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Abstract: We give an extremely easy proof of the atomic decomposition for distributions in 𝐻1−휀(ℝ+
2 ×

ℝ+
2 ), 휀 > 0. Our proof uses only properties of the nontangential maximal functions series 𝑢𝑟

∗. We then a confirn 

our argument to give a "direct" proof of the Chang-Fefferman decomposition for 𝐻1−휀(ℝ+
2 × ℝ+

2 ). 
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I. Introduction 
Let ℝ+

𝒏+𝟏  =  {(𝑥, 𝑦): 𝑥 𝜖 ℝ𝒏, 𝑦 >  0}. Or  𝑢𝑟(𝑥, 𝑦)  harmonic on ℝ+
𝒏+𝟏 and 𝐴 >  0 define 

  𝑢𝑟
∗(𝑥)

𝑟

 =  𝑠𝑢𝑝 𝑥−𝑡 <𝐴𝑦
   𝑢𝑟(𝑡, 𝑦) 

𝑟

. 

We say that 𝑢𝑟𝜖 𝐻1−휀  if 𝑢𝑟
∗  𝜖𝐿1−휀 , for any 𝐴, and set  𝑢𝑟 𝐻1−휀 =   𝑢𝑟 𝐿1−휀 . If 𝑢𝑟𝜖𝐻

1−휀 , 휀 > 0, then  𝑓𝑟𝑟 =
   𝑢𝑟𝑖𝑟 (. , 𝑦) exists (𝒢′) and is said to be in 𝐻1−휀 . We set   𝑓𝑟 𝐻1−휀𝑟  =    𝑢𝑟 𝐻1−휀𝑟  (see [6,11]). 

For 휀 ≥ 0, dip-atom is a functions series 𝑎𝑟( 𝑥) 𝜖 𝐿2 1−휀 (ℝ𝑛) satisfying: 

(𝑖)  supp 𝑎𝑟 ⊂   𝑄 𝑗 ,  𝑄 𝑗  a cube. 

 𝑖𝑖    𝑎𝑟 2 ≤   𝑄 𝑗  
휀 2 휀−1  

 (  𝑄 𝑗  = the volume of  𝑄 𝑗 ). 

(𝑖𝑖𝑖) ∫  𝑎𝑟 𝑥 𝑥𝛼𝑑𝑥𝑟 =  0 for all monomials 𝑥𝛼  with |𝛼| ≤ [𝑛 1 − 휀 −1 −  1)]. 
The following theorem is well known [4,7,10,11]: 

 

THEOREM 1. Let 𝑓𝑟𝜖𝐻
1−휀 , 휀 ≥ 0. There exist  1 − 휀 -atoms  𝑎𝑟 𝑘  and numbers  𝜆𝑘  such that 

 𝑓𝑟
𝑟

=   𝜆𝑘 𝑎𝑟 𝑘

𝑘𝑟

 𝑖𝑛 𝒢 ′                                                     (1) 

The 𝜆𝑘  satisfy   𝜆𝑘  
휀−1

𝑘  ≤  𝐶(1 − 휀, 𝑛 )    𝑓𝑟 𝐻1−휀
1−휀

𝑟  . Conversely, every sum (1) satisfies 

  𝑓𝑟  𝐻휀−1
휀−1

𝑟

≤ 𝐶 휀 − 1, 𝑛   𝜆𝑘  휀−1

𝑘

. 

Now let 𝑢𝑟  be biharmonic on ℝ+
2 × ℝ+

2 . Define 

  𝑢𝑟 𝐴
∗ (𝑥1 , 𝑥2)

𝑟

 =  𝑠𝑢𝑝 𝑥𝑖−𝑡𝑖 <𝐴𝑦𝑖
𝑖=1,2

  𝑢𝑟 𝑡1, 𝑦1 , 𝑡2 , 𝑦2  

𝑟

 

 

As before, we say that 𝑢𝑟−1𝝐 𝐻1−휀(ℝ+
2  ×  ℝ+

2 ) if  𝑢𝑟 𝐴
∗ 𝝐 𝐿1−휀(ℝ2), and we set  𝑢𝑟 𝐻1−휀  =   𝑢𝑟

∗ 𝐿1−휀 . Such u 

give rise to boundary distributions 𝑓𝑟 , which are said to be in 𝐻1−휀 . (See [2,].) 

For 휀 > 0, a Chang-Fefferman p-atom is a functions series 𝑎𝑟𝝐𝐿
1−휀(ℝ2)  

satisfying: 

(a) 𝑠𝑢𝑝𝑝 𝑎𝑟 ⊂ 𝛺 , 𝛺 open, |𝛺|  < ∞. 

(b)   𝑎𝑟 2 ≤  Ω 
휀

2 휀−1 . 
(c) 𝑎𝑟  =   𝜆𝐾 𝑎𝑟 𝐾𝐾 , where 𝜆𝐾  are numbers and the  𝑎𝑟 𝐾  are functions series  atisfying: 

(i) supp  𝑎𝑟 𝐾 ⊂ 𝐾  ⊂  𝛺 where 𝐾 =  𝐼 × 𝐽, 𝐼, 𝐽 dyadic intervals, and 𝐾  denotes the triple of 𝐾. 

(ii) 

  
𝜕𝐿 𝑎𝑟 𝐾

𝜕𝑥1
𝐿  

𝑟

≤
1

  𝐾  𝐼 
  𝑎𝑛𝑑   

𝜕𝐿 𝑎𝑟 𝐾

𝜕𝑥2
𝐿  

𝑟

≤
1

  𝐾  𝐽 𝐿
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for all 𝐿 ≤   
3+휀

2 1−휀 
  

(iii) 

  𝑎𝑟

𝑟

 𝑥 1 , 𝑥2 𝑥2
𝑘𝑑𝑥2  =  0 𝑎𝑛𝑑   𝑎𝑟 𝑥1 , 𝑥 2 𝑥1

𝑘𝑑𝑥1

𝑟

 

for all  𝑥 1 , 𝑥2  𝝐ℝ2 and all 𝑘 <   
1+3휀

2 1−휀 
 . And 

If the "atoms" are Chang-Fefferman atoms, then Theorem A is true for  

𝑓𝑟𝜖𝐻
1−휀 ℝ+

2 , ℝ+
2   2  3 . 

Until now, proofs of the atomic decomposition have relied on showing that 𝑢𝑟
∗  𝜖 𝐿1−휀  implies that some auxiliary 

functions series(such as the "grand" maximal function or the 𝑆𝑟 -functions series) is in 𝐿1−휀 . In this paper, we 

give proofs which get the atoms directly from 𝑢𝑟
∗  𝜖 𝐿1−휀 . 

 

II. The case 𝐻1−휀 ℝ+
2   Let 𝜓 𝝐 𝐶∞(ℝ) be real, radial, 𝑠𝑢𝑝𝑝 𝜓 ⊂  { 𝑥  

<  1}, 𝜓 has the cancellation property 𝛾), and 

 𝑒−𝜃𝜓  𝜃 𝑑𝜃

∞

0

= −1. 

For 𝑦 >  0, set 𝑦−1𝜓(𝑡/𝑦)  =  𝜓𝑦  (𝑡). 

Take  𝑓𝑟𝜖 𝐿2 1−휀  𝐻1−휀 , 𝑓𝑟 real-valued, 𝑢𝑟  =  𝑃𝑦 ∗ 𝑓𝑟  (the Poisson integral of 𝑓𝑟 ) . By Fourier transforms 

 𝑓𝑟
𝑟

 =   
𝜕𝑢𝑟

𝜕𝑦
 𝑡, 𝑦  𝜓𝑦 𝑥 − 𝑡 𝑑𝑡𝑑𝑦 𝑖𝑛  𝒢 ,.

ℝ+
2

 

(This trick is due to A. P. Calderόn.) For 𝑘 =  0, ± 1, ± 2, . . ., define 

𝐸𝑘 =  { 𝑢𝑟 2
∗  >  2𝑘]  =   𝐼𝑗

𝑘

∞

𝑗 =1

 

where the 𝐼𝑗
𝑘  are component intervals. For 𝐼an interval, let 

𝐼 = {(𝑡, 𝑦) < ℝ+
2 :  𝑡 − 𝑦, 𝑡 + 𝑦 ⊂  𝐼} 

be the " tent" region. Define 𝐸 𝑘 = ∪  𝐼 𝑗
𝑘 , 𝑇𝑗

𝑘  =  𝐼 𝑗
𝑘  \ 𝐸 𝑘+1. Then 

 𝑓𝑟
𝑟

=     
𝜕𝑢𝑟

𝜕𝑦
 𝑡, 𝑦  𝜓𝑟 𝑦 𝑥 − 𝑡  𝑑𝑡𝑑𝑦

𝑇𝑗
𝑘𝑟𝑘 ,𝑗

  =  𝑔𝑗
𝑘

𝑘 ,𝑗

 =   𝜆𝑗
𝑘 𝑎𝑟 𝑗

𝑘

𝑟𝑘 ,𝑗

, 

where 𝜆𝑗
𝑘  =  𝐶2𝑘  𝐼𝑗

𝑘  
1

1−휀  and the  𝑎𝑟 𝑗
𝑘  (we claim) are atoms. The  𝑎𝑟 𝑗

𝑘  inherit 𝛾 from 𝜓𝑟 , and obviously 

𝑠𝑢𝑝𝑝  𝑎𝑟 𝑗
𝑘  ⊂ 𝐼 𝑗

𝑘  . Note also that 

Thus, we are done if we can show 

We do this by duality. Let 𝑟  𝜖 𝐿2 1−휀 (ℝ),  𝑟  2 =  1. Then 

  𝑟(𝑥) 𝑔𝑟 𝑗
𝑘(𝑥)𝑑𝑥 =   

𝜕𝑢𝑟

𝜕𝑦
 𝑡, 𝑦  𝑟 ∗  𝜓𝑟 𝑦 𝑡  

2 𝑑𝑡𝑑𝑦

𝑦
𝑇𝑘

 

≤   𝑦 ∇𝑢𝑟  
2

𝑇𝑗
𝑘

𝑑𝑡 𝑑𝑦 

1
2

   𝑟 ∗  𝜓𝑟 𝑦  
2 𝑑𝑡 𝑑𝑦

𝑦
ℝ+

2

 

1
2

 ≤ 𝐶   𝑦 ∇𝑢𝑟  
2 𝑑𝑡 𝑑𝑦

𝑇𝑗
𝑘

 

1
2

 

We estimate the last integral by Green's Theorem. It is bounded by 

    𝑢𝑟  𝑦  
𝜕𝑢𝑟

𝜕𝑣
 +

1

2
 𝑢𝑟 

2  
𝜕𝑦

𝜕𝑣
  

𝜕𝑇𝑗
𝑘

𝑑𝑠  

(
𝜕

𝜕𝑣
 is outward normal; 𝜕𝑇𝑗

𝑘  is just smooth enough to let us use Green's 

Theorem). Because of the "2" (in  𝑢𝑟 2
∗), both  𝑢𝑟   and 𝑦 ∇𝑢𝑟    are bounded by 𝐶2𝑘  on 𝜕𝑇𝑗

𝑘 . Since  
𝜕𝑦

𝜕𝑣
  <  1 

and  𝜕𝑇𝑗
𝑘   <  𝐶 𝐼𝑗

𝑘  , the last term is no 

larger than 𝐶2𝑘  𝐼𝑗
𝑘  

1

2. 
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III. The case 𝑯𝟏−𝜺 ℝ𝟐
𝒏+𝟏 . Let 𝜓𝑟  be as in II, except now 𝜓𝑟  𝝐 𝐶∞(ℝ𝑛). Let 𝑓𝑟𝜖𝐻

1−휀 ∩ 𝐿2 1−휀  and u be as 

before. Define 

where the Ω𝑗
𝑘  are Whitney cubes (for the definition see [9]). For 𝛺 a 

cube in ℝ𝑛 , define 

𝛺  =  {(𝑡, 𝑦): 𝑡 𝝐 𝛺, 0 <  𝑗 >   𝑣 <  𝑙(𝛺)} 
where 𝑙(𝛺)  =  𝑠𝑖𝑑𝑒𝑙𝑒𝑛𝑔𝑡 𝑜𝑓  𝛺. Define 

With these modifications, the preceding argument goes over practically verbatim; the details are left to the 

reader. 

 

IV. The case 𝐻1−휀(ℝ+
2 × ℝ+

2 ). We first show that the proof in II 

yields a Chang-Fefferman decomposition for ℝ+
2 . For 𝐼 ⊂  ℝ a dyadic 

interval, let 

𝐼+ = {(𝑡, 𝑦): 𝑡𝜖𝐼,  𝐼 /2 < 𝑦 < 𝑙 𝐼 }. 
Define 

𝒢𝑗
𝑘 =  𝐼+ ∩ 𝑇𝑗

𝑘 , 𝑔𝑄 =  
𝜕𝑢𝑟

𝜕𝑦
 𝑡, 𝑦  𝜓𝑟 𝑦 𝑥 − 𝑡 𝑑𝑡 𝑑𝑦 = 𝜆𝑗

𝑘𝜆𝑄 𝑎𝑟 𝑄   

𝑄

  𝑓𝑜𝑟 𝑄𝜖 𝒢𝑗
𝑘  

where we set 

Then it is easily verified that the  𝑎𝑟 𝑄  have the right cancellation, support and smoothness properties for 

elementary particles. And obviously 

 𝑎𝑟 𝑗
𝑘 =   𝜆𝑄

𝑄𝜖𝒢𝑗
𝑘

  𝑎𝑟 𝑄 , 

  𝜆𝑄
2

𝑄𝜖𝒢𝑗
𝑘

 

1
2

≤  𝐼 𝑗
𝑘  

1−2휀
2 1−휀 . 

In order to do our proof in ℝ+
2 × ℝ+

2 , we need tents, and we need a way to do Green's Theorem. For these, we 

need some notation. 

For (𝑡, 𝑦)  =  (𝑡1, 𝑦1 , 𝑡2, 𝑦2) 𝜖  ℝ2 2, let 𝐾𝑡 ,𝑦  be the rectangle with sides parallel to the coordinate axes, centered 

at (𝑡1, 𝑡2) 𝜖 ℝ2, and with 

dimensions 2𝑦1 × 2𝑦2. 

Take 𝑓𝑟𝜖 ⋂𝐿2 1−휀 , 𝐻1−휀 = 𝑃𝑦1
. 𝑃𝑦2

∗ 𝑓𝑟(the double Poisson integral of 𝑓𝑟 ). 

Let 𝜓𝑟  be as in II but with cancellation corresponding to (iii). Then 

 𝑓𝑟 =   
𝜕2𝑢𝑟

𝜕𝑦1𝜕𝑦2

 𝑡, 𝑦  𝜓𝑟 𝑦1
 𝑥1 − 𝑡1  𝜓𝑟 𝑦2

 𝑥2 − 𝑡2 𝑑𝑡 𝑑𝑦 𝑖𝑛 𝒢 ,

 ℝ+
2  

2𝑟𝒓

 

Let 𝑀 be the strong maximal functions series. Let 𝛿 >  0 be small, to be 

chosen later. Define 

𝐸𝑘 = {𝑢100
∗ > 2𝑘), 𝐹𝑘 = {𝑀𝜒𝐸𝑘 > 𝛿). 

It is a fact that  𝐹𝑘   ≤  𝐶𝛿  𝐸𝑘  . Set 

𝐹 𝑘  =    𝑡, 𝑦 ∶ 𝐾𝑡 ,𝑦 ⊂ 𝐹𝑘 , 

𝑇𝑘  =  𝐹𝑘\𝐹 𝑘+1 

  𝑔𝑟 
𝑘

𝑟

=   
𝜕2𝑢𝑟

𝜕𝑦1𝜕𝑦2

 𝑡, 𝑦  𝜓𝑟 𝑦1
 𝑥1 − 𝑡1  𝜓𝑟 𝑦2

 𝑥2 − 𝑡2 𝑑𝑡 𝑑𝑦 =   𝜆𝑘 𝑎𝑟 𝑘

𝑘𝑟𝑇𝐾𝑟

 

where we set 𝜆𝑘  =  𝐶2𝑘  𝐸𝑘  
1

1−휀 . 

For 𝐾 =  𝐼 × 𝐽, 𝐼, 𝐽 dyadic intervals, let 𝐾+ = 𝐼+ × 𝐽+ ⊂ ℝ+
2 × ℝ+

2 . Set 

𝒢𝑘 =  𝑸 = 𝑲+ × 𝑻𝒌 ,

  𝒈𝒓 𝑸

𝒓

=   
𝜕2𝑢𝑟

𝜕𝑦1𝜕𝑦2

 𝑡, 𝑦  𝜓𝑟 𝑦1
 𝑥1 − 𝑡1  𝜓𝑟 𝑦2

 𝑥2 − 𝑡2 𝑑𝑡 𝑑𝑦 =   𝜆𝑘𝜆𝑄 𝑎𝑟 𝑘

𝑘𝑟𝑇𝐾

   𝑄𝜖 𝒢𝑘 

𝑟

  



The Atomic Decomposition Using only Properties of  the Nontangential Maximal Functions Series .. 

DOI: 10.9790/5728-1306035154                                   www.iosrjournals.org                                           54 | Page 

where we set 

𝜆𝑄 =   𝐶 𝜆𝐾
−1  ∫ 𝑦1𝑦2 ∇1∇2𝑢𝑟  

2𝑑𝑡 𝑑𝑦
𝑄

 

1

2

𝑟𝑘      with  

          ∇1∇2𝑢𝑟  
2 =  

𝜕2𝑢𝑟

𝜕𝑥1𝜕𝑥2
 

2

+

 
𝜕2𝑢𝑟

𝜕𝑥1𝜕𝑦2
 

2

+  
𝜕2𝑢𝑟

𝜕𝑦1𝜕𝑥2
 

2

+  
𝜕2𝑢𝑟

𝜕𝑦1𝜕𝑦2
 

2

.   

Then, in exact analogy to case II, everything will be done once we 

show 

  𝑦1𝑦2 ∇1∇2𝑢𝑟  
2𝑑𝑡 𝑑𝑦 ≤ 𝐶22𝑘  𝐸𝑘  

𝑇𝑘𝑟

 

For this we need a lemma of Merryfield. The lemma requires a little 

more notation. 

Let 𝜂 𝜖 𝐶∞(ℝ), 𝜂 ≥  0, 𝑠𝑢𝑝𝑝 𝜂 𝑐 [−1,1], 𝜂 ≥
1

2
𝑜𝑛 [−  

1

2
,

1

2
 ] and  ∫ 𝜂 = 1. 

Define For 𝐸𝜖ℝ2, set 

Now, 𝑉𝐸 𝑡, 𝑦  is essentially the density of 𝐸 in 𝐾𝑡 ,𝑦 , r In particular, if 

this density is greater than 1 —  𝛿, 𝛿 small, then 𝑉𝐸 𝑡, 𝑦 > 10−6. 

Merryfield's lemma is [8]: 

  𝑦1𝑦2 ∇1∇2𝑢𝑟  
2𝑉𝐸

2 𝑡, 𝑦 𝑑𝑡 𝑑𝑦 ≤ 𝐶𝜆2 𝐸 

 ℝ+
2  

2𝑟

 

 (Note: Merryfield states this for 𝐸 open, but openness, as his proof 

shows, is not required.) 

Let us set 𝐺𝑘  =  𝐹𝑘\𝐸𝑘+1. Merryfield's lemma says that 

  𝑦1𝑦2 ∇1∇2𝑢𝑟  𝑉𝐺𝑘
2  𝑡, 𝑦 𝑑𝑡𝑑𝑦 ≤ 𝐶22𝑘  𝐺𝑘  ≤ 𝐶22𝑘  𝐸𝑘  

ℝ+
2𝑟

 

Therefore, we will have (2) (and be done) if we can show 

𝑉𝐺𝑘  >  10−6  𝑜𝑛 𝑇𝑘 . 

Take (𝑡, 𝑦)𝜖 𝑇𝑘 . Then 𝐾𝑡 ,𝑦 ⊂  𝐹𝑘  but 𝐾𝑡 ,𝑦 ⊄  𝐹𝑘+1. So there is an 

𝑥 𝜖𝐾𝑡 ,𝑦  ∩ (𝐹𝑘\𝐹𝑘+1). Since 𝑥 ∉  𝐹𝑘+1, 𝑀𝜒𝐸𝑘+1(𝑥)  <  𝛿. From the definition of 𝑀, this implies 

 𝐾𝑡 ,𝑦  ∩ 𝐸𝑘+1 / 𝐾𝑡 ,𝑦  ≤ 𝛿. 

Since 𝐾𝑡 ,𝑦 ⊂  𝐹𝑘 , 

 𝐾𝑡 ,𝑦  ∩ (𝐹𝑘\𝐸𝑘+1) / 𝐾𝑡 ,𝑦  ≥ 1 − 𝛿. 

But 𝐹𝑘\𝐸𝑘+1  =  𝐺𝑘 , and this imphes that 𝑉𝐺𝑘 (𝑡, 𝑦)  >  10−6, for 𝛿 small. 
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