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Abstract: In this work we study the relationship between rough sets concept and image classification and 

explores the effectiveness of rough sets theory in image classification by using the change of rough sets theory 

to improve image classification model. Rough sets theory is used for classification rules extraction. 
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I. INTRODUCTION 
The main problem in the image classification problems and dealing with the huge number of data is the 

high overlapping between Image classes and uncertainty. 

we see the task of extracting the information in the form of patterns, relationships and groupings to be 

used in applications such as decision support, prediction and taxonomy has become arduous and essential with 

huge amounts of improper additional texture information may result in a chaotic state, and this leads to 

uncertainty in the classification process. 

Rough set theory is an approach to handle vagueness and uncertainty. We propose methods that apply 

rough set theory in the context of partitioningof image data . We put this approach to specify the classes in the 

data by selecting respective regions in 2D slices. Rough set theory compute lower and upper approximations of 

the classes  .The boundary region is the difference between the lower and the upper approximations represents 

the vagueness of the classification. We present an approach to automatically compute segmentation rules from 

the rough set classification using expansion of approximation spaces . 

This study proposes using Rough Set concepts; depend on the Change of special topology called quasi 

discrete topology, as a tool for image classification.Weshow that the appropriate classification knowledge can 

be presented by Rough Set and construct mathematical model to eliminate the huge data, and this information 

can improve the accuracy of image classification. 

 

1. APPROXIMATION SPACE 
Rough sets have been initiated by Pawlak (1982) in order to describe approximation knowledge of 

subsets of a given universe. In some sense this theory can be considered as a generalization of classical set 

theory. The description of these sets are derived from an information system. Information system is (U, A) 

where U is the universe, i.e., a non-empty, finite set of objects, and A is a given of attributes, i.e., a non-empty, 

finite set of attributes a ∈A such that a: U→ Va,where Va denotes the values of attributes that feature a may 

have. Thus, the information data assigns a value a(u) ∈ Va to attribute a∈ A and object u ∈ U. Information 

systems are often given in form of a decision rules that lists these values. In the context of image partition, the 

objects represent pixels and the attributes given the data about pixels such as RGB color. While the decision 

table contains all pixels, we will in our interactive approach use selected and manually classified pixels as a 

training set to determine a classification for all pixels. 

As such, we introduce another column for the training set, which adds the classification label. This 

additional row is referred to as the decision feature, while the others are referred to as the conditional features. 

This article is devoted to give a study on approximation space. The idea of rough set depends on the 

concept of approximation space.   

 

Definition 1.1:            

The pair A = (U, R) is an approximation space, where U be a finite and R anequivalence relation on U.                                                  

Pawlak(1991, 1996) 
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From Definition1.1.1, The subsets of U are definable in the given approximation space and other are 

undefinable. Thus, a set X⊂U is definable (exact) if it is a union of equivalence classes, otherwise the set X is 

undefinable. 

Now, rough set (undefinable set) can be defined approximately in any approximation space which 

depend on two exact sets referred to as lower approximation and upper approximation. 

 

Definition 1.2  

Given an approximation space A = (U, R) and X⊂U, then 

(i) Lower approximation of X is the greatest union of equivalence classes contained in X and denoted 

by  𝐿(𝑋) =  ⋃{[𝑥]𝑈/𝑅, [𝑥] ⊂  𝑋} 

(ii) Upper approximation of X is the smallest union of equivalence classes containing X and denoted 

by𝑢(𝑋)  =  ⋃{ [𝑥]𝑈/𝑅 , [𝑥]⋂ 𝑋 ≠ ∅ }, 
 

Where U/R is the set of equivalence classes on U.         Pawlak (1991, 1996) 

 

Definition 1.3   

Given an approximation space A = (U, R) and X⊂U, then 

(1) 𝐿𝜇  𝑋 is the elements in L(X) which is called the internal measureof X. 

(2) 𝑢𝐿𝜇  𝑋 is the elements in u(X) which is called the external measure of X. 

(3) 𝜂(𝑋)is the accuracy of X in A and is given by𝜂 𝑋 
𝐿𝜇  𝑋 

𝑢𝐿𝜇  𝑋 
, 𝑢𝐿𝜇  𝑋 ≠ 0.Pawlak (1991, 1996)  

 

DIFFERENT FORMS OF ROUGH SETS 
In the following we discuss some different ways to determine rough sets.  

(1) Let A =(U,R) given approximation space. Then Set X⊂ U is rough set if L(X)   Xu(X). 

From definition 1.3 the rough set satisfies0 𝜂(𝑋) 1. 

(2) Let A =(U,R) given approximation space and X⊂U. Then X is  

(i) roughly definable if L(X) ≠ ∅  and  u(X) ≠U, 

(ii) internally roughly undefinable if L(X)= ∅ and u(X) ≠U, 

 (iii) externally roughly undefinable if L(X) ≠ ∅ and   u(X) =U, 

(v) totally undefinable if    L(X)= ∅  and  u(X)=U.Pawlak (1991, 1996)    

 
Remark 1.1(On different Forms of rough sets) 

 The rough sets is defined in two ways. The first is the accuracy measure and the second is the 

classification of rough sets. The accuracy coefficient expresses the size of boundary of the set. But it says 

nothing about the structure of the boundary. While the classification of rough sets gives no information about 

the size of the boundary region, but it provides us with some information about the boundary region. By the 

accuracy of a set, we are still unable to tell exactly its topological structure and conversely the knowledge of the 

topological structure of the set does not gives information's about its accuracy. 

 Therefore, in practical application of rough sets we combine both kinds of information about 

the boundary region (accuracy measure) and the information about classification of topology under 

consideration. 

 

Theorem 1.1 

 Given an approximation space A = (U, R) and X⊂U, thenthe following statements hold: 

(i) X is exact set if and only if the lower approximation and upper approximation coincide.      

(ii) X is rough set if the lower and upper approximations are different.  Pawlak (1991, 1996) 

 

Definition 1.4  

 Given an approximation space A = (U, R) and X⊂U, then 
The Boundary set of X (denoted by b(X)) is defined   by b(X) = u(X) – L(X). 

The Internal edge of X is the set of all elements which belong to each of the boundary and the set X and 

is defined by      Int.edge (X) = X – L(X). 

The external edge of X is the set of all elements which belong to the boundary set but not in X and is 

defined byExt.edge (X) = u(X) – X. 

The negative region of X is defined by neg.(X)= U-u(X).Pawlak (1991, 1996) 

The following figure indicate the above concepts  
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In the above figure, the squares are the equivalence classes. Theset X is the free-hand drawing, the dark gray 

squares is a lower approximation of X and the dark and light gray squaresisupper approximation of X.the 

boundary region is the gray squares. The negative region is the white squares. 

 

II. CHANGE OF APPROXIMATION SPACE 
The aim of this article is to introduce and study the concept of Change of approximation space. Also, some of its 

properties are investigated. 

 

Definition 2.1 

Let A1= (U,R1) and A2= (U,R2) be two approximation spaces. If R1 ≤ R2, then the approximation spaces A1 is 

finer than A2. 

 

Remark 2.1 

If A 1 is finer than A2, then R1 is specialization of R2 (or, R2 is generalization of   R1). 

Also, if U/R1 ≤ U/R2, then every set of U/R1 is included in a set of U/R2. 

 
Theorem 2.1 

Let A1= (U, R1), A2= (U, R2) be two Pawlak approximation spaces and 𝛽1,𝛽2 be two bases for A 1 and A 2 

respectively. If, each B 𝛽1 is the union of members of𝛽2, then A2 is aChange of an approximation space of 

A1. 

Proof: Let G be a composed set of A1.Then G is the union of members of 𝛽1 and hence. 

𝐺 =  {𝑥𝑖 : [𝑥𝑖] ∈  𝛽1}

𝑛

𝑖=1

 

Since, [x]i𝛽1 ,then [x]i is the union of members of  𝛽2 , for each I =1,2,3,……,n, hence  . 

𝐺 =  {𝑥𝑖𝑜 : [𝑥𝑖𝑜 ] ∈  𝛽2}

𝑛

𝑖=1

 

Therefore, G is composed set in A2, then A1 A2. 

 

Theorem 2.2 

 Let A1= (U, R1), A2 = (U, R2)   be two approximation spaces and define the topologies 𝜏𝑅1 and 𝜏𝑅2 

respectively. If R1⊂R2, then 𝜏𝑅2 ⊂ 𝜏𝑅1 and we say that 𝜏𝑅1 is aChange of𝜏𝑅2. 

Proof: By using Theorem 2.1 and Remark 2.1, the proof is obvious. 

Remark 2.2 

Figure 1 
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 The bases U/R1 and U/R2 form two partitions of A1 and A2 respectively. 

 
Remark 2. 3 

 If K = (U,ER) is an expansion of given approximation space A, then the following hold 

(i) if X is undefinable (rough) in a given approximation space, then X is also definable (rough) in the expansion 

of Pawlak approximationspace. 

(ii) if X is externally undefinable (internally undefinable and totally undefinable) in a given approximation 

space, then X is not externally undefinable (is not internally undefinable and not totally undefinable) in 

expansion of a given approximationspace. 

(iii) the expansion lower approximation of X is the greatest union concepts contained in X and denoted by 

EL(X). 

(iv) the expansion upper of X is the least union concepts containing X and denoted by Eu(X). 

(v) the accuracy of X in an expansion of an approximation space is given by 

𝜂𝐸 𝑋 
𝐸𝐿𝜇  𝑋 

𝐸𝑢𝐿𝜇  𝑋 
, 𝐸𝑢𝐿𝜇  𝑋 ≠ 0 . 

Definition 2.2 

 Let A = (U, R) be a given approximation space and U/R be a partition of U. Then every approximation 

space has a partition including in U /R which is the Change of A. 

 
Proposition 2.1 

 If K = (U,ER) is a change of a givenapproximation space of   A, then for any X⊂ U the following hold 

(i)L(X) ⊂ EL(X) 

(ii)Eu(X) ⊂ u(X) 

(iii)𝜂  𝑋 ≤ 𝜂𝐸 𝑋  

 
Proposition 2.2 

 If K = (U, ER) is achange of approximation space of   A= (U, R), then the important propertiesof 

approximation space is like the properties of achange of approximation space. 

 

Example 2.1 

 Let A = (U, R) be a given approximation space on the set U= {a, b, c, d, e, f, g, h, i, j,k}  and U/R={{a, 

b},{c, g, j}, {d, f},{e, i},{h, k}}. Then the partition of an expansion of approximation space is 𝛽1={{a}, {b}, 

{c},{g, j}, {d, f},{e, i},{h},{k}} 

 (i) if X= {a, b, d, f} is definable in U/R, then X is definable in 𝛽1. 

 (ii) if X= {a, c, d, e, i, k} is externally undefinable in U/R, then X is not externally undefinable in 𝛽1. 

Note that,  𝜂  𝑋 = 018, 𝜂𝐸 𝑋 = 0.71. 

(iii)if X= {c, d, e, i} is rough in U/R, then X is rough in𝛽1   Note that,𝜂  𝑋 0.28 , 𝜂𝐸 𝑋 = 060 

 (iv) if X= {c, d, e} is internally undefinable in U/R, then X is not internally undefinable in 𝛽1. 

Note that,𝜂  𝑋 = 0 ,𝜂𝐸 𝑋 = 0.20. 

 (v) if X={a, c, d, e, h} is totally undefinable in U/R, then x is not totally undefinable. 

Note that, 𝜂  𝑋 = 0,  𝜂𝐸 𝑋 = 0.50. 

 

III. CHANGE OF BIAPPROXIMATION SPACE 
 The aim of this section is to introduce concept of Biapproximation space based on Pawlak 

approximation space and give examples to illustrate the behavior of new notion. Before sate the new definition 

we want mention the following, every element has different view from everyone (mathematician person, 

chemistries person and ordinary person) and the equivalent classes change from one to other and change when 

the issues become new. But the problem is when we use the same element (generally, objects) which founded in 

several situations. So, we try to give new definition help us to use two knowledge bases which have the same 

objects (or, objects founded in many knowledge bases). 

 
Definition 3.1   

 If the set U be a finite and R1, R2 equivalence relations on U. Then π = (U, R1, R2) is called 

Biapproximation space.  

 

Definition 3.2 
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  Let π = (U, R1, R2) be Biapproximation space and define the two Pawlak approximation spaces (or, 

two knowledge bases) ((U, R1) and (U, R2)) we say that (U, R1) and (U, R2) are equivalent if U /R1 = U /R2 

and so biapproximation spaces become (U, R1) or (U, R2), and U /R1 is finer than U /R2, if U /R1 ≤ U /R2(in 

other hand, (U, R1) is specialization of (U, R2) or (U, R2) is generalization of (U, R1)). 

 

Definition 3.3 

 Let π = (U, R1, R2) is called Biapproximation space, then the generalization of lower, upper 

approximation and accuracy measure of A ⊂ 𝑼with respect to Biapproximation space given by:  

𝐿𝑔 𝐴 = 𝐿𝑅1 𝐴 ∪ 𝐿𝑅2 𝐴  

𝑢𝑔 𝐴 = 𝑢𝑅1 𝐴 ∩ 𝑢𝑅2 𝐴  

𝜇𝑔 𝐴 =  
|𝐿𝑔 𝐴 |

|𝑢𝑔 𝐴 |
 

 
 

 

Remark 3.1 

1. If U/R = U/R1 ∩ U/R2, then U/R ≤ U/R1 and U/R ≤ U/R2.This means, U/R is specialization of both U /R1 

and U /R2). 

2. The generalization consists in combining some equivalence classes, where specialization consists in splitting 

equivalence classes into smaller classes. 

3. The Pawlak approximation spaces (U, R1) and (U, R2) enable to indicate the same facts about the universe. 

4. If equivalence classes are single elements sets, then the relation is equality relation and give accurate space. 

 

Proposition 3.1 

 Let π = (U,R1, R2) and R1, R2 are equivalence relations on U. Then the space (U, R) which given by 

 U/R = {u∩v: u ∈ U/R1;v ∈ U/R2} 

forms an Change of both (U, R1) and (U, R2). 

 
Lemma 3.1 

 Let π = (U, R1, R2) be a bi-approximation space and (U, R) be the Change of (U, R1) and (U, R2). 

Then the following hold: 

1. L π (X) ⊂ L(X) 

2. U(X) ⊂Uπ(X 

 
Example 3.1                          

 Suppose we are given the following set of toys blocks, U={x1,x2, x3, x4, x5, x6, x7,x8} and assume 

that these toys different colors ( red, blue, yellow) , shapes ( square, round, triangular ) and size ( small, large ) 

from the following table  

 
Toys R1=color R2=shapes R3=size 

x1 red round small 

x2 blue square large 

x3 red triangular small 

x4 blue triangular small 

x5 yellow round small 

x6 yellow square small 

x7 red triangular large 

x8 yellow triangular large 

Table 1 

 

Now we calculate the accuracy measure of any set A with respect to all later definition to determine the 

difference between them. 

Let A ={x1,x3, x4,x5} 
 

 L(A) u(A) µ(A) 

R1 
 U 0 

R2 {x1, x5} U .25 
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R3 
 { x1, x3, x4,x5, x6} 0 

R1, R2 {x1, x4, x5} {x1, x3, x4, x5, x7} .60 

R1, R3 { x1, x3, x4} { x1, x3, x4, x5, x6} .60 

R2, R3 A A 1 

R1, R2, R3 A A 1 

Table2 

the best generalization of given data is:  

U/{R2, R3 }={{x1, x5}, {x2},{x3, x4}, {x6},{x7, x8}} 

U/{R1, R2 , R3}={{x1}, {x2},{x3}, {x4},{x5},{x6},{x7},{x8}}. 

𝐿𝑔 𝐴 = 𝐿𝑅2 𝐴 ∪ 𝐿𝑅3 𝐴 = {𝑥1, 𝑥5} 

𝑢𝑔 𝐴 = 𝑢𝑅2 𝐴 ∩ 𝑢𝑅3 𝐴 =  𝑥1, 𝑥3, 𝑥4, 𝑥5, 𝑥6  

𝜇𝑔 𝐴 =  
|𝐿𝑔 𝐴 |

|𝑢𝑔 𝐴 |
=  .40 

 

 

IV. ROUGH SETS AND IMAGE CLASSIFICATION  
We applied changes of topologies to the segmentation of image.  We have chosen the 2D slice for 

assembling the training set. We selected few pixels to interactively choose different classes. Given the few 

samples that have been provided, the results are reasonable. Next, we took the rules we obtained from the first 

point and assigned them to other points. Segmentation of imaging data is an important and crucial step in the 

image classification. The rough set analysis requires no external factors and uses the information presented in 

the given data. In the case of redundant information, only the minimum amount of data needed for the 

classification model is used. We use the concept of rough sets to express uncertainty in segmentation tasks. The 

task is to estimate sets of the entire universe that are conform to the attribute values of the training set. These 

sets can often be described by a few rules to a subset of the attributes.  

Rough image is a collection of pixels and the equivalence relation induced equivalence classes and 

quasi discrete topology.We converted the image into an approximation space by obtaining the equivalence 

classes through the information about each pixel. We choose eight points of snail see picture of three different 

parts as following table: 

 

 

 

 

 

 

 

 

 R G B C 

p1 (183.5,Inf) (-Inf, 249.5) (-Inf, 132.0) 3 

p2 (183.5,Inf) (-Inf, 249.5) (132.0,250.5) 2 

p3 (183.5,Inf) (-Inf, 249.5) (250.5,Inf) 2 

p4 (183.5,Inf) (249.5,Inf) (250.5,Inf) 1 

p5 (183.5,Inf) (249.5,Inf) (132.0,250.5) 2 

p6 (183.5,Inf) (249.5,Inf) (-Inf, 132.0) 3 

p7 (-Inf, 183.5) (-Inf, 249.5) (132.0,250.5) 3 

p8 (-Inf, 183.5) (-Inf, 249.5) (-Inf, 132.0) 3 

Table 3 

For every attribute we construct basis for quasi discrete topology as follows:  

U/R = {{p1, p2, p3, p4, p5, p6}, {p7, p8}} 

U/G = {{p1, p2, p3, p7, p8}, {p4, p5, p6}} 

U/B = {{p1, p6, p8}, {p2, p5, p7}, {p3, p4}} 

U/C = {{P1, P6, P7, P8}, {P2, P3, P5}, {P4}} 

 

The base of given data given by:  β= {{P1, P6}, {P2, P7}, {P3, P4}, {P5}, {P8}} 

Figure 2 
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Figure 3 

if(g<250) {if(b<133) {return C3;} else {return C2;} 

            } 

else { 

                       if(b<133) {return C3;} else {if (b<251) {return C2;}  

                           else return C1; 

by using change of topology concepts, we have a base of new approximation space as follows:  

The base of new approximation space given by:  βE= {{P1, P6}, {P2}, {P7}, {P3, P4}, {P5}, {P8}} 

 
Figure 4 

if(b<251){  

            if(r<184){return C3; } else{ return C2; } 

 } else{ 

            if(g<250){ if(b<133){ return C3; } else { return C2; } 

            }     else{ 

                       if(b<133){ return C3; } else {if (b>251){return C1;}  

                           else return C2;    

    } 

 

V. CONCLUSION 
We applied changes of topologies which depend on rough set theory to the segmentation of image.  We 

selected few pixels to interactively choose different classes to construct the rules depend on equivalence class. 

So, in this paper, we propose a segmentation method that allows us to improve the uncertainty in the data. The 

segmentation method is based on a classification using change of topologies. One advantage of the rough set 

theory is the generation of readable if then decision rules as the output of the classification process when applied 

to a training set. Such rules allow us to reveal new patterns in the data material and to use them as classifiers for 

unseen data sets. 
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