 - \lim x_{k,m} = x_{\langle k,l \rangle, \langle m,n \rangle}$ and $a \in \mathbb{R}$, then $(ASC)_2 - \lim ax_{k,m} = ax_{\langle k,l \rangle, \langle m,n \rangle}$. (i)

If $(ASC)_2 - \lim x_{k,m} = x_{(k,l),(m,n)}$ and $(ASC)_2 - \lim y_{k,m} = y_{(k,l),(m,n)}$, then $(ASC)_2 - \lim y_{k,m} = y_{(k,l),(m,n)}$, then $(ASC)_2 - \lim y_{k,m} = y_{(k,l),(m,n)}$. (ii) $\lim (x_{k,m} + y_{k,m}) = (x_{(k,l),(m,n)} + y_{(k,l),(m,n)}).$

Proof 3.1 :

The result is obvious when a = 0. Suppose $a \neq 0$, then for integer l, n (i)

$$\frac{1}{uv} |\{k \le u, m \le v : |ax_{k,m} - ax_g| \ge \varepsilon\}|$$
$$= \frac{1}{uv} |\{k \le u, m \le v : |x_{k,m} - x_g| \ge \frac{\varepsilon}{|a|}\}|$$

Which gives the result

The result of (ii) follows from

$$\frac{1}{uv}|\{k \leq u, m \leq v: |(x_{k,m} + y_{k,m}) - (x_{\langle k,l \rangle, \langle m,n \rangle} + y_{\langle k,l \rangle, \langle m,n \rangle})| \geq \varepsilon\}|$$

 $\leq \frac{1}{uv} \left| \left\{ k \leq u, m \leq v : \left| x_{k,m} - x_{\langle k,l \rangle, \langle m,n \rangle} \right| \geq \frac{\varepsilon}{2} \right\} \right| + \frac{1}{uv} \left| \left\{ k \leq u, m \leq v : \left| y_{k,m} - y_{\langle k,l \rangle, \langle m,n \rangle} \right| \geq \frac{\varepsilon}{2} \right\} \right|$

Thus we defined a related concept of convergence in which the set $\{k, m : k, m \leq uv\}$ is replaced by the set $\{k, m : k_{r-1,s-1} \le k, m \le k_{r,s}\}$, for some lacunary double sequence $(k_{r,s})$. (see definition 3.4) **Theorem 3.2**:Let $x = (x_k)$ and $y = (y_k)$ be two sequences.

If $ASC_{\theta} - \lim x_k = x_{\langle k,l \rangle}$ and $a \in \mathbb{R}$, then $ASC_{\theta} - \lim cx_k = cx_{\langle k,l \rangle}$ (iii)

If $ASC_{\theta} - \lim x_k = x_{\langle k,l \rangle}$ and $ASC_{\theta} - \lim y_k = y_{\langle k,l \rangle}$, then $ASC_{\theta} - \lim (x_k + y_k) = (x_{\langle k,l \rangle} + y_k)$ (iv) yk,l)

Proof3.2:

The result is obvious when a = 0. Suppose $a \neq 0$, then for integer l, n (i)

$$\frac{1}{h_{r,s}}|\{k,m \in I_{r,s}: |ax_{k,m} - ax_g| \ge \varepsilon\}|$$

$$= \frac{1}{h_{r,s}} \left| \left\{ k, m \in I_{r,s} : |x_{k,m} - x_g| \ge \frac{\varepsilon}{|a|} \right\} \right|$$

Which gives the result

The result of (ii) follows from

DOI: 10.9790/5728-1306020611

$$\frac{1}{h_{r,s}} |\{k, m \in I_{r,s} : |(x_{k,m} + y_{k,m}) - (x_g + y_g)| \ge \varepsilon\}|$$

$$\leq \frac{1}{uv} |\{k \le u, m \le v : |x_{k,m} - x_g| \ge \frac{\varepsilon}{2}\}| + \frac{1}{uv} |\{k \le u, m \le v : |y_{k,m} - y_g| \ge \frac{\varepsilon}{2}\}|$$

$$\leq \frac{1}{h_{r,s}} |\{k, m \in I_{r,s} : |x_{k,m} - x_g| \ge \frac{\varepsilon}{2}\}| + \frac{1}{h_{r,s}} |\{k, m \in I_{r,s} : |y_{k,m} - y_g| \ge \frac{\varepsilon}{2}\}|$$

Theorem 3.3 : If $\theta' = (k'_{r,s})$ is a lacunary refinement of a lacunary double sequence $\theta = (k_{r,s})$ and $(x_{k,m}) \in ASC_{\theta'_{r,s}}$ then $(x_{k,m}) \in ASC_{\theta_{r,s}}$.

Proof3.3 :

Suppose for each $I_{r,s}$ of θ contains the point $(k'_{r,s,t})_{t=1}^{\mu(r,s)}$ of θ' such that $k_{r-1,s-1} < k'_{r,s,1} < k'_{r,s,2} < \cdots < k'_{\mu,\mu(r,s)} = k_{r,s}$ Where $I'_{r,s} = (k'_{r,s-1}, k'_{r,s}]$

Since $(k_{r,s}) \subseteq (k'_{r,s-1})$, $k_{r,s-1}$ $k_{r,s} = 1$

Let $(I^*)_{r,s=1}^{\infty}$ be the double sequence of interval $(I_{r,s}^*)$ ordered by increasing right end points. Since $(x_{k,m}) \in ASC_{\theta'_{r,s}}$ then for each $\varepsilon > 0$ and an integer l, n

$$\lim_{\substack{l_{r,s}^* \subset I_{r,s}}} \sum_{\substack{l_{r,s}^* \subset I_{r,s} \\ r_{r,s} \subset I_{r,s}}} \frac{1}{h_{r,s}^*} |\{k, m \in I_{r,s}^* : |x_{k,m} - x_g| \ge \varepsilon\}| = 0$$

Also since $h_{r,s} = k_{r,s} - k_{r-1,s-1}$, so $h'_{r,s} = k'_{r,s} - k'_{r-1,s-1}$ For each $\varepsilon > 0$ and integer l,n $\frac{1}{h_{r,s}} |\{k, m \in I_{r,s}: |x_{k,m} - x_g| \ge \varepsilon\}| = \frac{1}{h_{r,s}} \sum_{l_{r,s}^* \subset I_{r,s}} h_{r,s}^* \frac{1}{h_{r,s}^*} |\{k, m \in I_{r,s}^*: |x_{k,m} - x_g| \ge \varepsilon\}|$ $\to 0 \text{ as } r, s \to \infty$

This implies $(x_{k,m}) \in ASC_{\theta_{r,s}}$

Theorem 3.4 : Suppose $\gamma = (l_{r,s})$ is a lacunary refinement of a lacunary double sequences $\theta = (k_{r,s})$. Let $I_{r,s} = (k_{r-1,s-1}, k_{r,s}]$ and $J_{r,s} = (l_{r-1,s-1}, l_{r,s}]$, r = 1, 2, ... If there exists $\delta > 0$ such that $\frac{|I_{g,h}|}{|I_{i,j}|} \ge \delta$ for every $J_{g,h} \subseteq I_{i,j}$. Then $(x_{k,m}) \in ASC_{\theta_{r,s}} \Rightarrow (x_{k,m}) \in ASC_{\gamma_{r,s}}$. **Proof 3.4 :**

For any $\varepsilon > 0$ and integer l, n every $J_{g,h}$ we can find $I_{i,j}$ such that $J_{g,h} \subseteq I_{i,j}$, then we have

$$\begin{split} \frac{1}{|J_{g,h}|} |\{k,m \in J_{g,h} : |x_{k,m} - x_g| \geq \varepsilon\}| &= \left(\frac{|I_{i,j}|}{|J_{g,h}|}\right) \left(\frac{1}{|I_{i,j}|}\right) |\{k,m \in J_{g,h} : |x_{k,m} - x_g| \geq \varepsilon\}| \\ &\leq \left(\frac{|I_{i,j}|}{|J_{g,h}|}\right) \left(\frac{1}{|I_{i,j}|}\right) |\{k,m \in I_{i,j} : |x_{k,m} - x_g| \geq \varepsilon\}| \\ &\leq \left(\frac{1}{\delta}\right) \left(\frac{1}{|I_{i,j}|}\right) |\{k,m \in I_{i,j} : |x_{k,m} - x_g| \geq \varepsilon\}| \bullet \end{split}$$

Which gives the result.

Theorem 3.5 :Suppose $\gamma = (l_{r,s})$ and $\theta = (k_{r,s})$ are two lacunary double sequences. Let $I_{r,s} = (k_{r-1,s-1}, k_{r,s}], J_{r,s} = (l_{r-1,s-1}, l_{r,s}], r, s = 1, 2, ...$ and $I_{a,b} = I_{wx} \cap J_{yz}$, $a, b = 1, 2, 3 \dots$ and where a = wx and b yz If there exists $\delta > 0$ such that

$$\frac{|r_{a,b}|}{|l_{wx}|} \ge \delta \text{ for every } y, z = 1, 2, 3, \dots, \ l_{y,z} \neq \emptyset.$$

Then $(x_{k,m}) \in ASC_{\theta_{r,s}} \Rightarrow (x_{k,m}) \in ASC_{\gamma_{r,s}}$

Proof 3.5 :

Let = $\gamma \cup \theta$. Then μ is a lacunary refinement of θ . The interval sequence of μ is $\{I_{a,b} = I_{wx} \cap I_{yz} : I_{a,b} \neq \emptyset$. where a = wx and b yz. $\}$. Using theorem 3.4 and the condition $\frac{|I_{a,b}|}{|I_{wx}|} \ge \delta$ gives $(x_{k,m}) \in ASC_{\theta_{r,s}} \Rightarrow$

 $(x_{k,m}) \in ASC_{\gamma_{r,s}}$. Since μ is a lacunary refinement of the lacunary double sequences , from theorem 3.3, we have $(x_{k,m}) \in ASC_{\mu_{r,s}} \Rightarrow (x_{k,m}) \in ASC_{\gamma_{r,s}}$

Theorem 3.6: Let $\theta = (k_{r,s})$, r,s = 1,2,3,..., be a lacunary double sequences. If $\liminf_{r,s} q_{r,s} > 1$, then $(ASC)_2 \subseteq ASC_{\theta_{r,s}}$. **Proof 3.6 :**

Let $(x_{k,m}) \in (ASC)_2$ and $\liminf q_{r,s} > 1$. Then there exist $\alpha > 1$ such that $q_{r,s} = \frac{k_{r,s}}{k_{r-1,s-1}} \ge 1 + \alpha$ for sufficiently larger r,s which implies that $\frac{h_{r,s}}{k_{r,s}} \ge \frac{\alpha}{1+\alpha}$

Then, for sufficiently large r,s and integer k,m

$$\frac{1}{k_{r,s}} |\{k, m \in k_{r,s} \colon |x_{k,m} - x_g| \ge \varepsilon\}| \ge \frac{1}{k_{r,s}} |\{k, m \in I_{r,s} \colon |x_{k,m} - x_g| \ge \varepsilon\}|$$
$$\ge \frac{\alpha}{1+\alpha} \frac{1}{h_{r,s}} |\{k, m \in I_{r,s} \colon |x_{k,m} - x_g| \ge \varepsilon\}|$$
$$m \in (ASC)_2 \Rightarrow (x_{k,m}) \in ASC_{\theta_{n,s}} \blacksquare$$

Thus $x = (x_{k,m}) \in (ASC)_2 \Rightarrow (x_{k,m}) \in ASC_{\theta_{r,s}} \blacksquare$ **Theorem 3.7 :**Forlim sup $q_{r,s} < \infty$, we have $ASC_{\theta_{r,s}} \subseteq (ASC)_2$.

Proof 3.7 :

Let $\limsup_{r,s} < \infty$ then there exist $\omega > 0$ such that $q_{r,s} < \omega$ for every r,s. Let $\tau_{r,s} = |\{k, m \in I_{r,s} : |x_{k,m} - xg \ge \varepsilon$ where l,n is an integer. Now for $\varepsilon > 0$ and $xk,m \in ASC\theta r,s$ there exists N such that

$$\frac{\tau_{r,s}}{h_{r,s}} < \varepsilon$$
 for every $r, s \ge N$

Let $M = Max \{\tau_{r,s} : 1 \le r, s \le N\}$ and let p be any integer with $k_{r,s} \ge p \ge k_{r-1,s-1}$. Then for an integer $l, n \ge l$

$$\begin{aligned} \frac{1}{p} | \{k, m \in p : |x_{k,m} - x_g| \ge \varepsilon\} | \\ \le \frac{1}{k_{r-1,s-1}} | \{k, m \in k_{r,s} : |x_{k,m} - x_g| \ge \varepsilon\} | \\ = \frac{1}{k_{r-1,s-1}} \{\tau_1 + \tau_2 + \dots + \tau_N + \tau_{N+1} + \dots + \tau_{r,s}\} \\ \le \frac{MN}{k_{r-1,s-1}} + \frac{1}{k_{r-1,s-1}} \left\{ h_{N+1} \frac{\tau_{R+1}}{h_{N+1}} + \dots + h_{r,s} \frac{\tau_{r,s}}{h_{r,s}} \right\} \\ \le \frac{MN}{k_{r-1,s-1}} + \frac{1}{k_{r-1,s-1}} \left(\sup_{r,s>N} \frac{\tau_{r,s}}{h_{r,s}} \right) \{h_{N+1} + \dots + h_{r,s}\} \\ \le \frac{MN}{k_{r-1,s-1}} + \varepsilon \frac{MN}{k_{r-1,s-1}} + \varepsilon \frac{k_{r,s} - k_N}{k_{r-1,s-1}} \\ \le \frac{MN}{k_{r-1,s-1}} T + \varepsilon q_{r,s} \\ \le \frac{MN}{k_{r-1,s-1}} T + \varepsilon K \blacksquare \end{aligned}$$

Which gives $(x_{k,m}) \in (ASC)_2$ Corollary 3.1.

From there 2.6 and 2.7, if $\theta = (k_r)$ be a lacunary double sequences and if $1 < \liminf q_r \le \limsup q_r < \infty$

Then $(ASC)_2 = ASC_{\theta}$ In (2016) Yaying and Hazarika introduced lacunary arithmetic convergent sequence AC_{θ} as follow:

$$AC_{\theta} = \left\{ (x_k) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} |x_k - x_{\langle k, l \rangle}| = 0 \text{ for integer } l \right\}$$

Analogously, we define double lacunary arithmetic convergence From theorem 3.6 and 3.7, if $\theta = (k_{r,s})$ be a lacunary double sequences and if $1 < \liminf q_{r,s} \le \limsup q_{r,s} < \infty$

Then $(ASC)_2 = ASC_{\theta_{r,s}}$

Now we introduce lacunary arithmetic convergent sequence $AC_{\theta_{r,s}}$ as follow:

$$AC_{\theta_{r,s}} = \left\{ \left(x_{k,m} \right) : \lim_{r,s \to \infty} \frac{1}{h_{r,s}} \sum_{k,l \in I_r} \sum_{k,l \in I_r} |x_{k,m} - x_g| = 0 \text{ some integers } l, n \right\}$$

In relation to this we shall introduce for double sequences space and give some relation between the double spaces $AC_{\theta_{r,s}}$ and $ASC_{\theta_{r,s}}$

Theorem 3.8:Let $\theta = (k_{r,s})$ be a lacunary double sequence; then if $(x_{k,m}) \in (AC_{\theta})_2$ then $(x_{k,m}) \in$ $(ASC_{\theta})_2$

Proof 3.8:Let $(x_{k,m}) \in (AC_{\theta})_2$ and $\varepsilon > 0$. We can write, for an integer l, n

$$\sum_{\substack{k,m \in I_{r,s} \\ |x_{k,m} - x_g| \geq \varepsilon}} |x_{k,m} - x_g| + \sum_{\substack{k,m \in I_{r,s} \\ |x_{k,m} - x_g| \geq \varepsilon}} |x_{k,m} - x_g| \\ \geq \sum_{\substack{k,m \in I_{r,s} \\ |x_{k,m} - x_g| \geq \varepsilon}} |x_{k,m} - x_g| \\ \geq \varepsilon |\{k,m \in I_{r,s} : |x_{k,m} - x_g| \geq \varepsilon\}|$$

Which gives the result.

References

- J. A. Fridy, C. Orhan, Lacunary statistical summability, J. Math. Anal. Appl. 173(2)(1993) 497-504. [1].
- J. A. Fridy, On statistical convergence. Analysis, 5(1985) 301-313. [2].
- J. Connor, The Statistical and strong p-Cesaro convergence of sequences. Analysis, 8(1988) 47-63. [3].
- [4]. H. Fast, Sur la convergence statistique. Collog Math, 2(1951) 241-244.
- [5].
- T. Šalát, On statistically convergent sequences of real numbers. *Math Slovaca, 30*(1980) 139-15
 M. Mursaleen, andO. H. H. Edely, (2003), "Statistical convergence of double sequences," *J. Math.Anal.Appl., 288, 223–231.* [6].
- [7]. A. R. Freedman, J. J. Sember, M. Raphael, Some Ces`aro-type summability spaces; Proc. Lond. Math. Soc. 37(1978) 508-520.
- T. Yaying and B. Hazarika, Lacunary arithmetic statistical convergence, arXiv:1703.03780v1 [Math.GM], 8 Mar 2017 [8].
- [9]. W. H. Ruckle, Arithmetical Summability, Jour. Math. Anal. Appl. 396(2012) 741-748.
- J. A. Fridy, and C. Orhan, Lacunary statistical convergence. Pacific Journal of Mathematics, 160(1993), no. 1, 43-53. [10].

A. M. Brono Lacunary Arithmetic Statistical Convergence For Double Sequences. IOSR Journal of Mathematics (IOSR-JM), vol. 13, no. 6, 2017, pp. 06-11.
