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Abstract: A single-step hybrid block method for initial value problems of general second order Ordinary
Differential Equations has been studied in this paper. In the derivation of the method, power series is adopted
as basis function to obtain the main continuous scheme through collocation and interpolations approach. Taylor
method is also used together with new method to generate the non-overlapping numerical results. The newly
constructed method is then applied to solve the system of second-order stiff ordinary differential equations and
the accuracy is better when compared with the existing methods in terms of error.
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I.  Introduction

Most real life problems that arise in various fields of study be it engineering or science are modeled as
mathematical models before they are solved. These models often lead to differential equations. Numerous
problems such as chemical kinetics, orbital dynamics, circuit and control theory and Newton’s second law
applications involve second-order ODEs [1-2]. Ordinary differential equations (ODESs) are commonly used for
mathematical modeling in many diverse fields such as engineering, operation research, industrial mathematics,
behavioral sciences, artificial intelligence, management and sociology. This mathematical modeling is the art of
translatingproblem from an application area into tractable mathematical formulations whose theoretical and
numerical analysis provide insight, answers and guidance useful for the originating application [3]. This type of
problem can be formulated either in terms of first-order or higher order ODEs. In this article, the system of
second-order ODEs of the following form is considered.
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The method of solving higher-order ODEs by reducing them to a system of first-order approach
involves more functions to evaluate them and then leads to a computational burden as mentioned in [4]-[5]. The
multistep methods for solving higher-order ODEs directly have been developed by many scholars such as [6]-
[10]. The aim of this paper is to develop a new numerical method for solving systems of second-order stiff
ODEs.

I1. Derivation Of The Method

In this section, a one-step hybrid block method with two off-step points, Xn+1 and Xn+z
7 8

for solving Equation (1) is derived. Let the power series of the form
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be the approximate solution to Equation (1) for X € [Xn, Xn+1] where Nn=0,12,---N -1, a'sare the
real coefficients to be determined, V is the number of collocation points, M is the number of interpolation

points and h= X, —X,_; is a constant step size of the partition of interval [a, b], which is given by
a=X, <X <--<Xy=b.
Differentiating Equation (2) once and twice yields:
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Interpolating Equation (2) at the selected intervals, i.e., X,, and collocating Equation (3) and (4) at all points

in the selected interval, i.e., Xpr X 14 X and Xns , gives the following equations which can be written

n+=  n+—
7 8
in matrix form:
a0
1 0 O 0 0 0 0 0 0
1 Q
0 = O 0 0 0 0 0 0 i
h Ya
0 11 3 1 5 3 7 1 a, y
h 4h  64h 121h 4096h  16384h 262144h 32768h "y
0 1 7 14 343 12005 50421 823543 8234543 a, y
h 8h 64h 128h 4096h 16384h 262144h 262144h . s
12 3 4 5 6 7 8 Y
0o - — — — — — — — a, [=| .
h h h h h h h h If
2 j
00 .5 0 0 0 0 0 0 a, fmg
2 3 31 5 15 21 14 i
00 h2  Ah2 2 2 2 2 2 nil
h 4h 16h 128h 2048h 16384h 65536h as 8
0 0 2 21 147 1715 36015 352947 823543 f .
h? 4h?  16h? 128h? 2048h? 16384h° 32768h* a,
0o 2 6 12 20 30 42 56
2 2 2 2 2 2 2
h h h h h h h a,
j=1--,m ©)
Applying the Gaussian elimination method on Equation (5) gives the coefficienta,'s, for 1=0 (1)10 .

These values are then substituted into Equation (2) to give the implicit continuous hybrid method of the form:

1

jy(x): Zjﬂi(x)j 1:n+i +Zjﬂi(x)j fn+i’ j:].,"',m. (6)
i:E,E,E i=0
42 4

Differentiating Equation (6) once yields:
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Where the continuous schemes are
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I11. Convergenceanalysis

3.1 Order and error Constants of the Methods
According to [11] the order of the new method in Equation (5) is obtained by using the Taylor series
and it is found that the developed method has an uniformly order Ten, with an error constants vector of;

C, =[L4703x10™", 1.0490x10°, 1.0505x10™, 9.7083><10’8]T

3.2 Consistency
Definition 3.1:The hybrid block method (5) is said to be consistent if it has an order more than or equal to one
i.e. P >1. Therefore, the method is consistent.

3.3 Zero Stability
Definition 3.2: The hybrid block method (5)said to be zero stable if the first characteristic polynomial ﬂ(r)

having roots such that ‘I’Z‘ <1 and if ‘I’Z‘ =1, then the multiplicity of I, must not greater than two.

In order to find the zero-stability of hybrid block method (5), we only consider the first characteristic
polynomial of the method according to definition (3.2) as follows

- Bk 110 0

Which implies r = 0, 0, 1.Hence the method is zero-stable since‘rz‘ <1 and if ‘I’Z‘ =1.

3.4 Convergence
Theorem (3.1): Consistency and zero stability are sufficient condition for linear multistep method to be
convergent.Since the method (5) is consistent and zero stable, it implies the method is convergent for all point.

35 Regions of Absolute Stability (RAS)

Using the MATLAB package, we were able to plot the stability regions of the block method (see fig.
below). This is done by reformulating the block method as general linear method to obtain the values of the
matrices according to [11], [12]. The matrices are substituted into the stability matrix and using MATLAB
software, the absolute stability regions of the new methods are plotted as shown in fig. below.
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Figure: Region of Absolute Stability.
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3.6

Numerical Implementation

To study the efficiency of the block hybrid method for K =1, we present some numerical examples
by Skwame et-al 2017, [13]. In this section, the performance of the new single-step hybrid block method is
examined using the following two systems of second-order initial value problems of ordinary differential

equations with K =2 and K =3 Tables 1 and 2 show the comparison of the numerical results of the
new method with the existing methods Skwame et-al 2017, [13]for solving Example 1 and 2.

Example 1

y, =998y, +1998y, y,(0)=1

y, =-999y, —1999y, y,(0)=0, h=0.1
With Exact Solution

y,(x)=2e>* —e

—-X

Y2(X): —€
x €[0,1]

—-1000x

-1000x
€

(See Skwame et-al 2017, [13])

Table 1: Comparison of absolute errors for example 1.

X | Absolute error in Skwame et-al 2017, [13] Absolute error in New
methed
K=2 E=3 K=1
y,(x) y:(x) NED v, (x) v, (x) ¥, (x)
0.1 243 %1077 243 %1077 582 =107 583 =102 292 =x107!| 298 x10!
0.2387%1071|381x1072|402%x10%|395%x10%|890x10"%| 890 <1071
03][931x%107* |98 =x10*|9.17=107%| 2.16 x10 73| 265 x107%| 2.65 x1072
04151 =107% | 1.51%107% | 7.13x107%| 6.28 x10~*| 7.91x107% | 7.91 %1073
0.5]232%x107°] 2201073 1.20x107%| 422 =x107*| 235 %1073 2.36 =103
06| 699x107%| 7.14x107%| 228 =10"*| 157 =10~*| 697 x10~*| 7.01x10~*
0.7 215%x1073 | 1221073 | 160 %x107*| 7.77 <1073 203 x107™*| 2.06 x10~*
0.8|234%107°|146=107°|1.52x107%| 7.61x10°%| 5.52x10~°| 5.89 x10~F
0.9]217=107%| 160 =107 | 1.36 x107*| 6.72 =10 | 1.11 %1077 | 1.49 x 103
10 (197 %107 | 1481077152107 7.60 x107°| 210 x10 %) 1.74 x107°
Example 2
y, =198y, +199y, ,(0)=1
y, =—398y, —399y, v,(0)=-1 h=0.1

With Exact Solution

X

yl(x): e
Y2 (X) =€
x €[0,1]

(See Skwame et-al 2017, [13])

—-X
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Table 2: Comparison of absolute errors for example 2.

X Absolute error in Skwame et-al 2017, [13] Absolute error in New
method
K=12 K=3 K=1
Yy [\IJ Vi [\XJ Vi [\x) Yy [\I) Yy [\XJ Vi [\x)

0.1 |361x1077|3.60x107"| 2.60x107°| 2.60 x10°| 2.20 x10 | 3.17 x107°

0.2 |321%x107{330x1077| 242x10"% 242 %107 331 =x10"%| 1.00 x10~°

03 | 628x%x1077| 3271077 218 x107%| 2.18 x10™°| 6.10 x10°%| 3.27 x10~F

["%)

0.4 | 565x1077|565=%1077]3.90%x107%3.90=107%| 825x107%| 5.63 x107*

L

0.5 | 6.69%1077| 6.68 x107| 3.58x10°%| 3.58x10°%| 9.95x10""| 7.55 x10 ¢

06 | 6.03x1077| 6.02x1077[3.23x107°|3.23x10°°{1.13x1077|9.12x107°

0.7 |592x1077|592x1077| 435x107%| 435107122 x1077 | 1.04 x107"
0.8 |536=1077|537=x107]3.97x107%]3.97x10"%|1.29 x1077 | 1.11x107"
0.9 | 738 =x1077| 738 x107| 3359 x10"%| 359 %10 132 %1077 | 1.17x10"’
1.0 | 6701077 670 x1077| 431 x107°| 430 =x10 | 135 x107"| 121 =107’

V. Conclusions
In this article, an uniformly order eight implicit single-step block method with two off-step points is

derived via the interpolation and collocation approach. The absolute errors arising from examples 1 and 2 using
the new method were compared with the existing method [13]. Skwame et-al 2017 solves examples 1 and 2, it is
evident from the tables presented above that the newly proposed method performs better than Skwame et-al
2017 [13]. The method is also desirable by virtue of possessing high order of accuracy. The developed method

is consistent, A— stable , convergent, with a region of absolute stability and has uniformly order eight.
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