Estimates in the Operator Norm

K.Gunasekaran And R.Kavitha
Ramanujan Research Centre, PG and Research Department of Mathematics, Government Arts College (Autonomous), Kumbakonam - 612 002, Tamil Nadu, India. Corresponding Author: K.Gunasekaran

```
Abstract:In this paper, we will obtain estimates of the distance between the \(q\) - \(k\)-eigenvalues of two \(q\) - \(k\)-normal matrices \(A\) and \(B\) interms of \(\|A-B\|\). Apart from the optimal matching distances.
```

AMS Classifications : 15A09, 15A57, 15A24, 15A33, 15A15
Keywords : q-k-Hermitian , q-k-Skew-Hermitian, invariant norms, etc.,

I. Introduction

In this paper, we will obtain estimates of the distance between the q -k-eigenvalues of two q -k-normal matrices A and B interms of $\|A-B\|$. Apart the optimal matching distances $s(L, M)$ and $h(L, M)$. Note that $s(L, M)$ is the smallest number δ such that every element of L is within a distance δ of some element of M; and $h(L, M)$ is the smallest number δ for which this as well as the symmetric assertion with L and M interchanged, is true.

We will use the notation $\sigma(A)$ for both the subset of the quaternion plane that consists of all the q-keigenvalues on $n \times n$ matrix A, and for the unordered n-tupile whose entries are the q -k-eigenvalues of A counted with multiplicity. Since we will be taking of the distances $s(\sigma(A), \sigma(B)), h(\sigma(A), \sigma(B))$ and $d(\sigma(A), \sigma(B))$, it will be clear which of the two objects is being represented by $\sigma(A)$.

II. Definitions And Some Theorems

Definition 2.1:

If L, M are closed subsets of a quaternion space H_{n}
let $s(L, M)=\sup _{\lambda \in L} \operatorname{dist}(\lambda, M)=\sup _{\lambda \in L} \inf _{\mu \in M}|\lambda-\mu|$

Definition 2.2:

The Housdorff distance between L and M is defined as

$$
h(L, M)=\max (s(L, M), s(M, L))
$$

Definition 2.3:

The $d(\sigma(A), \sigma(B))$ is defined as $d(\sigma(A), \sigma(B)) \leq\|A-B\|$ if either A and B are both q-kHermitian or one is q-k-Hermitian and other q-k-Skew-Hermitian.

Theorem 2.4:

Let A be q-k-normal and B an arbitrary matrix of same order of A. Then
$s(\sigma(B), \sigma(A)) \leq\|A-B\|$
Proof:
Let $\delta=\|A-B\|$. For proving the theorem, we have to show that if β is any eigenvalues of B, then β is within a distance δ of some q-k-eigenvalue α_{j} of A.

By applying a translation, we assume that $\beta=0$. If none of the α_{j} is within a distance δ of this, then A^{-1} exists.

Since A is q-k-normal.

Therefore, $\left\|A^{-1}\right\|=\frac{1}{\max \left|\alpha_{j}\right|}<\frac{1}{\delta}$.
Hence, $\left\|A^{-1}(B-A)\right\| \leq\left\|A^{-1}\right\|\|B-A\|$.

$$
<\frac{1}{\delta} \delta
$$

$$
=1
$$

Since $B=A\left(I+A^{-1}(B-A)\right)$, This show that B is invertible. Then but B could not have a zero q -k-eigenvalue.
Hence proved.

Corollary 2.5:

If A and B are $n \times n \mathrm{q}-\mathrm{k}$-normal matrices then $h(\sigma(A), \sigma(B)) \leq\|A-B\|$.
Proof:
Since A and B are q-k-normal matrices of order $n \times n$.
Let $\sigma(A)$ and $\sigma(B)$ be set of all q -k-eigenvalues of A and B respectively.

```
\(s(\sigma(A), \sigma(B)) \leq\|A-B\|\)
and \(h(\sigma(A), \sigma(B))=\max (s(\sigma(A), \sigma(B)), s(\sigma(B), \sigma(A)))\)
```

From these two, one can conclude that $h(\sigma(A), \sigma(B)) \leq\|A-B\|$.

Remark 2.6:

For $n=2$, the corollary 2.5 will lead to $d(\sigma(A), \sigma(B)) \leq\|A-B\|$.

Theorem 2.7:

For any two q-k-unitary matrices $d(\sigma(A), \sigma(B)) \leq\|A-B\|$.

Proof:

The proof will use the marriage theorem and above, Let $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ and $\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right\}$ be the q-k-eigenvalues of A and B respectively.

Let Λ be any subset of $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$.
Let $\mu(\Lambda)=\left\{\mu_{j}:\left|\mu_{j}-\lambda_{i}\right| \leq \delta \operatorname{and} \lambda_{i} \in \Lambda\right\}$.
By the marriage theorem, the assertion would be proved if we show that $|\mu(\Lambda)| \geq|\Lambda|$.
Let $I(\Lambda)$ be the set at all points on the unit ball T that are within distance of some point of Λ. Then $\mu(\Lambda)$ contains exactly those μ_{j} that lie in $I(\Lambda)$.

Let $I(\Lambda)$ be written as a disjoint union of arcs I_{1}, \ldots, I_{r}. For each $k ; k<r$, let J_{k} be the arc contained in I_{k} all whose points at least distance from the boundary of I_{k} then $I_{k}=\left(J_{k}\right)_{\epsilon}$.

We have $\sum_{k=1}^{r} m_{A}\left(J_{k}\right) \leq \sum_{k=1}^{r} m_{B}\left(I_{k}\right)=m_{B}(I(\Lambda))$
But all the elements of Λ are in some J_{k}.

$$
\Rightarrow|\Lambda| \leq|\mu(\Lambda)|
$$

Similarly for, μ is a subset of $\left\{\mu_{1}, \mu_{2}, \ldots \mu_{n}\right\}$.

$$
\begin{gathered}
|\mu| \leq|\Lambda(\mu)| \\
|\wedge-\mu| \leq|\wedge|-|\mu| \\
|\Lambda-\mu| \leq|\Lambda(\mu)-\mu(\Lambda)|
\end{gathered}
$$

$$
\begin{gathered}
{\left[\because \lambda_{i} \in \sigma(A), \mu_{j} \in \sigma(B)\right]} \\
\Rightarrow \quad \max \\
1 \leq i, j \leq n\left|\lambda_{i}-\mu_{j}\right| \leq\|A-B\| \\
\\
\text { That is, } d(\sigma(A), \sigma(B)) \leq\|A-B\|
\end{gathered}
$$

Hence proved.

Remark 2.8:

There is one difference between theorem 2.7 and most of our earlier results of this type. Now nothing is said about the order in which the $\mathrm{q}-\mathrm{k}$-eigenvalues of A and B are arranged for the optimal matching. No canonical order can be prescribed in general.

Theorem 2.9:

Let A and B be q-k-normal matrices with q-k-eigenvalues $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ and $\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right\}$ respectively. Then there exists a permutation σ such that

$$
\|A-B\| \leq \sqrt{2} \quad \begin{array}{ll}
\max \tag{2}\\
1 \leq j \leq n
\end{array}\left|\lambda_{j}-\mu_{\sigma(j)}\right|
$$

Proof:

Since A and B are q-k-normal matrices. So $A \otimes I$ and $I \otimes B$ are both q-k-normal and commute with each other. Hence $A \otimes I-I \otimes B$ is q-k-normal. The q-k-eigenvalues of this matrix are all the differences $\lambda_{i}-\mu_{j} ; 1 \leq i, j \leq n$

Hence $\|A \otimes I-I \otimes B\|=\begin{aligned} & \max \\ & i, j\end{aligned}\left|\lambda_{i}-\mu_{j}\right|$
Since q-k-eigenvalues of B are q-k-eigenvalues of B^{T}.

$$
\begin{array}{r}
\text { So }\left\|A \otimes I-I \otimes B^{T}\right\|=m_{i, j}^{\max }\left|\lambda_{i}-\mu_{j}\right| \\
\Rightarrow\|A-B\|=\|A \otimes I-I \otimes B\| \\
\leq \sqrt{2}\left\|A \otimes I-I \otimes B^{T}\right\|
\end{array}
$$

This is equivalent to (2)
Therefore, $\|A-B\| \leq \sqrt{2} \begin{aligned} & \max \\ & 1 \leq j \leq n\end{aligned}\left|\lambda_{j}-\mu_{\sigma(j)}\right|$
Hence proved.

Remark 2.10:

This is, in fact, true for all A, B and is proved below.

Theorem 2.11:

For all quaternion matrices $A, B\|A-B\| \leq 2\left\|A \otimes I-I \otimes B^{T}\right\|$

Proof:

We have to prove that for all x, y in H_{n}

$$
\begin{gathered}
|\langle x,(A-B) y\rangle| \leq \sqrt{2}\left\|A \otimes I-I \otimes B^{T}\right\|\|x\|\|y\| \\
\text { Now, }|\langle x,(A-B) y\rangle|=|\langle x, A y-B y\rangle| \\
=\left|x^{*} A y-x^{*} B y\right| \\
=\left|\operatorname{tr}\left(A y x^{*}-y x^{*} B\right)\right| \\
\leq\left\|A y x^{*}-y x^{*} B\right\|_{1}
\end{gathered}
$$

This matrix $A y x^{*}-y x^{*} B$ has rank atmost 2 so, $\left\|A y x^{*}-y x^{*} B\right\|_{1} \leq \sqrt{2}\left\|A y x^{*}-y x^{*} B\right\|_{2}$.

Let \bar{x} be the vector whose components are the conjugates of the components of x. Then with respect to the standard basis $e_{i} \otimes e_{j}$ of $H_{n} \otimes H_{n},(i, j)$-coordinate of the vector $(A \otimes I)(y \otimes \bar{x})$ is $\sum_{k} a_{i k} y_{k} \bar{x}_{j}$.This is also (i, j)-entry of the matrix $A y x^{*}$. In the same way, the (i, j)-entry of $y x^{*} B$ is the (i, j) coordinate of the vector $\left(I \otimes B^{T}\right)(y \otimes \bar{x})$.

Thus we have, $\left\|A y x^{*}-y x^{*} B\right\|_{2}=\left\|\left(A \otimes I-I \otimes B^{T}\right)(y \otimes \bar{x})\right\|$

$$
\begin{aligned}
& \leq\left\|A \otimes I-I \otimes B^{T}\right\|\|y \otimes \bar{x}\| \\
& \quad=\left\|A \otimes I-I \otimes B^{T}\right\|\|x\|\|y\|
\end{aligned}
$$

Hence proved.

References

[1]. Bhatia, Rajendara: Matrix Analysis; Springer Publications(1997) 159-164.
[2]. Fuzhen Zhang: Matrix Normal theory basic results and Techniques; Springer Publications (1999) 241-249.
[3]. Grone. R, Johnson. CR, E.M.SQ, H.Wolkwicz: Normal matrices; Lin.Alg.Appl., 87 (1987) 213-225.
[4]. Gunasekaran.K and Kavitha.R: on Quaternion-k-normal matrices; International Journal of Mathematical Archive-7(7),(2016) 93101.
[5]. Gunasekaran.K and Kavitha.R: Some Equivalent conditions on Quaternion-k -Normal
[6]. Matrices., International Journal Mathematics Trends and Technology- Vol.48, No.4, August 2017, 250 - 259.
[7]. Krishnamoorthy.S and Vijayakumar.R: on S-normal matrices; Journal of Analysis and Computation, Vol 2 (2009).
K.Gunasekaran "Estimates In The Operator Norm." IOSR Journal of Mathematics (IOSR-JM) 14.4 (2018): 01-04.

