The Atomic Decomposition Using only Properties of the Nontangential Maximal Functions Series \boldsymbol{u}_{r}^{*} For Hardy Spaces

Ahmed Abdallatif ${ }^{1}$, Hanana Elnage ${ }^{2}$, Yousif. A. Mohammed ${ }^{3}$, Alnazeir Abdalla Adam ${ }^{4}$
${ }^{1}$ University of Zalingei, Faculty of Education, Department of Mathematics, Sudan
2Bakht El Ruda University ,College of Science \& King Khalid University ,College of Arts and Sciences , hanana.elnage @ gmail.com, S.U.D \& S.U.A
${ }^{3}$ University of Dalanj, Faculty of Education, Department of Mathematics, Sudan
${ }^{4}$ White Nile University, Faculty of Education, Department of Mathematics, Sudan

Abstract: We give an extremely easy proof of the atomic decomposition for distributions in $H^{1-\varepsilon}\left(\mathbb{R}_{+}^{2} \times\right.$ $\left.\mathbb{R}_{+}^{2}\right), \varepsilon>0$. Our proof uses only properties of the nontangential maximal functions series u_{r}^{*}. We then a confirn our argument to give a "direct" proof of the Chang-Fefferman decomposition for $H^{1-\varepsilon}\left(\mathbb{R}_{+}^{2} \times \mathbb{R}_{+}^{2}\right)$.

I. Introduction

Let $\mathbb{R}_{+}^{\boldsymbol{n + 1}}=\left\{(x, y): x \in \mathbb{R}^{\boldsymbol{n}}, y>0\right\}$. Or $u_{r}(x, y)$ harmonic on $\mathbb{R}_{+}^{\boldsymbol{n + 1}}$ and $A>0$ define

$$
\sum_{r} u_{r}^{*}(x)=\sup _{|x-t|<A_{y}} \sum_{r}\left|u_{r}(t, y)\right| .
$$

We say that $u_{r} \in H^{1-\varepsilon}$ if $u_{r}^{*} \in L^{1-\varepsilon}$, for any A, and set $\left\|u_{r}\right\|_{H^{1-\varepsilon}}=\left\|u_{r}\right\|_{L^{1-\varepsilon}}$. If $u_{r} \epsilon H^{1-\varepsilon}, \varepsilon>0$, then $\sum_{r} f_{r}=$ $\sum_{r} \sum_{i} u_{r}(., y)$ exists (\mathcal{G}^{\prime}) and is said to be in $H^{1-\varepsilon}$. We set $\sum_{r}\left\|f_{r}\right\|_{H^{1-\varepsilon}}=\sum_{r}\left\|u_{r}\right\|_{H^{1-\varepsilon}}$ (see [6,11]).
For $\varepsilon \geq 0$, dip-atom is a functions series $a_{r}(x) \in L^{2(1-\varepsilon)}\left(\mathbb{R}^{n}\right)$ satisfying:
(i) $\operatorname{supp} a_{r} \subset(Q)_{j},(Q)_{j}$ a cube.
(ii) $\left\|a_{r}\right\|_{2} \leq\left|(Q)_{j}\right|^{\varepsilon / 2(\varepsilon-1)}\left(\left|(Q)_{j}\right|=\right.$ the volume of $\left.(Q)_{j}\right)$.
(iii) $\int \sum_{r} a_{r}(x) x^{\alpha} d x=0$ for all monomials x^{α} with $\left.|\alpha| \leq\left[n(1-\varepsilon)^{-1}-1\right)\right]$.

The following theorem is well known $[4,7,10,11]$:
THEOREM 1. Let $f_{r} \in H^{1-\varepsilon}, \varepsilon \geq 0$. There exist $(1-\varepsilon)$-atoms $\left(a_{r}\right)_{k}$ and numbers λ_{k} such that

$$
\begin{equation*}
\sum_{r} f_{r}=\sum_{r} \sum_{k} \lambda_{k}\left(a_{r}\right)_{k} \text { in } \mathcal{G}^{\prime} \tag{1}
\end{equation*}
$$

The λ_{k} satisfy $\sum_{k}\left|\lambda_{k}\right|^{\varepsilon-1} \leq C(1-\varepsilon, n) \sum_{r}\left\|f_{r}\right\|_{H^{1-\varepsilon}}^{1-\varepsilon}$. Conversely, every sum (1) satisfies

$$
\sum_{r}\left|f_{r}\right|_{H}^{\varepsilon-1} \leq C(\varepsilon-1, n) \sum_{k}\left|\lambda_{k}\right|^{\varepsilon-1} .
$$

Now let u_{r} be biharmonic on $\mathbb{R}_{+}^{2} \times \mathbb{R}_{+}^{2}$. Define

$$
\sum_{r}\left(u_{r}\right)_{A}^{*}\left(x_{1}, x_{2}\right)=\sup _{\substack{\left|x_{i}-t_{i}\right|<A_{y_{i}} \\ i=1,2}} \sum_{r}\left|u_{r}\left(t_{1}, y_{1}, t_{2}, y_{2}\right)\right|
$$

As before, we say that $u_{r-1} \boldsymbol{\epsilon} H^{1-\varepsilon}\left(\mathbb{R}_{+}^{2} \times \mathbb{R}_{+}^{2}\right)$ if $\left(u_{r}\right)_{A}^{*} \boldsymbol{\epsilon} L^{1-\varepsilon}\left(\mathbb{R}^{2}\right)$, and we set $\left\|u_{r}\right\|_{H^{1-\varepsilon}}=\left\|u_{r}^{*}\right\|_{L^{1-\varepsilon}}$. Such u give rise to boundary distributions f_{r}, which are said to be in $H^{1-\varepsilon}$. (See [2,].)
For $\varepsilon>0$, a Chang-Fefferman p-atom is a functions series $a_{r} \epsilon L^{1-\varepsilon}\left(\mathbb{R}^{2}\right)$
satisfying:
(a) supp $a_{r} \subset \Omega, \Omega$ open, $|\Omega|<\infty$.
(b) $\left\|a_{r}\right\|_{2} \leq|\Omega|^{\frac{\varepsilon}{2(\varepsilon-1)}}$.
(c) $a_{r}=\sum_{K} \lambda_{K}\left(a_{r}\right)_{K}$, where λ_{K} are numbers and the $\left(a_{r}\right)_{K}$ are functions series atisfying:
(i) supp $\left(a_{r}\right)_{K} \subset \bar{K} \subset \Omega$ where $K=I \times J, I, J$ dyadic intervals, and \bar{K} denotes the triple of K.
(ii)

$$
\sum_{r}\left\|\frac{\partial^{L}\left(a_{r}\right)_{K}}{\partial x_{1}^{L}}\right\| \leq \frac{1}{\sqrt{|K|}|I|} \text { and } \sum_{r}\left\|\frac{\partial^{L}\left(a_{r}\right)_{K}}{\partial x_{2}^{L}}\right\| \leq \frac{1}{\sqrt{|K|}|J|^{L}}
$$

for all $L \leq\left[\frac{3+\varepsilon}{2(1-\varepsilon)}\right]$
(iii)

$$
\int \sum_{r} a_{r}\left(\tilde{x}_{1}, x_{2}\right) x_{2}^{k} d x_{2}=0 \text { and } \int \sum_{r} a_{r}\left(x_{1}, \tilde{x}_{2}\right) x_{1}^{k} d x_{1}
$$

for all $\left(\tilde{x}_{1}, x_{2}\right) \epsilon \mathbb{R}^{2}$ and all $k<\left[\frac{1+3 \varepsilon}{2(1-\varepsilon)}\right]$. And
If the "atoms" are Chang-Fefferman atoms, then Theorem A is true for
$f_{r} \in H^{1-\varepsilon}\left(\mathbb{R}_{+}^{2}, \mathbb{R}_{+}^{2}\right)[2][3]$
Until now, proofs of the atomic decomposition have relied on showing that $u_{r}^{*} \in L^{1-\varepsilon}$ implies that some auxiliary functions series(such as the "grand" maximal function or the S_{r}-functions series) is in $L^{1-\varepsilon}$. In this paper, we give proofs which get the atoms directly from $u_{r}^{*} \in L^{1-\varepsilon}$.
II. The case $H^{1-\varepsilon}\left(\mathbb{R}_{+}^{2}\right)$ Let $\psi \boldsymbol{\epsilon} C^{\infty}(\mathbb{R})$ be real, radial, $\operatorname{supp} \psi \subset\{|x|$
$<1\}, \psi$ has the cancellation property γ), and

$$
\int_{0}^{\infty} e^{-\theta} \hat{\psi}(\theta) d \theta=-1
$$

For $y>0$, set $y^{-1} \psi(t / y)=\psi_{y}(t)$.
Take $f_{r} \in L^{2(1-\varepsilon)} H^{1-\varepsilon}, f_{r}$ real-valued, $u_{r}=P_{y} * f_{r}$ (the Poisson integral of f_{r}). By Fourier transforms

$$
\sum_{r} f_{r}=\int_{\mathbb{R}_{+}^{2}} \frac{\partial u_{r}}{\partial y}(t, y) \psi_{y}(x-t) d t d y \text { in } \mathcal{G}^{\prime} .
$$

(This trick is due to A. P. Calderón.) For $k=0, \pm 1, \pm 2, \ldots$, define

$$
E^{k}=\left\{\left(u_{r}\right)_{2}^{*}>2^{k}\right]=\bigcup_{j=1}^{\infty} I_{j}^{k}
$$

where the I_{j}^{k} are component intervals. For I an interval, let

$$
\hat{I}=\left\{(t, y)<\mathbb{R}_{+}^{2}:(t-y, t+y) \subset I\right\}
$$

be the " tent" region. Define $\hat{E}^{k}=\cup \hat{I}_{j}^{k}, T_{j}^{k}=\hat{I}_{j}^{k} \backslash \hat{E}^{k+1}$. Then

$$
\sum_{r} f_{r}=\sum_{k, j} \sum_{r} \int_{T_{j}^{k}} \frac{\partial u_{r}}{\partial y}(t, y)\left(\psi_{r}\right)_{y}(x-t) d t d y=\sum_{k, j} g_{j}^{k}=\sum_{k, j} \sum_{r} \lambda_{j}^{k}\left(a_{r}\right)_{j}^{k},
$$

where $\lambda_{j}^{k}=C 2^{k}\left|I_{j}^{k}\right|^{\frac{1}{1-\varepsilon}}$ and the $\left(a_{r}\right)_{j}^{k}$ (we claim) are atoms. The $\left(a_{r}\right)_{j}^{k}$ inherit γ from ψ_{r}, and obviously $\operatorname{supp}\left(a_{r}\right)_{j}^{k} \subset \hat{I}_{j}^{k}$. Note also that
Thus, we are done if we can show
We do this by duality. Let $h_{r} \in L^{2(1-\varepsilon)}(\mathbb{R}),\left\|h_{r}\right\|_{2}=1$. Then

$$
\begin{aligned}
& \left|\int h_{r}(x)\left(g_{r}\right)_{j}^{k}(x) d x\right|=\left|\int_{T^{k}} \frac{\partial u_{r}}{\partial y}(t, y)\left(h_{r} *\left(\psi_{r}\right)_{y}(t)\right)^{2} \frac{d t d y}{y}\right| \\
& \leq\left(\int_{T_{j}^{k}} y\left|\nabla u_{r}\right|^{2} d t d y\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}_{+}^{2}}\left|h_{r} *\left(\psi_{r}\right)_{y}\right|^{2} \frac{d t d y}{y}\right)^{\frac{1}{2}} \leq C\left(\int_{T_{j}^{k}} y\left|\nabla u_{r}\right|^{2} d t d y\right)^{\frac{1}{2}}
\end{aligned}
$$

We estimate the last integral by Green's Theorem. It is bounded by

$$
\left(\int_{\partial T_{j}^{k}}\left(\left|u_{r}\right| y\left|\frac{\partial u_{r}}{\partial v}\right|+\frac{1}{2}\left(u_{r}\right)^{2}\left|\frac{\partial y}{\partial v}\right|\right) d s\right)
$$

($\frac{\partial}{\partial v}$ is outward normal; ∂T_{j}^{k} is just smooth enough to let us use Green's
Theorem). Because of the "2" (in $\left(u_{r}\right)_{2}^{*}$), both $\left|u_{r}\right|$ and $y\left|\nabla u_{r}\right|$ are bounded by $C 2^{k}$ on ∂T_{j}^{k}. Since $\left|\frac{\partial y}{\partial v}\right|<1$ and $\left|\partial T_{j}^{k}\right|<C\left|I_{j}^{k}\right|$, the last term is no
larger than $C 2^{k}\left|I_{j}^{k}\right|^{\frac{1}{2}}$.
III. The case $\boldsymbol{H}^{\mathbf{1 - \varepsilon}}\left(\mathbb{R}_{\mathbf{2}}^{\boldsymbol{n}+\boldsymbol{1}}\right)$. Let ψ_{r} be as in II, except now $\psi_{r} \boldsymbol{\epsilon} C^{\infty}\left(\mathbb{R}^{n}\right)$. Let $f_{r} \in H^{1-\varepsilon} \cap L^{2(1-\varepsilon)}$ and u be as before. Define
where the Ω_{j}^{k} are Whitney cubes (for the definition see [9]). For Ω a
cube in \mathbb{R}^{n}, define

$$
\hat{\Omega}=\{(t, y): t \in \Omega, 0<j>v<l(\Omega)\}
$$

where $l(\Omega)=$ sidelength of Ω. Define
With these modifications, the preceding argument goes over practically verbatim; the details are left to the reader.
IV. The case $H^{1-\varepsilon}\left(\mathbb{R}_{+}^{2} \times \mathbb{R}_{+}^{2}\right)$. We first show that the proof in II yields a Chang-Fefferman decomposition for \mathbb{R}_{+}^{2}. For $I \subset \mathbb{R}$ a dyadic interval, let

$$
I^{+}=\{(t, y): t \in I,|I| / 2<y<l|I|\} .
$$

Define

$$
\mathcal{G}_{j}^{k}=\left\{I^{+} \cap T_{j}^{k}\right\}, \quad g_{Q}=\int_{Q} \frac{\partial u_{r}}{\partial y}(t, y)\left(\psi_{r}\right)_{y}(x-t) d t d y=\lambda_{j}^{k} \lambda_{Q}\left(a_{r}\right)_{Q} \quad \text { for } Q \in \mathcal{G}_{j}^{k}
$$

where we set
Then it is easily verified that the $\left(a_{r}\right)_{Q}$ have the right cancellation, support and smoothness properties for elementary particles. And obviously

$$
\begin{aligned}
& \left(a_{r}\right)_{j}^{k}=\sum_{Q \in G_{j}^{k}} \lambda_{Q}\left(a_{r}\right)_{Q} \\
& \left(\sum_{Q \in G_{j}^{k}} \lambda_{Q}^{2}\right)^{\frac{1}{2}} \leq\left|\hat{I}_{j}^{k}\right|^{\frac{1-2 \varepsilon}{2(1-\varepsilon)}} .
\end{aligned}
$$

In order to do our proof in $\mathbb{R}_{+}^{2} \times \mathbb{R}_{+}^{2}$, we need tents, and we need a way to do Green's Theorem. For these, we need some notation.
For $(t, y)=\left(t_{1}, y_{1}, t_{2}, y_{2}\right) \in\left(\mathbb{R}^{2}\right)^{2}$, let $K_{t, y}$ be the rectangle with sides parallel to the coordinate axes, centered at $\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}$, and with
dimensions $2 y_{1} \times 2 y_{2}$.
Take $f_{r} \in \cap L^{2(1-\varepsilon)}, H^{1-\varepsilon}=P_{y_{1}} . P_{y_{2}} * f_{r}$ (the double Poisson integral of f_{r}).
Let ψ_{r} be as in II but with cancellation corresponding to (iii). Then

$$
\sum_{r} f_{r}=\sum_{r} \int_{\left(\mathbb{R}_{+}^{2}\right)^{2}} \frac{\partial^{2} u_{r}}{\partial y_{1} \partial y_{2}}(t, y)\left(\psi_{r}\right)_{y_{1}}\left(x_{1}-t_{1}\right)\left(\psi_{r}\right)_{y_{2}}\left(x_{2}-t_{2}\right) d t d y \text { in } \mathcal{G}^{\prime}
$$

Let M be the strong maximal functions series. Let $\delta>0$ be small, to be chosen later. Define

$$
E^{k}=\left\{u_{100}^{*}>2^{k}\right), F^{k}=\left\{M \chi_{E^{k}}>\delta\right) .
$$

It is a fact that $\left|F^{k}\right| \leq C_{\delta}\left|E^{k}\right|$. Set

$$
\begin{gathered}
\hat{F}^{k}=\left\{(t, y): K_{t, y} \subset F^{k}\right\}, \\
T^{k}=F^{k} \backslash \hat{F}^{k+1}
\end{gathered} \sum_{r}\left(g_{r}\right)^{k}=\sum_{r} \int_{T^{K}} \frac{\partial^{2} u_{r}}{\partial y_{1} \partial y_{2}}(t, y)\left(\psi_{r}\right)_{y_{1}}\left(x_{1}-t_{1}\right)\left(\psi_{r}\right)_{y_{2}}\left(x_{2}-t_{2}\right) d t d y=\sum_{r} \sum_{k} \lambda_{k}\left(a_{r}\right)_{k} .
$$

where we set $\lambda_{k}=C 2^{k}\left|E^{k}\right|^{\frac{1}{1-\varepsilon}}$.
For $K=I \times J, I, J$ dyadic intervals, let $K^{+}=I^{+} \times J^{+} \subset \mathbb{R}_{+}^{2} \times \mathbb{R}_{+}^{2}$. Set
$\mathcal{G}_{k}=\left\{\boldsymbol{Q}=\boldsymbol{K}^{+} \times \boldsymbol{T}^{\boldsymbol{k}}\right\}$,

$$
\begin{aligned}
& \sum_{\boldsymbol{r}}\left(\boldsymbol{g}_{\boldsymbol{r}}\right)_{Q} \\
& =\sum_{r} \int_{T^{K}} \frac{\partial^{2} u_{r}}{\partial y_{1} \partial y_{2}}(t, y)\left(\psi_{r}\right)_{y_{1}}\left(x_{1}-t_{1}\right)\left(\psi_{r}\right)_{y_{2}}\left(x_{2}-t_{2}\right) d t d y=\sum_{r} \sum_{k} \lambda_{k} \lambda_{Q}\left(a_{r}\right)_{k} \quad\left(Q \in \mathcal{G}_{k}\right)
\end{aligned}
$$

where we set
$\lambda_{Q}=\sum_{k} \sum_{r} C\left(\lambda_{K}^{-1}\right)\left(\int_{Q} y_{1} y_{2}\left|\nabla_{1} \nabla_{2} u_{r}\right|^{2} d t d y\right)^{\frac{1}{2}}$
with

$$
\left|\nabla_{1} \nabla_{2} u_{r}\right|^{2}=\left|\frac{\partial^{2} u_{r}}{\partial x_{1} \partial x_{2}}\right|^{2}+
$$

$\left|\frac{\partial^{2} u_{r}}{\partial x_{1} \partial y_{2}}\right|^{2}+\left|\frac{\partial^{2} u_{r}}{\partial y_{1} \partial x_{2}}\right|^{2}+\left|\frac{\partial^{2} u_{r}}{\partial y_{1} \partial y_{2}}\right|^{2}$.
Then, in exact analogy to case II, everything will be done once we show

$$
\sum_{r} \int_{T^{k}} y_{1} y_{2}\left|\nabla_{1} \nabla_{2} u_{r}\right|^{2} d t d y \leq C 2^{2 k}\left|E^{k}\right|
$$

For this we need a lemma of Merryfield. The lemma requires a little more notation.
Let $\eta \in C^{\infty}(\mathbb{R}), \eta \geq 0$, supp $\eta c[-1,1], \eta \geq \frac{1}{2}$ on $\left[-\frac{1}{2}, \frac{1}{2}\right]$ and $\int \eta=1$.
Define For $E \in \mathbb{R}^{2}$, set
Now, $V_{E}(t, y)$ is essentially the density of E in $K_{t, y}, \mathrm{r}$ In particular, if this density is greater than $1-\delta, \delta$ small, then $V_{E}(t, y)>10^{-6}$.
Merryfield's lemma is [8]:

$$
\sum_{r} \int_{\left(\mathbb{R}_{+}^{2}\right)^{2}} y_{1} y_{2}\left|\nabla_{1} \nabla_{2} u_{r}\right|^{2} V_{E}^{2}(t, y) d t d y \leq C \lambda^{2}|E|
$$

(Note: Merryfield states this for E open, but openness, as his proof shows, is not required.)
Let us set $G^{k}=F^{k} \backslash E^{k+1}$. Merryfield's lemma says that

$$
\sum_{r} \int_{\mathbb{R}_{+}^{2}} y_{1} y_{2}\left|\nabla_{1} \nabla_{2} u_{r}\right| V_{G^{k}}^{2}(t, y) d t d y \leq C 2^{2 k}\left|G^{k}\right| \leq C 2^{2 k}\left|E^{k}\right|
$$

Therefore, we will have (2) (and be done) if we can show

$$
V_{G^{k}}>10^{-6} \text { on } T^{k}
$$

Take $(t, y) \in T^{k}$. Then $K_{t, y} \subset F^{k}$ but $K_{t, y} \not \subset F^{k+1}$. So there is an $x \in K_{t, y} \cap\left(F^{k} \backslash F^{k+1}\right)$. Since $x \notin F^{k+1}, M \chi_{E^{k+1}}(x)<\delta$. From the definition of M, this implies $\left|K_{t, y} \cap E^{k+1}\right| /\left|K_{t, y}\right| \leq \delta$.
Since $K_{t, y} \subset F^{k}$,

$$
\left|K_{t, y} \cap\left(F^{k} \backslash E^{k+1}\right)\right| /\left|K_{t, y}\right| \geq 1-\delta
$$

But $F^{k} \backslash E^{k+1}=G^{k}$, and this imphes that $V_{G^{k}}(t, y)>10^{-6}$, for δ small.

References

[1]. A. P. Calderón, An atomic decomposition of distributions in parabolic Hp spaces, Adv. in Math., 25 (1977), 216-225.
[2]. S.-Y. Chang and R. Feffernan, A continuous version of duality of Hı with BMO on the bidisc, Ann. of Math., 112 (1980), 179-201.
[3]. The Calderón-Zygmund decomposition on product domains, preprint.
[4]. R. R. Coifman, A real variable characterization of Hp, Studia Math., 51 (1974), 269-74.
[5]. R. Coifman, Y. Meyer and E. M. Stein, Un nouvel espace fonctionnel adapte a Γ etude des operateurs definiepar des integrates singulieres, preprint.
[6]. C. Fefferman and E. M. Stein, Hp spaces of several variables, A cta Math., 129 (1972), 137-193.
[7]. R. H. Latter, A characterization of $\mathrm{H}^{p}\left(\mathbb{R}^{p}\right)$ in terms of atoms, Studia Math., 62 (1978), 93-101.
[8]. K. G. Merryfield, Hp spaces in poly-half spaces, Ph.D. Thesis, University of Chicago, 1980.
[9]. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
[10]. J. M. Wilson, A simple proof of the atomic decomposition for $\mathrm{H}^{\mathrm{p}}\left(\mathbb{R}^{\mathrm{n}}\right), 0<p<1$, Studia Math., 74 (1982), 25-33.
[11]. J. MICHAEL WILSON, On The Atomic Decomposition for Hardy Spaces, Pacific Journal of Mathematics Vol. 116, No. 1, 1985

> Ahmed Abdallatif "The Atomic Decomposition Using only Properties of the Nontangential Maximal Functions Series u_r ${ }^{\wedge *}$ For Hardy Spaces." IOSR Journal of Mathematics (IOSR-JM) 13.6 (2017): 51-54.

