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Abstract: A single-step hybrid block method for initial value problems of general second order Ordinary 

Differential Equations has been studied in this paper. In the derivation of the method, power series is adopted 

as basis function to obtain the main continuous scheme through collocation and interpolations approach. Taylor 

method is also used together with new method to generate the non-overlapping numerical results. The newly 

constructed  method is then applied to solve the system of second-order stiff ordinary differential equations and 

the accuracy is better when compared with the existing methods in terms of error. 
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I. Introduction 
Most real life problems that arise in various fields of study be it engineering or science are modeled as 

mathematical models before they are solved. These models often lead to differential equations. Numerous 

problems such as chemical kinetics, orbital dynamics, circuit and control theory and Newton’s second law 

applications involve second-order ODEs [1-2]. Ordinary differential equations (ODEs) are commonly used for 

mathematical modeling in many diverse fields such as engineering, operation research, industrial mathematics, 

behavioral sciences, artificial intelligence, management and sociology. This mathematical modeling is the art of 

translatingproblem from an application area into tractable mathematical formulations whose theoretical and 

numerical analysis provide insight, answers and guidance useful for the originating application [3]. This type of 

problem can be formulated either in terms of first-order or higher order ODEs. In this article, the system of 

second-order ODEs of the following form is considered. 
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The method of solving higher-order ODEs by reducing them to a system of first-order approach 

involves more functions to evaluate them and then leads to a computational burden as mentioned in [4]-[5]. The 

multistep methods for solving higher-order ODEs directly have been developed by many scholars such as [6]-

[10]. The aim of this paper is to develop a new numerical method for solving systems of second-order stiff 

ODEs. 

 

II. Derivation Of The Method 

In this section, a one-step hybrid block method with two off-step points, 

8

7

7

1
 nn

xandx  

for solving Equation (1) is derived. Let the power series of the form 
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be the approximate solution to Equation (1) for  1,  nn xxx  where saNn ',1,2,1,0   are the 

real coefficients to be determined, v  is the number of collocation points, m  is the number of interpolation 

points and 1 nn xxh  is a constant step size of the partition of interval  ba, , which is given by 

bxxxa N  10 . 

Differentiating Equation (2) once and twice yields: 
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Interpolating Equation (2) at the selected intervals, i.e., ,nx  and collocating Equation (3) and (4) at all points 

in the selected interval, i.e., 1
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n xandxxx , gives the following equations which can be written 

in matrix form: 
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Applying the Gaussian elimination method on Equation (5) gives the coefficient  1010,' iforsai . 

These values are then substituted into Equation (2) to give the implicit continuous hybrid method of the form: 
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Differentiating Equation (6) once yields: 
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Where the continuous schemes are 
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III. Convergenceanalysis 
 

3.1 Order and error Constants of the Methods 

According to [11] the order of the new method in Equation (5) is obtained by using the Taylor series 

and it is found that the developed method has an uniformly order Ten, with an error constants vector of: 

 TC 813811

8 107083.9,100505.1,100490.1,104703.1    

 

3.2 Consistency 

Definition 3.1:The hybrid block method (5) is said to be consistent if it has an order more than or equal to one 

i.e. 1P . Therefore, the method is consistent. 

 

3.3 Zero Stability 

Definition 3.2: The hybrid block method (5)said to be zero stable if the first characteristic polynomial  r  

having roots such that 11  zz rifandr , then the multiplicity of zr must not greater than two.  

In order to find the zero-stability of hybrid block method (5), we only consider the first characteristic 

polynomial of the method according to definition (3.2) as follows 
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Which implies 1,0,0r .Hence the method is zero-stable since 11  zz rifandr . 

 

3.4 Convergence 

Theorem (3.1): Consistency and zero stability are sufficient condition for linear multistep method to be 

convergent.Since the method (5) is consistent and zero stable, it implies the method is convergent for all point. 

 

3.5 Regions of Absolute Stability (RAS) 

Using the MATLAB package, we were able to plot the stability regions of the block method (see fig. 

below). This is done by reformulating the block method as general linear method to obtain the values of the 

matrices according to [11], [12]. The matrices are substituted into the stability matrix and using MATLAB 

software, the absolute stability regions of the new methods are plotted as shown in fig. below. 

 
Figure: Region of Absolute Stability. 
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3.6 Numerical Implementation 

To study the efficiency of the block hybrid method for 1K , we present some numerical examples 

by Skwame et-al 2017, [13]. In this section, the performance of the new single-step hybrid block method is 

examined using the following two systems of second-order initial value problems of ordinary differential 

equations with 32  KandK .Tables 1 and 2 show the comparison of the numerical results of the 

new method with the existing methods Skwame et-al 2017, [13]for solving Example 1 and 2. 
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(See Skwame et-al 2017, [13]) 

 

Table 1: Comparison of absolute errors for example 1. 

 
 

Example 2 
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(See Skwame et-al 2017, [13]) 
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Table 2: Comparison of absolute errors for example 2. 

 
 

IV. Conclusions 
In this article, an uniformly order eight implicit single-step block method with two off-step points is 

derived via the interpolation and collocation approach. The absolute errors arising from examples 1 and 2 using 

the new method were compared with the existing method [13]. Skwame et-al 2017 solves examples 1 and 2, it is 

evident from the tables presented above that the newly proposed method performs better than Skwame et-al 

2017 [13]. The method is also desirable by virtue of possessing high order of accuracy. The developed method 

is consistent, stableA  , convergent, with a region of absolute stability and has uniformly order eight.  

 

References 
[1]. Muhammad R.; Yahaya.Y.A, A sixth order implicit hybrid backward differentiation formulae (HBDF) for block solution of 

ordinary differential equations. Amer. J. Math. Statistics.2012 p. 89-94. 

[2]. M. Alkasassbeh; Zurni O. Implicit one-step block hybrid third-derivative method for the direct solution of initial value problems of 

second –order  ordinary differential equations. J. apply.math. 2017, p. 8 
[3]. Omar, Z.; Sulaiman, M. Parallel r-point implicit block method for solving higher order ordinary differential equations directly. J. 

ICT 2004, 3, 53–66. 

[4]. Y. Skwame; J. Sabo; P. Tumba; T. Y. kyagya.Order Ten Implicit One-Step Hybrid Block Method for The Solution of Stiff Second-
order Ordinary Differential Equations.IJEAS 2017. 2394-3661. 

[5]. James, A.; Adesanya, A.; Joshua, S. Continuous block method for the solution of second order initial value problems of ordinary 

differential equation. Int. J. Pure Appl. Math.2013, 83, 405–416. 
[6]. Omar, Z.; Suleiman, M.B. Parallel two-point explicit block method for solving high-order ordinary differential equations. Int. J. 

Simul. Process Model.2006, 2, 227–231. 

[7]. Vigo-Aguiar, J.; Ramos, H. Variable stepsize implementation of multistep methods for  1,, yyxfy  . J. Comput. Appl. 

Math. 2006, 192, 114–131. 

[8]. Adesanya, A.O.; Anake, T.A.; Udo, O. Improved continuous method for direct solution of general second order ordinary differential 
equations. J. Niger. Assoc. Math. Phys. 2008, 13, 59–62. 

[9]. Awoyemi, D.O. A P-stable linear multistep method for solving general third order of ordinary differential equations. Int. J. Comput. 

Math.2003, 80, 985–991.  
[10]. Henrici, P. Some Applications of the Quotient-Difference Algorithm. Proc. Symp. Appl. Math. 1963a, 15, 159–183. 

[11]. Lambert, J.D. Computational Methods in ODEs; John Wiley and Sons: New York, NY, USA, 1973. 

[12]. Y. Skwame.; J. Sabo.; T. Y. Kyagya. The construction of implicit one-step block hybrid methods with multiple off-grid points for 
the solution of stiff ODEs. JSRR 2017, 2320-0227. 

[13]. Y. Skwame; G. M. Kumleng; I. A. Bakari .Second derivative Hybrid Block Backward Differentiation Formulae for Numerical 

Solution of Stiff Systems. JAMCS 2017, p. 25(3): 1-11. 

 

Y. Skwame. " The Derivation of Implicit Second Derivative Method for Solving Second-Order 

Stiff Ordinary Differential Equations Odes." IOSR Journal of Mathematics (IOSR-JM) 14.2 

(2018): 10-15. 


