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I. Introduction 
Geophysical scientists firstly study inverse problems. It gives a comprehensive discussion of the theory 

of inverse problems in the geophysical sciences [1]. From then on, this challenge topic has attracted more and 

more attention, which leads to a rapid development in theories, algorithms and applications. For detailed 

expositions, the reader may consult [2-5]. 

A standard inverse optimization problem is as follows: given an optimization problem with a linear 

objective }|min{: XxxcP T  and a desired optimal solution Xx *
, find a cost vector 

*c such that 

Xx *
is an optimal solution of P , and at the same time 

*c  is required to satisfy some additional 

conditions. Such that, given a preferred cost 
'c , the deviation 

p
cc '*  is to be minimum under some 

pl norm. 

In this paper, the inverse optimal value problem is equivalently reformulated as a corresponding bilevel 

programming (BLP) problem. A coadapted coevolutionary particle swarm optimization (CCPSO) is proposed 

for solving the BLP, in which the evolutionary paradigm can efficiently prevent the premature convergence of 

the swarm.  

 

II.  The bi-level model for inverse problem 
In this section, we firstly introduce the inverse optimal value problem, then we describe how to consider this 

problem using BLP method. Consider the optimal value function of a linear programming in terms of its cost 

vector 

 0,:min)(  xbAxxccQ T

x
                        (1) 

where
nRx , 

npRA  , 
pRb . Given a set 

nRc  of the objective cost vectors and a real number 
*z , 

then the inverse optimal value problem is to find a cost vector from the set C such that the optimal objective 

value of the linear programming (1) is “close” to 
*z , thus the inverse optimal value problem can be written as 

[6]. 

 Cccf
c

:)(min , where 
*)()( zcQcf                   (2) 

As )(cQ  is the optimal value of the linear programming, then problem (2) can be written as,  






  }0,{min,)(,:)(min * xbxccQCczcQ T

xc
. 

Go one step further, it can be written a bilevel programming problem as follows: 
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*)(min zcQ
c

  

                        ..ts  Cc ,                              (3) 

 0,:min)(  xbAxxccQ T

x
 

In fact, model (3) is called the BLP problem with the optimal value of the lower level problem feeding back to 

the upper level [7]. From the above description, we can find that the inverse optimal value problem is equivalent 

to a special class of BLP problem. Then it provides us an alternative approach to consider the inverse optimal 

value problem. 

 

III. The CCPSO for the inverse optimization problem 
3.1 The CCPSO Algorithm  

Now we discuss the uses of cooperative coevolution particle swarm optimization (CCPSO) to minimize 

a function )(xf of n independent variables. The problem was decomposed into n species and each assigned 

to one of the independent variables. Each species consisted of a population of alternative values for its assigned 

variable. To evaluate an individual from one of the species, we first selected the current best individual from 

every one of the other species and combined them, along with the individual being evaluated, into a vector of 

variable values. This vector was then applied to the target function. An individual was rewarded based on how 

well it minimized the function within the context of the variable values selected from the other species. The 

details of the proposed algorithm are given as follows: 

 

Algorithm 1 

Step 1. Initialization scheme. Initialized the n species randomly and each species represents a variable of a 

complete solution. Then, go to step 2 (a). 

Step 2. Generate the complete solution. 

   (a)  Select the individual from each of the other species randomly and combined them, along with the 

individual being evaluated, into a vector. Then, go to step 3. 

(b)  Select the current best individual from every one of the other species and combined them, along with the 

individual being evaluated, into a vector. Then, go to step 3. 

Step 3. Credit evaluation. The credit assignment at the species level is defined in terms of the fitness value of 

the complete solutions in which the species members participate. 

Step 4. Species coevolutionary. Each of the species is coevolved in a round-robin fashion using a standard PSO. 

Step 5. Evolutionary stagnation detection. If the evolutionary stagnation condition of a species is false, then, go 

to step 7. Otherwise, go to step 6. 

Step 6. Reinitialization the stagnation species. Keep the member with the best credit assignment, the remaining 

members are reinitialized randomly and the credit evaluation of these members is computed as the step 3.  

Step 7. Termination check. If termination condition is false, go to step 2(b). Otherwise, output the optimal 

solution. 

3.2 The CCPSO Algorithm for inverse optimization problem based on BLP 

The process of the proposed algorithm for solving the BLP is an interactive coevolutionary process. We first 

initialize population, and then the BLP is transformed to solve single level optimization problems in the upper 

level and the lower level interactively by the CCPSO. For each iteration, an approximate optimal solution for 

problem 1 is obtained and this interactive procedure is repeated until the accurate optimal solutions of the 

original problem are found. The details of the proposed algorithm are given as follows:   

Algorithm 2 

Step 1. Initialization scheme. Initialize a random population ( uN ) of the upper level variables. For each upper 

level member, initialize a random population ( lN ) of the lower level variables and perform a lower level 

optimization procedure to determine the corresponding optimal lower level variables using Algorithm 1.  

Step 2. Combine the upper level variables and the corresponding optimal lower level variables to generate the 

complete upper level solution ( uZ ). Evaluate the fitness value of the complete upper level solutions based on 

the upper level function and constraints. 

Step 3. Fixed the lower level variables of the complete upper level solution, execute an upper level optimization 

procedure to update the upper level variables of the complete upper level solution using Algorithm 1.  

Step 4. Reinitialize the lower level members. For the updated upper level variables, determine the individual 

closest to the member in the complete upper level solutions produced by the step 2, then, the corresponding 

lower level optimal variables is selected as a member of the lower level population. The remaining 1lN  
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members are generated randomly.  

Step 5. Combine the updated upper level variables and the corresponding lower level variables to generate the 

complete lower level solution ( lZ ). Then, evaluate the fitness value of the complete lower level solutions based 

on the lower level function and constraints. 

Step 6. Fixed the upper level variables of the complete lower level solution, perform a lower level optimization 

procedure to produce the corresponding optimal lower level variables using Algorithm 1. Then, go to step 2. 

 At step 3 or step 6, the algorithm uses a variance based termination criteria at both levels. When the value 

of j , described in the following equation becomes less than stop , the optimization task terminates. In the 

following, we state the termination criteria at the lower level, which can be similarly extended to the upper level. 

Let the variance of the lower level population members at generation j for each lower level variable i  be
i

jv . If 

the number of lower level variables is lm , then is computed as: 





lm

i
i

i

j

j
v

v

1 0

                             (4) 

where
iv0 denotes the variance for the variable i  in the initial lower level population, the value of j usually 

lies between 0 and 1 in (4). In this paper, the value of stop  is set as 10-5 for the lower level and the value of 

stop  is set as 10-4 for the upper level. 

 

IV. Numerical Experiment 
In this section, the parameters are set as follows: The PSO parameters are set as follows: 

),1,0(, 21 randomrr  the inertia weight 7298.0w  and acceleration coefficients 

with 49618.121  cc . To illustrate the algorithm, we solve the following inverse optimal value problem. 

Example  Let 2 2, :c R x R 
 

       * 2 2

1 2 1 2min  ( ) :10 13, 0, 0
c

Q c z c c c c                          

where 
* 14z  and  1 1 2 2 1 2 1 2( ) max : 2 8, 3, 4, 0

x
Q c c x c x x x x x x        

   Following problem (3), we can write the above inverse optimal value problem as the following nonlinear 

bilevel programming: 

  
2

1 1 2 2
0

min  ( -14)
c

c x c x


  

       
2 2

1 2. . 10 13s t c c                                          (5) 

           1 1 2 2 1 2 1 2
0

( ) max : 2 8, 3, 4
x

Q c c x c x x x x x


       

For the CCPSO, the population sizes of each species were set as 10 at the upper level and lower level. All results 

presented in this paper have been obtained on a personal computer (CPU:AMD Phenon(tm)ⅡX6 1055T 

2.80GHz; RAM:3.25GB) using a C# implementation of the proposed algorithm. We can get the optimal 

solutions of problem (5):
* *(2,3), (4,2)c x  . Through some simple validating calculations, it is shown 

that the algorithm proposed in this work is feasible for the inverse optimal value problem. 

 

V. Conclusions 
In this paper, the inverse optimal value problem is equivalently reformulated as a corresponding bilevel 

programming  problem. A coadapted coevolutionary particle swarm optimization is proposed for solving the 

BLP, in which the evolutionary paradigm can efficiently prevent the premature convergence of the swarm. 

Through some simple validating calculations, it is shown that the algorithm proposed in this work is feasible for 

the inverse optimal value problem. 
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