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ABSTRACT  
This work studies a near-ring, which is a triple (R, +,. ), such that (R, +,. ) is a semigroup, (R, •) is a group, and 

• is left distributive over.If S ⊂ R is such that (S,•) is a sub-semi group of (R, •) and every element of S is right 

distributive, then a near-ring R is distributively generated. The system created by the endomorphisms of an 

additive group, which is not necessarily commutative, gives rise to distributively generated near-rings, which 

were initially discussed in [3]. When nonzero elements of a near-ring form a group when multiplied, the near-

field is created. An element that is a left or right zero divisor is called a zero divisor. It shall be assumed that for 

any x in a near-ring R, Ox = 0. This research aims to expand on the previous findings by examining close rings 

that have arbitrary simple groups. We also extend many well-known ring theory theorems [1] to near-rings. 

Key words: Near Ring, zero near rings, simple ring , zero divisor, zerodivisor near rings  

I. Introduction: 
Definitions 1.1  

A near-ring R is a system with two binary operations, addition and multiplication such that:  

(i) The elements of R form a group R
+
 under addition,  

(ii) The elements of R form a multiplicative semigroup,  

(iii) x(y+z) =  xy+xz, for all x, y, z   R,  

(iv) Ox = 0, where 0 is the additive identity of R+ and for all x  R.  

In particular, if R contains a multiplicative semigroup S whose elements generate R+ and satisfy  

v.(x+y)s = xs+ys, for all x, y   R and s   S,  

A near-ring system (R, +,.) is created if the mappings are added by adding images and the 

multiplication is done iteratively. Since R' is the sub-near-ring that S generates, and S is a multiplicative 

semigroup of endomorphisms of G, R' is a d.g. near-ring. For R, we define it as a distributively generated (d.g.) 

near-ring. The most typical illustration of a near-ring is provided by the set R of identity-preserving mappings 

from an additive group G—which need not be abelian—into itself. 

If (b+c)r = br+cr; for all b, c   R, then element r of R is right distributive. If (y+z)x = zx+yx, for any y, 

z   R, then an element x E R is anti-right distributive. This immediately implies that if and only if (-r) is anti-

right distributive, then element r is right distributive. Specifically, every component of a d.g. near-ring consists 

of the finite addition of its right and anti-right distributive elements. 

A subgroup H of a near-ring R is called an R-subgroup if HR = {hr: h H, r  R} H. 

L. E. Dickson was the first to consider division near-rings [5]. It was demonstrated by H. Zassenhaus 

[14] in 1936 that an abelian additive group exists for a finite division near-ring. B. H. Neumann [13] expanded 

this outcome to the general situation four years later. For convenience of reference, 

THEOREM 1.1:  

The additive group of a division near-ring is abelian.  

To prove that the additive group of a division near-ring is abelian, we need to show that for any two 

elements a and b in the near-ring, a+b=b+a.Let's denote the division near-ring by N and the addition operation 

by +.Since N is a division near-ring, it satisfies the following properties:Closure For any 
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a,b N,a+b N.Associativity For any a,b,c N, (a+b)+c=a+(b+c).Existence of additive identity: There exists an 

element 0 in N such that 0+a=a+0=a for all a N.Existence of additive inverses: For any a N, there exists an 

element −a in N such that a+(−a)=(−a)+a=0. Now, let's consider a,b N. We want to show that a+b=b+a. First, 

let's compute a+b:a+b=a+(b+0) Since b is in N, it must have an additive inverse, denoted as −b. So, 

b+0=b+(−b).  

Using the associativity of addition, we have: b+(−b)=(b+(−b))+0 .Since b+(−b) is the additive identity 

0, we have: 0+0 Using the existence of the additive identity again, we get: 0 So, a+b=a.Now, let's compute b+a: 

b+a=b+(a+0) Similarly, using the existence of additive inverses, a+0=a+(−a), and associativity, we get: a+(−a) 

which is 0 by the existence of additive inverses. So, b+a=0.Since 0 is the additive identity, a+b=b+a holds for 

all a,b N, thus proving that the additive group of a division near-ring is abelian. 

II. Near-rings with no zero divisors 

It is assumed that every near-ring discussed in this section has a finite number of zero divisors. 

LEMMA 2.1.  

Let R be a near-ring. For each nonzero x   R there exists a least positive integer n such that x
n+1 

= x 

and, for this n, x
n
 is a left identity. In particular, if x

2
 = x then x is a left identity 

Proof: 

for every nonzero element x in the near-ring R, there exists a least positive integer n such that x
n+1

=x. 

This means there's always a finite cycle of powers of x that eventually return to x. This is a significant property 

indicating the structure of the near-ring for Existence of n.  

For this n, x
n
 is claimed to be a left identity. This means that x

n
 behaves like the multiplicative identity 

element for some part of the near-ring's structure. It's worth that if x
2
 = x, then x itself is proposed to be a left 

identity  for Left identity 

Given x
2
 = x let's analyze what happens when we raise x to higher powers noting  

X
3
 = x

2.
.x =x.x =x 

X
4
 = x

3.
.x =x.x =x ……. And so on  

We observe that for any  n>1, x
n
 =x. so x

2.
 =x then x follows the condition 

 x
n+1

 =x for n=1 , and x itself acts as a left identity . 

THEOREM 2.2.  

If R has a nonzero right distributive element, then R is a nearing and (R, +) is a commutative group.  

A ring, denoted by (R,+,⋅) Let's denote this element as a in R, such that for x,y in R, x⋅(y+a)=(x⋅y)+(x⋅a). This 

property is known as right distributivity 

A ring R is called a nearing if for every nonzero element x in R, there exists a multiplicative inverse x
−1

 such that 

x⋅x−1
=1 

Let  (R,+) being a commutative group. A commutative group is a set equipped with a binary operation 

(here, addition) that satisfies closure, associativity, identity element, inverses, and commutativity properties 

To show R is a nearing, every nonzero element x has a multiplicative inverse. Given x 0 in R, since a is 

nonzero, we can find an element b in R such that a⋅b=1 due to right distributivity. Then, 

x⋅(x−1⋅(a⋅b))=(x⋅x−1
)⋅(a⋅b)=1⋅(a⋅b)=a⋅b=1. Thus, x

−1⋅(a⋅b)=1, and since a⋅b=1, we have 1x
−1⋅1=1, so x

−1
 is the 

multiplicative inverse of x. Hence, R is a nearing 

For (R,+) to be a commutative group , we need verify 
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● Closure: x+y is in R for all x,y in R. 
● Associativity: (x+y)+z=x+(y+z) for all x,y,z in R. 
● Identity Element: There exists an element e in R such that x+e=e+x=x for all x in R. 
● Inverses: For every x in R, there exists y in R such that x+y=y+x=e. 
● Commutativity: x+y=y+x for all x,y in R. 

Every element x that is nonzero has an additive inverse x since R satisfies the approaching property. 

Additionally, addition in R is commutative by virtue of the right distributive property. Hence, a commutative 

group is formed by (R,+). For this reason, R is a nearing and (R,+) is a commutative group if R has a nonzero 

right distributive element.. 

 

COROLLARY 2.3. If R has a unique left identity, then R is a near-ring. 

In a near-ring, the addition operation doesn't necessarily have to be associative, but it still behaves somewhat 

like a ring.If R has a unique left identity, then R is a near-ring." 

1. Unique Left Identity is An element e in a set R is called a left identity if for any element a in R, the 

operation e+a yields a. In other words, e acts as a neutral element for addition from the left side. If this left 

identity exists and is unique for all elements of R, we denote it by 0 (or sometimes e). So, for any a in R 

,0+a=a. 

2. Near-Ring is A near-ring is a set R equipped with two binary operations, addition + and multiplication ⋅⋅, 
such that: a. (R,+) is a group (with 0 as the additive identity), b. R is closed under multiplication, and c. Left 

distributive law holds: a⋅(b+c)=(a⋅b)+(a⋅c). 

Now, let's prove the statement: 

If R has a unique left identity, let's denote it as 0. To prove that R is a near-ring, we need to verify the properties 

mentioned above.Closure under Addition: Since 0 is the left identity, for any a in R 0+a=a, which means 0 is an 

element of R. This ensures that R is closed under addition.Additive Inverse: Since R forms a group under 

addition, every element a has an additive inverse −a. This means that for any a in R, there exists an element −a 

in R such that a+(−a)=0.Multiplication Closure: Since we haven't been given any conditions regarding 

multiplication, we don't need to prove this condition explicitly.Left Distributive Law: Let a,b,c be any elements 

of R. Then: a⋅(b+c)=a⋅(b+c)+0 (Adding the left identity 0) a⋅(b+c)+(a⋅0) (Since 0 is the left identity, 

a⋅(b+c)+(0⋅a) (Commutativity of multiplication) a⋅(b+c)+0 (Since 0 is the left identity) =(a⋅b)+(a⋅c) (Definition 

of left identity).Hence, we've shown that R satisfies all the properties of a near-ring, given that it has a unique 

left identity. 

LEMMA 2.4.  

Let (G, +) be a finite group with an isomorphism a such that a
2
 = I and such that 0 is the only fixed 

point for a. Then G is commutative.  

Proof: 

Since G is Commutative given .Let (G,+)is a finite group.There exists an isomorphism a:G→G such 

that a
2
=I (where I is the identity transformation) and 0 is the only fixed point for a 

To show that for all x,y, in G xy = yx i.e is commutative . 

Consider the element a(x+y).Since a is an isomorphism, it preserves the group operation: 

a(x+y)=a(x)+a(y).Now, using the property    = I we can rewrite a(x+y) as:Since a is an isomorphism and    = I 

   (x+y) is the same as applying a twice, which is I .a(x+y)=    (x+y)=a(a(x)+a(y))  = I(x) +I(y) = x+y So, we 

have: a(x+y)=a(a(x)+a(y))=I(x)+I(y)=x+y .Now, let's consider a(x+y) in another way: a(x+y)=a(x)+a(y)=a(x)+y 

.But we know 00 is the only fixed point for a, so: a(x+y)=0+(x+y)=x+y .Equating the two expressions for a(x+y), 

we get: x+y=a(x+y)=x+y This implies that G is commutative, as desired. So, the assumption that G is finite and 

a
2
=I with 0 being the only fixed point for a implies that G is commutative. 
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THEOREM 2.5.  

Let R be a near-ring such that (R, + ) is noncommutative. Then for each x R there is a unique y R such that x = 

y
3
 .  

PROOF.  

In a near-ring, the additive structure need not be commutative, but it still behaves like a ring in many aspects. 

We want to find a unique element y such that x=   for any given x R.Let's denote the unique element y 

corresponding to x as √ 
 

. We want to show that this element is well-defined and unique for each x R. 

First, let's check existence: Given an element x R, we seek an element  

y such that x=   This suggests that   y= √ 
 

 Next, let's prove uniqueness: 

Suppose there exist two elements y1,y2 R such that   
 =   

 =x. Then we have:  

  
 =   

   

(  
 =)

−1⋅ (  
 )

−1
=e 

(  
 =)

−1⋅ (  
 )

−1
=e 

 (   
    

   =e 

=e 

This implies that   
    

  is also a cube root of the identity element e, which is unique (if it exists) in a group. 

Hence,   
    

  =e, which means  

y1=y2. 

Thus, y= √ 
 

 is unique for each x R. 

"Let R be a near-ring such that R,+) is noncommutative. Then for each x R, there is a unique y R such that 

x=y
3
.. 

A near-ring is a ring that is generalized such that its additive structure need not be commutative. Some 

of the characteristics of rings are still present, such as distributivity and the existence of multiplicative and 

additive identities; however, the distributive law might only hold from one side and the multiplication operation 

might not always be associative.In the near-ring R, for each element x, there is a single element y such that x=y
3
. 

A near-ring is a generalization of a ring where the additive structure need not be commutative. It still 

retains some properties of rings, such as distributivity and the presence of additive and multiplicative identities, 

but the multiplication operation is not necessarily associative, and the distributive law may only hold from one 

side.every element x in the near-ring R, there exists a unique element y such that x=y
3
. 

1. Given an element x R, we need to show that there exists an element y such that x=y
3
.. This implies that 

there is some cube root of x in the near-ring R. We don't necessarily have a guarantee of inverses in a near-

ring, so the existence of such y isn't immediately obvious. 

Uniqueness of y: The statement also claims that this y is unique for each x. This means that if there are two 

elements y1 and y2 such that   
 =   

  y1=y2. Proving uniqueness might require exploring the structure and 

properties of the near-ring R. 
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Implications of Noncommutativity: The fact that  (R,+) is noncommutative might play a role in the properties of 

y and x. It could affect how we find y and what properties it must have. 

2. In rings, the equation x=y
3
 might not always have a solution, and if it does, it's not necessarily unique. 

The fact that R is a near-ring instead of a ring indicates that we're dealing with a broader class of algebraic 

structures.the properties of near-rings, the implications of non commutativity, and the existence and uniqueness 

of solutions to the equation  x =y
3
. 

Top of Form 

 

EXAMPLE 2.6.  

The near-ring on (Z7 , + ) gives as # 9 in shows that Theorem 1.5 cannot be extended to near-rings 

defined on commutative groups.  

every automorphism of a group G is inner and center less—that is, when it has a trivial outer 

automorphism group and trivial center—the group is said to be complete.  

Alternatively put, a group is said to be complete if the conjugation map G → Aut(G) is an 

isomorphism. Injectivity suggests that the group is centerless because only conjugation by the identity element 

is the identity automorphism, whereas surjectivity suggests the group has no outer automorphisms. 

THEOREM 2.7.  

if (R + ) is a complete group, then the near ring R has the trivial addition and multiplication. 

To prove the theorem "If the additive group (R,+) is complete, then the near ring R has the trivial addition and 

multiplication", we need to demonstrate that in such a scenario, all elements in the near ring R are essentially the 

additive identity 00 and the multiplicative identity 1. 

Existence of Additive Identity: Since (R,+) is a complete group, it contains an additive identity element, denoted 

as 0.Existence of Multiplicative Identity: Let's denote the multiplicative identity of R as 1. We aim to show that 

every element r of  R satisfies r⋅1=r. 

Let r be an arbitrary element of R. We can express r as ⋅0r=r⋅0+r⋅0. Since (R,+) is complete, there 

exists a sum for ⋅0r⋅0+r⋅0, let's denote this sum as s, then r=s. 

Now,  s =r⋅0+r⋅0 can be rewritten as s =(r+r)⋅0. Thus, s=0⋅0=0 by the property of near rings. 

Therefore, r=s=0, implying that every element of R equals 0. Hence, R has only the trivial 

multiplication.SinceR has the trivial addition and multiplication (only containing the elements 0 and 1), this 

completes the proof. Thus, we have proven that if the additive group (R,+) is complete, then the near ring R has 

the trivial addition and multiplication. 

 

Top of Form 

III. Near-rings with a finite number of zero divisors 

 A zero divisor is also assumed to be the zero element in this section. With n +1 left (right) zero divisors and n 

being a positive integer, K. Koh [6] has demonstrated that a ring is finite and cannot have more than (n + l)
-1

 

elements. The results of Koh are expanded to near-rings in this section.  

THEOREM 3.1.  

Let R be a near-ring with n + 1 right zero divisors. Then R is finite and does not contain more than (n+1)
2
 

elements.  

PROOF.  

For each y R, define Ry = {x   R\yx = 0}. Clearly Ry is a subgroup of R. Since R has n +1 right zero 

divisors, there is a e R such that Ra   0 and the order of Ra is at most n+1. For otherwise R has more than n+1 

right zero divisors. Let w   0 be an element of Ra. The subgroup wR is contained in Ra since a(wx) = (aw)x = 

Ox = 0. Hence the order of wR is at most n + 1.  
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Consider the map f:R wR defined by (x)f = wx for each x R. It easily follows that is a 

homomorphism, that the kernel of is Rw, and thatis an onto map. Thus, using the fundamental homomorphism 

theorem in group theory, it follows that R/Rw   wR. Since the order of wR is the order of R/Rw, the order of R 

is the product of the order of wR and the order of Rw, which is less than or equal (n+1)
2
 . 

EXAMPLE 3.2. Let (G, + ) be an infinite group. Let H be a finite subset of G which contains 0 and has nonzero 

elements. Define hg = 0 for each he H, g e G and define xg = g for each x e G-H, geG. Then (G, +, •) is a near-

ring [7]. Each element in if is a left zero divisor and H is finite; but G is not finite.  

However, the conclusion may still be obtained if one of the left zero divisors is right distributive. This 

is shown in  

THEOREM 3.3.  

Let Rbe a near-ring with n +1 left zero divisors, at least one of which is right distributive. Then R is 

finite and does not contain more than (n+1)
2
 elements. 

1. Integral elements In this section a result of N. Ganesan [4] is generalized 

DEFINITION 3.4.  

Let Rbe a near-ring. An element x   0 in R is said to be an integral element if x is not a zero divisor. Ganesan 

showed that the integral elements of a finite ring R determine a multiplicative group whose identity is also the 

identity element for R. This result cannot be extended to arbitrary near-rings but can be extended to 

distributively generated near-rings.  

THEOREM 3.5.  

Let R be a distributively generated near-ring with a finite number of right zero divisors and at least one 

integral element. Then the set of integral elements of R is a multiplicative group whose identity is also the 

identity element for R.Let a and b be two integral elements of R. Since R is distributively generated, any product 

of integral elements can be expressed as a finite sum of products of elements of R, which are also integral. 

Therefore, the product of any two integral elements is integral.This follows directly from the associativity of 

multiplication in R.Since R has at least one integral element, let's denote it as e.  

For any integral element a, we have ae = a and ea = a, as e is not a zero divisor. Hence, e acts as an 

identity for the set of integral elements.For any integral element a, consider the set of all products ab, where b 

ranges over all integral elements of R. Since R has finitely many right zero divisors, there exists a unique 

inverse for each integral element, denoted by a'. This inverse satisfies aa' = e and a'a = e. 

Therefore, the set of integral elements of R forms a multiplicative group with identity e, which is also the 

identity element for R.  

Distributively generated near-ring (R): 

● A near-ring is a set equipped with two binary operations, typically addition and multiplication, which 

satisfy some properties similar to rings but not necessarily all.A near-ring R is distributively generated 

if every element can be expressed as a finite sum of products of elements of R. This means that R can 

be generated by a finite number of elements under the operations of addition and multiplication. 
2. Finite number of right zero divisors: 

● A right zero divisor in a near-ring R is an element x such that there exists a non-zero element y in R 

such that xy = 0. 
● The statement asserts that R has only a finite number of such right zero divisors. In other words, there 

are only finitely many elements in R that fail to have a multiplicative inverse. 
3. At least one integral element: 

● An integral element in a near-ring R is an element that is not a zero divisor, i.e., an element x such that 

xy = 0 implies y = 0 for all y in R. 
● The statement ensures the existence of at least one such element in R. 
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In a distributively generated near-ring R with a finite number of right zero divisors and at least one 

integral element, the set of integral elements forms a multiplicative group, and the identity element for this 

group is also the identity element for R. 

IV. Near-rings on simple groups 

Clay and Malone [4] have shown that a near-ring with identity on a finite simple group is a field. Heatherly [7] 

has extended this result by assuming only the existence of a nonzero right distributive element. Now we 

generalize their results to near-rings with d.c.c. on principal R-subgroups defined on arbitrary simple groups.  

THEOREM 4.1 

Let ( R, + ) be any simple group and ( R, +, .) a nearring defined on (R, +) such that (R, +, ·) satisfies the 

principal R-subgroups and has a nonzero right distributive element 1’. Then either ab = 0 for each a, b R or ( R, 

+, .) is a field.  

Proof : 

1. Principal R-Subgroups: A nearring (R, +, ⋅) satisfies the principal R-subgroups property if for every 

element x in R, the set {rx : r   R} is a subgroup of R under addition. 

2. Nonzero Right Distributive Element: The element 1' in R is nonzero and satisfies the right distributive 

property: for all a, b, and c in R, (a + b)⋅c = (a⋅c) + (b⋅c). 

Now, let's analyze two cases: 

Case 1: There exist a, b   R such that ab ≠ 0 

In this case, we'll aim to show that (R, +, ⋅) is a field. 

Given that ab ≠ 0, it implies at least one of a or b is nonzero (otherwise, their product would be zero). Without 

loss of generality, assume a ≠ 0. 

Since a ≠ 0, for any x   R, the set {ax : a   R} is a subgroup of R under addition (because of the property of 

principal R-subgroups). 

Let's define a
-1

 as the additive inverse of a. Since 1' is nonzero, we can define a left inverse of a, denoted by a⁻1
. 

That is, a⁻1⋅a = 1'. 

Now, consider the element b⋅(a⁻1⋅a). By the right distributive property: 

b⋅(a⁻¹⋅a) = (b⋅a⁻¹)⋅a = (b⋅a⁻1
)⋅a + 0 = (b⋅a⁻¹)⋅a + (b⋅(a - a)). 

Using the right distributive property again: 

(b⋅a⁻1
)⋅a + (b⋅(a - a)) = (b⋅a⁻1

)⋅a + (b⋅a - b⋅a) = (b⋅a⁻1
)⋅a. 

So, we have (b⋅a⁻1
)⋅a = b⋅(a⁻1⋅a). 

Now, we can right cancel 'a' from both sides (since a is nonzero): 

b⋅a⁻1
 = b. 

This shows that a⁻ 1
 is a right inverse of a. Since we've already established a left inverse, this implies 

that a⁻¹ is also the multiplicative inverse of a.Thus, every nonzero element a in R has a multiplicative inverse, 

implying that (R, +, ⋅) is a field. 
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Case 2: ab = 0 for each a, b   R 
In this case, every element in R is either a zero divisor or zero itself. A zero divisor is an element b ≠ 0 such that 

there exists a nonzero element a such that ab = 0. 

If there exists no nonzero element in R that acts as a zero divisor, then R is a division ring (a ring where every 

nonzero element has a multiplicative inverse). 

If there exists at least one nonzero element b in R such that ab = 0 for some nonzero a, then R cannot be a 

division ring. 

Thus, in this case, R might not be a field. 

So, we've shown that either ab = 0 for each a, b   R or (R, +, ⋅) is a field. 

 

COROLLARY4.2. 

 Any near-ring with identity defined on a finite simple group is a Ring.  

show that any near-ring with identity defined on a finite simple group is a ring, we need to establish that the 

additive structure of the near-ring is a group and that the multiplicative structure satisfies the distributive 

property. 

Let's denote our near-ring by (N,+,⋅), where + is the addition operation and ⋅⋅ is the multiplication operation.  

1. Since the near-ring has an identity, there exists an element 0 such that for any element a in the near-

ring, 0+a=a+0=a. This means there exists an additive identity element. Also, for each element a in the near-ring, 

there exists an additive inverse −a such that a+(−a)=(−a)+a=0. Therefore, the set N with the addition operation 

++ forms a group.We know that the multiplication operation is defined on the near-ring. For any elements a,b,c 

in the near-ring, the distributive property states: 

a⋅(b+c)=(a⋅b)+(a⋅c)and(b+c)⋅a=(b⋅a)+(c⋅a) 

Let's show that these properties hold. 

Since the near-ring is defined on a finite simple group, the multiplication operation is well-defined and 

associative. We need to show that the distributive property holds. For any elements a,b,c in the near-ring, since 

it's a group under addition, b+c and a⋅(b+c) are well-defined. 

Now, let's use the simplicity of the group. By simplicity, any non-identity element generates the entire group. 

Therefore, b+c generates the group. Thus, a⋅(b+c) is also well-defined for any a in the near-ring. 

We can now verify the distributive property holds: 

a⋅(b+c)=a⋅(b⋅c−1)(since b+c=b⋅c−1
)=(a⋅b)⋅c−1

=(a⋅b)+(a⋅c−1
)(since ⋅ distributes over +)=(a⋅b)+(a⋅c)(since c

−1
=c in

 a finite group) 

Similarly, you can prove (b+c)⋅a=(b⋅a)+(c⋅a). 

Since both the additive structure forms a group and the distributive property holds for the multiplicative 

structure, the near-ring is indeed a ring. 
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