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Abstract: In the present study we have investigated the complete Fitzhug-Nagumosystem with 𝐼 ≠  0: we have 

shown that one or two limit cycles may bi-furcate at the origin. Bendixons theorem has been used in our study 

toprove non-existence of limit cycles. We have also proved that the systemhas unique limit cycle through change 

of the parameters. . 
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I. Introduction 
In the present paper, we revisit the problem of bifurcation of limit cycles. We give criterion for the study model 

(Fitzhug-Nagumo system) to have or not tohave limit cycles with 𝐼 ≠  0: We also demonstrate that the model 

exhibits aHopf-bifurcation. Now we consider the following Li_enard equation 

𝑥 + 𝑓(𝑥)𝑥 + 𝑔(𝑥) = 0. 
The above equation may be written into two dimensional autonomous dynamical system 

𝑥   =  𝑦, 𝑦  =  −𝑔(𝑥)  −  𝑓 (𝑥)𝑦.: 
In Lienard plane above equations becomes 

𝑥   =  𝑦 −  𝐹  𝑥 ,
𝑦  =  −𝑔(𝑥)

          (1.1) 

where     𝐹 𝑥 =    𝑓(𝑡)𝑑𝑡:

𝑥

0

 

The main part of this paper is devoted to explain the existence and uniquenessof limit cycles of Fitzhugh-

Nagumosystem which is expressed through 

followingdeferential system 
𝑥  =  𝑦 −  𝐴𝑥(𝑥 −  𝐵)(𝑥 −  𝜆)  +  𝐼;

𝑦  =  −𝜖(𝑥 −  𝛿𝑦):
         (1.2) 

 

This system has been extensively studied with particular emphasis on bifurcatelimit cycles as well as in 

model been of certain phenomenon. Literature review,indicates that, most of the articles studies the system 

taking some parametersas zeros, for instance see (Mattias 2006, Nikola &Dragana 2003, Enno 2006),(Arnaud 

2002, Rabinovitch& Friedman 2009, Romel et al 2001 and Baili 2004)(LuoDingjun,et al 1997 )investigated the 

particular case of taking (1 +  𝜆)  =  0;and proved the niqueness of limit cycle. In (Ringkvist& Zhou 2009) 

thereis a general analysis of the system for bifurcation of limit cycles from Hopf-bifurcation.In this paper, we 

study the system (1.2) with all parameters notzeros and prove the uniqueness of limit cycle. The paper is 

organized as follows. 

 In section 2, we prosed the main system equations when all parameters arenot zero . The su_cient 

conditions that the system has at least two limit cyclesare shown by using Hopf-bifurcation methods. 

 Section 3 is devoted for special cases 𝛿 =  0 and prove the uniqueness oflimit cycle, and then the case 

of quadric system. Finally, case of saddle pointwith limit cycle is presented, theorems and lemmas in section 4 

along with theconcluding remakes . 

 

II. Main system equation 
 In this section, we investigate the Fitzugh-Nagumo system with the parameters 

𝐴, 𝐵, 𝛿, 𝜖, 𝜆and I being not zeros. In particular, we study the system under thecase =  𝐵 =  1 𝑎𝑛𝑑 𝜆 ≠
 1; 𝑤𝑕𝑒𝑟 𝛿 ∈  (−1;  0);  𝐼 ∈  𝑅: 

 In order to study the existence and non-existence of limit cycles we makechange of variables to get 

Li_enard type (1.1). Let 𝑥−∝ →  𝑥 and 𝑦 + 𝛿𝜖𝑥 +
𝛼

𝛿
→  𝑦 

where𝛼 is the root of equilibrium equation 𝛼𝑥3 − 𝛿 1 + 𝜆 𝑥2 −  𝛿𝜆 − 1 𝑥 − 𝐼𝛿 =  0: 
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Then the system becomes, 

𝑥 = 𝑦 −  𝑥3 +  3𝛼 −  1 +  𝜆  𝑥2 +  3𝛼2 − 2 1 + 𝜆 𝛼 +  𝜆 + 𝛿𝜖 𝑥 

𝑦 =  −𝛿𝜀  𝑥3 +  3𝛼 −  1 +  𝜆  𝑥2 +  3𝛼2 − 2 1 + 𝜆 𝛼 +  𝜆 +
1

𝛿
 𝑥 

        (2.1) 

We note that 𝐹(0)  =  0;  𝑔(0)  =  0:The other two roots of F(x) = 0 and g(x) = 0respectively are 

𝑥 =
1

2
 − 3𝛼 −  1 + 𝜆   ±  𝐴2 − 4 2𝛼2 − 2 1 +  𝜆 𝛼 +  𝜆 +  𝛿𝜀          (2.2) 

𝑦 =
1

2
 − 3𝛼 −  1 +  𝜆   ±   𝐴2 − 4  3𝛼2 − 2 1 +  𝜆 𝛼 +  𝜆 −

1

𝛿
       (2.3) 

where𝐴 =   3𝛼 −  1 +  𝜆  . 

 The system has unique singular point for 3𝛼 −  1 +  𝜆  
2
−  4  3𝛼2 −  2 1 +  𝜆 𝛼 + 𝜆 −

1

𝛿
 <  0, 

and for  3𝛼 −  1 +  𝜆  
2
− 4  3𝛼2 − 2 1 +  𝜆 𝛼 + 𝜆 −

1

𝛿
 >  0, wehave three singular points. 

 

2.1 Brief Note On Anti-Saddle Bifurcation Case 

Let us consider the system (2.1) in the case O as anti-saddle ie 

𝛿𝜀  3𝛼2 − 2 1 +  𝜆 𝛼 +  𝜆 −
1

𝛿
 > 0,           (2.4) 

Since 𝛿𝜀 >  0 then 3𝛼2 − 2 1 +  𝜆 𝛼 +  𝜆 −
1

𝛿
 must be greater then than zero.Then we have 𝜆 −

1

𝛿
>  0 and 

 1 +  𝜆 2 −  3  𝜆 −
1

𝛿
 <  0. 

 The first three focal values are [8]: 

𝑊1 =
3𝛼2 − 2 1 +  𝜆 𝛼 +  𝜆 +  𝛿𝜀

 𝜇

𝑊2 =
𝛿𝜀  2𝐴2 − 3  3𝛼2 − 2 1 +  𝜆 𝛼 +  𝜆 −

1

𝛿
  

8𝜇2 𝜇

𝑊3 =  −
15𝑐𝛿𝜀

𝜇3 𝜇

         (2.5) 

 From Lemma 3.3.2 in [8] O is unstable (stable)strong focus when 𝑊1 >  0(𝑊1 <  0), unstable (stable) 

weak focus of order one when 𝑊2 >  0 (𝑊2 <  0)and unstable (stable) weak focus of order two when 𝑊3 >
 0  𝑊3 <  0 . Thus,from Hopf-bifurcation one stable limit cycle appears in the case 𝑊1 >  0and(𝑊2 <  0). 

Therefore, F(x) has three critical points and the system has only onesingular point g(0) = 0. To prove the 

uniqueness of limit cycle we can apply thefollowing lemma: 

 

Lemma 2.1 [8] 

 Suppose that system (1 .1) satisfies the following conditions: 

1. There exist 𝑐1 < 𝑝1 < 𝑞1 <  0 < 𝑞2 < 𝑝2 < 𝑐2 such that 𝑝1 , 0, 𝑝2 arezero points of F(x),𝑐1 , 0, 𝑐2 are 

zero points of 𝑔 𝑥 , 𝑥𝑔(𝑥)  >  0 for𝑥 ∈  (𝑐1;  0) [  0; 𝑐2  and 𝑞1;  𝑞2 are zero points of 𝑓(𝑥);  𝑓(𝑥)  <  0 

for𝑥 ∈   𝑞1;  𝑞2  and f(x) > 0 otherwise. 

2. If the simultaneous equations 

𝐹 𝑢 =  𝐹 𝑣 ;  𝐺 𝑢 =  𝐺 𝑣 ; 𝑐1 <  𝑢 <  0 <  𝑣 < 𝑐2 

have no solution (u,v), then system (1.1) has no closed orbit in the strip 𝑐1 <  𝑥 < 𝑐2; −∞ <  𝑦 <  +∞  or if it 

has at most one solution andthe function f(x)g(x) is monotonically decreasing (increasing) in 𝑥 ∈   𝑐1;  𝑝1 or 

𝑥 ∈  (𝑝2;  𝑐2); then (1.1) has at most one limit cycle in the strip {𝑥 ∈  𝑐1;  𝑐2 ;  𝑦 ∈  (−∞, ∞)𝑔 and it is stable 

(unstable) if it exists, 

where𝐺 𝑥 =    𝑔(𝑥)𝑑𝑥
𝑥

0
. 

 

Lemma 2.2 

 For  𝜆 −
1

2
 

2

 +
3

4
−  3𝛿𝜀 <  0 the system (2.1) has no limit cycles. 

Proof 

 Considering the equation 
𝜕𝑃

𝜕𝑥
 +

𝜕𝑄

𝜕𝑦
 =    3𝑥2  +  2 3𝛼 −  1 +  𝜆  𝑥  

                                            +  3𝛼2 −  2 1 +  𝜆 𝛼 +  𝜆 +  𝛿𝜀 ,          (2.6) 
 



Study of Limit Cycle for Fitzhug-Nagumo System 

DOI: 10.9790/5728-1404016772                                  www.iosrjournals.org                                            69 | Page 

we define 

𝑁 𝑥 =  
𝜕𝑃

𝜕𝑥
 +

𝜕𝑄

𝜕𝑦
 =    3𝑥2  +  2 3𝛼 −  1 +  𝜆  𝑥  

                             +  3𝛼2 −  2 1 +  𝜆 𝛼 +  𝜆 +  𝛿𝜀 ,                               (2.7) 
The discriminant of above polynomial root is 

Δ =   1 +  𝜆 2 − 3 𝜆 +  𝛿𝜀 =  𝜆 +
1

2
 

2

−
3

4
− 3𝛿𝜀. 

 In the lemma we hav𝑒 𝛥 <  0 and since (1 +  𝜆)  ≠  0 implies that N(x) isdefinite in sign and non-

zero, then by Bendeixsons theorem [4], we concludethat there are no limit cycles. 

 

Lemma 2.3 

 If 𝑊1  =  0; then 𝑊2not identical zero. 

 Proof Let 𝑊1  =  0; then we have 3𝛼2 − 2 1 +  𝜆 𝛼 +  𝜆 +  𝛿𝜀 =  0 substitute thisequation in the the 

value of 𝑊2; then we get 

𝑊2  =  2 1 +  𝜆 2 −  3 𝜆 +  𝛿𝜀 −  3  𝜆 −
1

𝛿
  =  2𝜆2 −  2𝜆 +  2 −  3  𝛿𝜀 −

1

𝛿
 ,  

we define 

𝐻 𝜆 =  2𝜆2 −  2𝜆 +  2 −  3  𝛿𝜀 −
1

𝛿
 . 

 Since 𝛿 ∈  −1;  0 ,so 2 −  3  𝛿𝜀 −
1

𝛿
 <  0. All limit cycles would lie in one ofthe regions 𝐻(𝜆)  <

 0 𝑜𝑟 𝐻(𝜆)  >  0.For𝐻(𝜆)  <  0 we have 𝑊2 <  0 and 𝑊1 >  0,and for 𝐻(𝜆)  >  0 we have 𝑊2 >  0 and 

𝑊1 <  0. Thus, 𝐻(𝜆) cannot be identicalto zero and we have the following lemma. 

 

Lemma 2.4 

 For 𝑊1 >  0 and 𝑊2 <  0 the system (3) has at least one limit cycle surroundingO. 

 

Proof First let 𝑊1  =  0 when 𝑊2 <  0 then O is stable focus of order one,and when 𝑊1 increasing from zero 

one stable limit cycle appear surrounding O, by Hopf-bifurcation. 

 

 From above lemma we have 

𝛼 <
1

3
  1 + 𝜆 2 − 3(𝜆 −  𝛿𝜀)  + 1 +  𝜆 =  𝜌1 

and 

𝛼 <
1

3
 3 𝜆 −  𝛿𝜀 −  1 + 𝜆 2  + 1 +  𝜆 =  𝜌2 

Let 𝜌 = max 𝜌1 , 𝜌2 , then we have the following theorem. 

 

Theorem 2.5 For 𝛼 <
1

3
 𝜌 +  1 +  𝜆, the system (2.1) has unique limitcycle. 

 

Proof Now we apply lemma 2.1. From the condition of W2 > 0 we see thatg(x) has only one zero point 

𝑔(0)  =  0, then we can easily find that 𝑥𝑔(𝑥)  >  0.From the condition 𝑊1 we find that F(x) has three zeros, 

therefor f(x) has twozeros. And also from the case 3𝛼2 − 2(1 + 𝜆)𝛼 + 𝜆 + 𝛿𝜀 <  0 we deduce that f(x) < 0for 

𝑥 ∈  (𝑞1 , 𝑞2) and f(x) > 0 otherwise. So condition (1) satisfied. From thelocal position of f(x) and the case that 

xg(x) > 0 we get 
𝑓 𝑥 

𝑔 𝑥 
 increasing for all𝑥 > 𝑝2 . So we just need to prove the condition of the simultaneous 

equationsF(u) = F(v); G(u) = G(v). After simplify and by putting s = u+vand r = uvwe get, 

𝑕 𝑠 =  
1

4
𝑠3 −

1

2
 3𝛼𝛼 − 2 1 +  𝜆  𝑠2 +  

1

3
 3𝛼 −  1 +  𝜆 2 +

1

2
𝛿𝜀 −

1

2

1

𝛿
  𝑠 

+
1

3
 3𝛼 −  1 +  𝜆   3𝛼2 − 2 1 +  𝜆  𝛼 +  𝜆 +  𝛿𝜀.                                 

 Since h(s) with odd degree, then h(s) has at most one solution, so for prove theonly one solution let 

consider discriminant of 𝑕′ 𝑠 , 

𝑕′ 𝑠 =
3

4
𝑠2 −  3𝛼𝛼 − 2 1 +  𝜆  𝑠 +  

1

3
 3𝛼 −  1 +  𝜆 2 +

1

2
𝛿𝜀 −

1

2

1

𝛿
  , 

it is easy to find Δ =  −
3

2
 𝛿𝜀 −

1

𝛿
 <  0. 

And hence the theorem has been proved. 
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Remark 6 An inequality 𝛼 <
1

3
 𝑝 +  1 +  𝜆equivalent to 𝐻(𝜆)  <  0. 

 

2.2  A saddle bifurcation case 

In this case we have 

𝛿𝜀 3𝛼2 − 2 1 +  𝜆  𝛼 +  𝜆 +
1

𝛿
) < 0, 

we discuss saddle bifurcation in the case 

𝛿𝜀 < 0and 3𝛼2 − 2 1 +  𝜆  𝛼 +  𝜆 +
1

𝛿
> 0, 

From these situations, we can _nd that the discriminant of the roots of g(x) 

Δ =   3𝛼 −  1 +  𝜆  
2
−  4  3𝛼2 −  2 1 +  𝜆 𝛼 +  𝜆 −

1

𝛿
 <  0. 

 Thus, the system (2.1) has unique singular point which is hyperbolic saddleat the origin, and therefore 

no limit cycle is possible. Thus we get the followingresult. 

 

Theorem 2.7 

For 𝛿𝜀< 0 and (3𝛼2 −  2(1 +  𝜆)𝛼 +  𝜆 −  1/𝛿 )  >  0 the system 

(2.3) has no limit cycles. 

 

2.3  The existence of two limit cycles 

Theorem 2.8 For𝛿𝜖>0 and 𝐻(𝜆)  >  0 the system (2.1) has at least twolimit cycles. 

Proof Since from the system as 𝑊1  =  𝑊2  =  0, 𝑂 is stable weak focusof order two. Initially keep 𝑊1  =  0 and 

let 𝑊2 increases from zero, then onestable limit cycle 𝐿1 bifurcates. Then, change 𝑊1 to the negative such that 

𝐿1does not disappear but O change its stability again and unstable limit cycle 𝐿2bifurcates in the interior of 𝐿1: 

Hence, the conclusion is obtained. 

 

III. A special case of 𝜹 =  𝟎 
In this case the system after B = 1 becomes 

𝑥  =  𝑦 −  𝐴𝑥(𝑥 −  1)(𝑥 − 𝜆)  +  𝐼 
𝑦  =  𝜖𝑥.                (3.1) 

This system has unique singular point  0;  𝐼 , so by putting 𝑦 =  𝑦 +  𝐼; thenwe have the following Lifienard 

type 

𝑥  =  𝑦 −  𝐴𝑥3 −  1 +  𝜆 𝑥2  +  𝜆𝑥 

𝑦  =  𝜖𝑥
 (3.2) 

this system has the origin as unique singular point. The Jacobianis given by 

𝐽 0, 0 =  
−𝜆 1
𝜖 0

  

then𝑑𝑒𝑡 𝐽 =  −𝜖; for 𝜖 >  0 O is saddle and no limit cycle possible. Thus,for existence of limit cycles we must 

consider 𝜖 <  0: 
 

Lemma 3.1 

A and 𝜆 are both rotated parameters of system (3.1) 

ProofDenote the right hand sides by P and Q respectively. Then we have 

𝑃
𝜕𝑄

𝜕𝐴
−

𝑄𝜕𝑃

𝜕𝐴
 =  −𝜖𝑥4 ≥  0 𝑎𝑛𝑑 𝑃

𝜕𝑄

𝜕𝜆
−  𝑄

𝜕𝑃

𝜕𝜆
 =  −𝜖𝑥2 ≥  0. 

The first three focal values (3.10) are see [8] 

𝑊1  =  −
𝜆

 −𝜖
  , 𝑊2  =

3𝜖𝐴

8𝜖2 −𝜖
,   𝑊3  =  0. 

 For 𝜆 ≠  0 O is strong focus stable(unstable) if 𝜆 >  0(𝜆 <  0) for𝜆 =  0 thenO weak focus of order 

one stable(unstable) if A > 0(A < 0) thus, we can getthe following results. 

 

Lemma 3.2 

 To create limit cycles of system (3.2) we have 𝜆𝐴 ≠  0. 
Proof Consider the case 𝜆 =  0; then for A = 0 system has O as center,and for 𝐴 ≠  0 no limit cycle from 

rotated vector field. Similarly the case A = 0: 

 

Lemma 3.3 

If 𝜆 <  0, 𝐴 >  0(𝜆 >  0, 𝐴 <  0) stable (unstable) limit cycle for system (3.2)surrounding O appears via a 

Hopf-bifurcation. 
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Remark 3.4 From above lemma we deduced that a limit cycle can appearsjust in the two cases 𝜆𝐴 ≠  0 

and 𝜆𝐴 <  0. 
 

Lemma 3.5 [1],[5] 

 Let f(x) and g(x) be continuously differentiable functions for 𝑘1 <  𝑥 < 𝑘2 

where𝑘1 <  0 < 𝑘2 such that for 𝑘1 <  𝑥 < 𝑘2 the following conditions are 

satisfied: 

1. g(x) > 0(< 0) for x > 0(< 0); 

2. there exist 𝑥0 such that 𝑓(𝑥0)  =  0 and 𝑓(𝑥)  >  0(<  0) for 𝑥 >  0(<  0); 

3. 
𝑓 𝑥 

𝑔 𝑥 
is an increasing function both for 𝑥 <  0 for 𝑥 > 𝑥0. 

 Then the Lifienard system has at most one periodic orbit, and if exist itmust be a limit cycle with 

negative characteristic exponent. 

 

Theorem 3.6 For 𝜆 <  0 and 𝐴 >  0 system (3.2) has unique stable limitcycle. 

 

Proof Now we apply lemma 3.5, its easily to see that f(x) and g(x) arecontinuously differentiable functions. 

Since 𝜖 <  0 then condition (1) holds. 

 For second condition consider 𝑓 𝑥 =  3𝐴𝑥2 −  2 1 +  𝜆 𝑥 + 𝜆Δ =  4 1 +  𝜆 2 −  12𝐴𝜆 >  0 so 

f(x) has two singular points 𝑥1 <  0 < 𝑥2; and since 𝜆 <  0hen we deduce that condition (2) satisfied. For third 

one let  
𝑓 𝑥 

𝑔 𝑥 
 =  

3𝐴𝑥2−2 1+𝜆 𝑥+𝜆

−𝜖𝑥
then  

𝑓 𝑥 

𝑔 𝑥 
 
′

=   
−6𝜖𝐴𝑥2+𝜖𝜆

𝜖2𝑥2 >  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. Thus condition (3) holds and the 

theorem is proved. 

 

IV. A saddle case with limit cycle 
In this section we study the saddle case with the following quadratic system 

𝑥  =  𝑦 +  𝐴 𝜆 +  1 𝑥2 − 𝜆𝐴𝑥 +  𝐼

𝑦  =  𝜖 𝑥 −  𝛿𝑦 ,
 (4.1) 

where ∈  (0, 1) , 𝐼 ∈  𝑅 , (𝜆 +  1)  <  0. 
 For studying limit cycles, we may transform the system to the following 

Lienard system 

𝑥  =  𝑦 −  − 𝜆 +  1 𝑥2 +  − 𝜆 +  1 𝛼 +  𝜆 +  𝛿𝜖 𝑥 

𝑦  =  −𝛿𝜖  − 𝜆 +  1 𝑥2 +  − 𝜆 +  1 𝛼 +  𝜆 −
1

𝛿
 𝑥 .

            (4.2) 

 The system has two critical points with O as saddle, and C(c; 0) is an antisaddlesuch that 

𝑐 =   
−2 𝜆 +  1 𝛼 +  𝜆 −

1

𝛿

 𝜆 +  1 
 

Since 𝑂(0;  0) as saddle, and 𝛿𝜖 >  0 then we have −2 𝜆 +  1 𝛼 +  𝜆 −
1

𝛿
<  0,tostudy the existence of limit 

cycles we translate C to the origin, then we can find 

𝑥  =  𝑦 −  − 𝜆 +  1 𝑥2 +  2 𝜆 +  1 𝛼 −  𝜆 +  𝛿𝜖 +
2

𝛿
 𝑥 

𝑦  =  −𝛿𝜖   𝜆 +  1 𝑥2 −  −2 𝜆 +  1 𝛼 +  𝜆 −
1

𝛿
 𝑥 .

            (4.3) 

Change (𝑥, 𝑡) 𝑡𝑜 (−𝑥, −𝑡) then we get 

𝑥  =  𝑦 −  − 𝜆 +  1 𝑥2 +  2 𝜆 +  1 𝛼 −  𝜆 +  𝛿𝜖 +
2

𝛿
 𝑥 

𝑦  =  −𝛿𝜖   𝜆 +  1 𝑥2 −  −2 𝜆 +  1 𝛼 +  𝜆 −
1

𝛿
 𝑥 .

            (4.4) 

The critical points of F(x) and g(x) respectively are 

𝑂 0, 0 ; 𝑥1  =
−2 𝜆 +  1 𝛼 −  𝜆 +  𝛿𝜖 +

2

𝛿

 𝜆 +  1 
 

𝑂 0, 0 ; 𝑥2  =  
2 𝜆 +  1 𝛼 +  𝜆 −

1

𝛿

 𝜆 +  1 
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The _rst three focal values are [8]: 

𝑊1  =  
2 𝜆 +  1 𝛼 −  𝜆 +  𝛿𝜖 +

2

𝛿

 𝜆 +  1 

𝑊2  =  −
 𝜆 +  1 2𝛼 +  𝜆 −

1

𝛿

8𝜇2 𝜇
𝑊3 =  −0.

         (4.5)  

Since 𝑊2 <  0 so for creating limit cycles 𝑊1 must be positive, for instance see[6]. Thus, for W > 0 and 
from Hopf-bifurcation the system has stable limitcycle. Thus, for this situation we deduce that 
0 < 𝑥1 < 𝑥2  and F(x) has minimumvalue and g(x) has maximum value. For uniqueness of limit cycle we 
gotthe following theorem; 
 
Theorem 4.1 The system (4.12) has unique limit cycle. 
Proof Now we apply Lemma 3.5 for system (4.15), since f(x) and g(x) arepolynomials function, then 
these functions are continuously differentiable, andeasily to see that conditions 1 and 2 holds. For the 

third one and after simplifylet 
𝑓 𝑥 

𝑔 𝑥 
 =

−2 𝜆+1 𝑥

𝛿𝜖   𝜆+1 𝑥2+𝑏𝑥 
 then  

𝑓 𝑥 

𝑔 𝑥 
 
′

=
2 𝜆+1 2−2𝑎 𝜆+1 𝑥−𝑎𝑏

  𝜆+1 𝑥2+𝑏𝑥 
2  =

𝑁 𝑥 

  𝜆+1 𝑥2+𝑏𝑥 
2. 

 Its enough to prove that 𝑁 𝑥 >  0, 𝑁 0 =  −𝑎𝑏 >  0 and Δ =  4𝑎 𝜆 + 1 2 𝑎 + 2𝑏 =   −  + =
 −. Thus _ < 0 and 𝑁(𝑥)  >  0 ⋁𝑥. Hence the theorem is proved. 
 
Concluding Remarks 

A complete FitzHugh-Nagumo system with 𝐼 ≠  0 is studied and analyzed in detail by adapting Hopf-

bifurcation theory. It was shown that one or twolimit cycles bifurcates from the origin. Bendixons theorem is 

used to prove nonexistenceof limit cycles. Also we proved that the system has unique limit cycleunder some 

change of parameters. 
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