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Abstract: Many researchers believe quantum computing will be a practical reality within the next 10 years. 

Quantum based algorithms will be able to render current number theoretic asymmetric cryptography algorithms 

obsolete. This means that other algorithms must be discovered, prior to quantum computers becoming a 

practical reality. Lattice based cryptosystems are a viable candidate for post-quantum computing.  

Keywords: quantum computing, cryptography, quantum physics, post-quantum cryptography, lattice based 

cryptography 

--------------------------------------------------------------------------------------------------------------------------------------- 

Date of Submission: 21-11-2017                                                                           Date of acceptance: 30-11-2017 

---------------------------------------------------------------------------------------------------------------------------------------  

I. Introduction 
          Innovations in quantum computing promise to significantly increase computing power. This will 

provide advances in numerous aspects of computing including data mining, artificial intelligence, and other 

applications [1]. However, the increase in computing power will also present a challenge for cryptography. Most 

experts agree that when quantum computing becomes a practical reality, that current cryptographic systems will 

be obsolete. Finding a cryptographic systems that would be resistant to quantum computing is an important 

research topic [2]. Quantum computing was first proposed by Paul Benioff at Argonne National Labs [3]. Work 

by Yuri Manin in 1980 and Richard Feyman in 1982, has also been useful in developing the concept of quantum 

computing. Research has progressed since that time, and there are limited quantum computers in research labs. 

Classical computing relies on individual bits to store information. Quantum computing relies on qubits.  

  

    The essential issue with quantum computing is the ability to represent more than two states. Current 

computing technology, using classical bits, can only represent binary values. Qubits, or quantum bits, store data 

via the polarization of a single photon[4]. The two basic states are horizontal or vertical polarization. However, 

quantum mechanics allows for a superposition of the two states at the same time. This is something simply not 

possible in a classical bit. The two states of a qubit are represented with quantum notation as |0> or |1>. These 

represent horizontal or vertical polarization. A qubit is the superposition of these two basis states. This 

superposition is represented as |ψ> = α|0>  + β|1> [5][6].   Essentially a classical bit can represent a one or a 

zero. A qubit can represent a one, a zero, or any quantum superposition of those two qubit states. This 

superposition allows for much more powerful computing. The superposition allows the qubit to store a one, a 

zero, both a one and a zero, or an range of values between one and zero [7]. This significantly increases data 

storage and data processing power. This increase in computing power has important ramifications for 

cryptography (Broadbent & Schaffner). There are already quantum based algorithms that are far superior at 

factoring large numbers than are classical algorithms [8][9]. That is a critical issue because the widely used RSA 

algorithm is based on the difficulty of factoring a large number into its prime factors [10][11]. When quantum 

computers become a reality, that factoring problem will no longer be difficult, and RSA will be obsolete [12]. 

Various key exchange algorithms such as Diffie-Hellman depend on the difficulty in solving the discrete 

logarithm problem (Easttom, 2017). The two most significant improvements to Diffie-Hellman, ElGamal and 

MQV (Menezes–Qu–Vanstone), also depend on the discrete logarithm problem [13]. Elliptic curve 

cryptography, is based on the difficulty of solving the discrete logarithm problem with respect to an elliptic 

curve [14]. Quantum algorithms will also make the discrete logarithm problem quite solvable, thus rendering 

these algorithms obsolete as well. 

 

II. Discussion 
     Essentially all current asymmetric cryptography is based on one of these two general classes of 

number theoretic problems: factoring or solving the discrete logarithm problem [15]. Essentially, when quantum 

computers become a practical reality, rather than just a research interest, all modern asymmetric algorithms will 

become obsolete [16]. This is a significant concern for cybersecurity because all modern e-commerce, encrypted 
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email, and secure communications over a network, depend on these algorithms. Currently, the NIST is working 

on a multi-year study to determine standards for post-quantum cryptography [17]. 

     Current quantum computing is not at a stage to be useful in practical applications. Cutting edge 

quantum systems of today only have 20 to 50 qubits and can only maintain data for a very short time [18]. 

However, advances in quantum computing indicate that practical quantum computers could be a reality within 

10 years [19]. Whether this estimate is accurate or not, it is clear that quantum computing will eventually be a 

practical reality, and thus existing asymmetric cryptographic algorithms will become obsolete. Fortunately, 

researchers are already exploring algorithms that would be resistant to quantum computing [20]. There are 

primarily two areas of research: multi-variate cryptography and lattice based cryptography. The focus of this 

current paper, is on the application of lattice based cryptography. Lattice based mathematics promises to provide 

a range of cryptographic solutions [21]. Lattice based cryptography involves the construction of cryptographic 

primitives based on lattices. A cryptographic primitive is an algorithm such as a symmetric cipher, asymmetric 

cipher, cryptographic hash, or message authentication code that is part of a cryptographic application. 

Essentially, a complete cryptographic system has to account for both confidentiality and integrity of the 

message. This often involves encrypting the message for confidentiality, exchanging symmetric cryptographic 

keys via some asymmetric algorithm, ensuring integrity with a cryptographic hash function, and digitally 

signing the message. Each of these aspects of security is accomplished via a different algorithm, a specific 

cryptographic primitive. The cryptographic primitives are combined to provide a complete cryptographic 

system. 

     A lattice is a construct from algebraic group theory. A lattice is represented by a standard matrix, 

familiar to anyone who has taken an introductory course in linear algebra. The vectors that constitute the lattice 

are known as the basis vectors for the lattice [22]. A matrix is shown in the figure below. 

 
Figure 1. A basic matrix 

  

    The matrices used in lattice based cryptography can be of any number of dimensions, though for 

ease of presentation, most books demonstrate two dimensional matrices. Each column represents a vector. The 

matrices used in lattice based cryptography are much larger than the one shown in figure 1, or else solving 

mathematical problems based on a lattice would be a trivial task to solve; and encryption based on lattices 

would be easily broken. Lattice based cryptography is simply cryptographic systems based on some problem in 

lattice based mathematics [23]. One of the most commonly used problems for lattice based cryptography is the 

Shortest Vector Problem (SVP). Essentially this problem is that given a particular lattice, how do you find the 

shortest vector within the lattice?  More specifically, the SVP problem involves finding the shortest non-zero 

vector in the vector space V, as measured by a norm, N. A norm is a function that assigns a strictly positive 

length or size to each vector in a vector space. The SVP problem is a good choice for post-quantum computing. 

Micciancio and Regeve (2009) state: “There are currently no known quantum algorithms for solving lattice 

problems that perform significantly better than the best known classical (i.e. non-quantum) algorithms.” 

    

There are a variety of mathematical problems based on lattices that can form the basis for 

cryptographic systems, SVP is only one choice. Another such problem is the Learning With Errors (LWE) 

problem. This is a problem from the field of machine learning. It has been proven that this problem is as 

difficult to solve as several worst-case lattice problems [24]. Algorithms are often measured by best-case, 

average-case, and worst-case solutions. Put simply, this means that the LWE problem is very difficult to solve. 

As has already been stated in this paper, asymmetric cryptography is based on mathematical problems that are 

difficult to solve. In fact, the problems are so difficult to solve that no solution can be found within a practical 

period of time. The LWE problem has been expanded to use algebraic rings with Ring-LWE.  

     

 There are currently several fully functional lattice based cryptosystems. The GGH algorithm, named 

after its inventors Glodreich, Goldwasser, and Halevi [25], is one such cryptosystem. It is a robust 

asymmetric/public key algorithm that has been proven to be resistant to cryptanalysis. This algorithm was first 

published in 1997 and uses the closest vector problem (CVP). This problem is summarized as: given a vector 

space V, and a metric M for a lattice L and a vector v that is in the vector space V, but not necessarily in the 

lattice L, find the vector in the lattice L that is closest to the vector v [26]. This problem is related to the 

previously discussed SVP problem and is also difficult to solve. Another lattice based cryptosystem is NTRU. It 

was invented by Hoffstien, Pipher and Sillverman. It is the most well-known and widely studied lattice based 

cryptographic system. NTRU is a cryptosystem that provides both encryption and digital signatures. It has been 

shown to be resistant to Shor's algorithm [27], unlike many other asymmetric cryptographic systems. Shor's 
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algorithm is named after the inventor, Peter Shor, and it is a quantum algorithm for integer factorization [28]. It 

is effective at factoring large numbers, thus breaking cryptography based on factorization problems. Another 

important fact about NTRU, is that even without concern about quantum computers, NTRU is more efficient 

than RSA. That makes it a viable option for classical computing. 

    With each of these cryptosystems, research is showing that these are not only applicable for use in 

asymmetric cryptography, but also in cryptographic hashes. These systems have also been applied to digital 

signature solutions, as well as encryption solutions. That means that a range of cryptographic primitives can be 

created from lattice based mathematics, yielding a complete cryptosystem from lattices.Bernstein and Lange 

(2017), also demonstrate that lattice based cryptography is resistant against current cryptanalytical attacks. This 

means that lattice based cryptography is a preferable solution, even when considering only classical computing. 

There have been advances in number sieves that are improving even classical computing’s ability to break RSA 

[29][30]. This demonstrates that there is a need for improved asymmetric cryptographic primitives, even before 

quantum computing becomes a reality. 

 

III. Conclusion 
While the current state of quantum computers is nascent, still only applicable for research purposes, it 

seems clear that quantum computers will become a practical reality. When that will occur is not clear. However, 

what is clear, is that when quantum computers become a practical reality, current asymmetric cryptography, 

based on specific number theoretic problems, will be obsolete. There is an extensive body of research that 

indicates that lattice based cryptography is a viable solution for post-quantum computing. Furthermore, lattice 

based cryptography is more resistant to cryptanalysis with classical computing. However, further research is 

needed. While there have been numerous, disjointed studies, there has not been a single study that performs an 

extensive analysis of multiple lattice based algorithms against current number theoretic based algorithms. 
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