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Abstract:Drums are the world’s oldest and most widespread of musical instruments. If basic shapes (like 

rectangular, circular and triangular), are considered to be the drum membrane; ignoring the air column below, 

whether it is possible to distinguish them by observing their frequency and amplitude spectra is addressed by 

solving the wave equation in this research. The wave equation in two dimension was solved in rectangular 

Cartesian coordinates and cylindrical polar coordinates using the method of separation of variables. Amplitude 

spectrum for all three cases were determined through numerical implementation of discrete Fourier transforms 

using Maple software. Results of the study shows that all three drumheads have distinct amplitude spectra when 

subjected to initial symmetrical disturbances and hence it is possible to distinguish them from the sound they 

produce. Nowadays the most widely used drumhead is the round shape and rectangular and triangular 

drumheads are rarely used. The reason behind this is the monotonous hollow sound produced by the latter 

shapes and the good sound and melody produced by the former. The key aspect of conducting this research is to 

inspect the reasons as to how this happens. 
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I. Introduction 
 Can one hear the shape of a drum?’ This question was first posed by a Polish Mathematician Mark Kac 

in 1966 and remained unanswered for about quarter century until Gordon, Webb & Wopert (1992) gave an 

example of two differently shaped drums that sounded exactly the same (i.e. having identical frequency spectra) 

answering negative to Kac’s question.) Nevertheless if basic shapes (like rectangular, circular and triangular), 

are considered to be the drum membraneit is possible to distinguish them by observing their frequency and 

amplitude spectra. And also Rowlett & Lu (2015) have uncovered that it is possible to identify the corners of a 

drumhead. This study is mainly based on observing the frequency and amplitude spectra of rectangular, circular 

and triangular drumheads and derive conclusions about their shapes. Or simply, ‘does the sound made by a drum 

is effected by its shape?’ is investigated by solving 2-D wave equations and comparing amplitude spectra of the 

drumheads. 

 

II. Methodology 
 Inthisresearch, weconsideravibratingmembraneinatwodimensionalplane. So the displacement of the 

membrane can be explained better by using the two dimensional wave equation. 2-D wave equation for the 

rectangular and triangular membranes was solved by using rectangular coordinate system and for the circular 

membrane it was solved by cylindrical polar coordinate system, and thereby equations for amplitudes and 

frequencies of the drum heads were obtained.But here, a few assumptions needed to be considered before 

modeling the problem. 

 The membrane is homogeneous. That is, the density (ρ) of the membrane is constant. 

 The membrane is composed of a perfectly flexible material without any resistance to deformation in the z-

direction in 3-D plane. 

 The membrane is stretched and fixed along a boundary in the xy- plane. 

 The Tension per unit length (T) due to stretching is a constant and it is the same everywhere in the 

membrane. 
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 Weight of the membrane is negligible. 

 The effect of the air column below the membrane is considered negligible and assumed to have no eff ect on 

the motion of the drum membrane. 

Based on the above assumptions, the first step needed to be taken was generating respective amplitude and 

frequency equations using 2-D wave equation in order to construct the amplitude spectra for each drum 

membrane. 

A. 2-D wave equation in rectangular coordinates 

The 2-D wave equation in rectangular coordinates is of the form, 

𝑈𝑡𝑡 = 𝐶2(𝑈𝑥𝑥 + 𝑈𝑦𝑦 ) 

Taking the length of the membrane as ’a’ and breadth as ’b’ and the edges of the membrane fixed, the boundary 

conditions can be given as, 

𝑈 0, 𝑦, 𝑡 = 𝑈 𝑎, 𝑦, 𝑡 = 0  ; 0 ≤ 𝑦 ≤ 𝑏, 𝑡 ≥ 0 

𝑈 𝑥, 0, 𝑡 = 𝑈 𝑥, 𝑏, 𝑡 = 0  ; 0 ≤ 𝑥 ≤ 𝑎, 𝑡 ≥ 0 

And initial conditions are, 

𝑈 𝑥, 𝑦, 0 = 𝑓 𝑥, 𝑦 ;    𝑥, 𝑦 ∈ ℝ 

𝑈𝑡 𝑥, 𝑦, 0 = 𝑔 𝑥, 𝑦 ;   (𝑥, 𝑦) ∈ ℝ 

Then using, 

 The separation of variables to produce simple solutions to boundary conditions and 

 The principle of superposition to build up a solution that satisfies initial conditions, 

equations to find the amplitude and frequency of the vibrating drum membrane when deformed at the center can 

be generated. Thus the amplitude for this particular problem can be calculated using, 

𝐴𝑚𝑝𝑛𝑚  =  𝑎𝑛𝑚  =
2

𝑎

2

𝑏
 𝑓(𝑥, 𝑦)𝑠𝑖𝑛(

𝑛𝜋𝑥

𝑎
)𝑠𝑖𝑛(

𝑚𝜋𝑦

𝑏
)𝑑𝑥𝑑𝑦

𝑎

0

       (1) 

And to calculate frequency general equation used is, 

𝑓𝑛𝑚  =
𝜔𝑛𝑚

2𝜋
          (2) 

where, 𝜔𝑛𝑚  =  𝑐𝜋 
𝑛2

𝑎2  +
𝑚2

𝑏2 .  Therefore the equation for frequency will be, 

𝑓𝑛𝑚  =
𝑐

2
 
𝑛2

𝑎2
+
𝑚2

𝑏2
      (3) 

Here 𝑓(𝑥, 𝑦) is the initial displacement function. 

 

B. 2-D wave equation in cylindrical polar coordinates 

 For the circular drum membrane, wave equation was solved using cylindrical polar coordinates. 

Therefore initial conditions also needed to be in polar form and when it is expressed in cylindrical polar 

coordinates it takes the form, 

𝑈𝑡𝑡  =  𝑐2(
𝜕2𝑈

𝜕𝑟2
+

1

𝑟

𝜕𝑈

𝜕𝑟
+

1

𝑟2

𝜕2𝑈

𝜕𝜃2
+
𝜕2𝑈

𝜕𝑧2
)        (4) 

But since we consider the wave equation for a circular disk the above equation (4) reduces as below. 

𝑈𝑡𝑡  =  𝑐2  
𝜕2𝑈

𝜕𝑟2
+

1

𝑟

𝜕𝑈

𝜕𝑟
+

1

𝑟2

𝜕2𝑈

𝜕𝜃2
  5  

Since the drum membrane is fixed around the rim, boundary conditions will be, 

𝑈(𝑎,𝜃, 𝑡)  =  0 

where ’a’ is the radius of the drum membrane. And the initial conditions will be, 

𝑈(𝑟,𝜃, 0)  =  𝑓(𝑟,𝜃) 

𝑈𝑡(𝑟,𝜃, 0)  =  𝑔(𝑟,𝜃)  =  0 
 Using separation of variables method as well as using the special function type ’Bessel functions’, 

solutions to this wave equation can be generated and thereby amplitude and frequency equations can be 

generated. The formula to calculate amplitude is the same as that of the rectangular membrane. i.e. 

𝐴𝑚𝑝𝑛𝑚  =   𝑎𝑛𝑚  
2  +   𝑏𝑛𝑚  

2      (6) 

 

And frequency can be calculated using, 

𝑓𝑛𝑚  =  𝜆𝑛𝑚
2  − 𝑎2         (7)  

where, ’a’ is the radius of the drum membrane and 𝜆𝑛𝑚  =   
𝛼𝑛𝑚

𝑎
 

2

 

Here, 
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𝑎𝑛𝑚  =
1

𝜋

  𝐽𝑛( 𝜆𝑛𝑚 𝑟)𝑟𝑓(𝑟,𝜃)𝑐𝑜𝑠(𝑛𝜃)𝑑𝑟𝑑𝜃
𝑎

0

2𝜋

0
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2
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         (8) 

𝑏𝑛𝑚 =
1

𝜋
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𝑎
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 9  

𝑛 ≥  1 ≥  1 𝑎𝑛𝑑,  

 𝑟  𝐽𝑛  𝜆𝑛𝑚 𝑟  
2

𝑑𝑟
𝑎

0

 =  𝐽𝑛+1  
𝛼𝑛𝑚
𝑎

 𝑟 
2𝑎

0

 

C. 2-D wave equation in rectangular coordinates (for the isosceles triangular membrane) 

 Solving the wave equation using rectangular coordinates, for the triangular membrane is similar to that 

of the rectangular membrane. Here we consider an isosceles triangle as the drum membrane with length of a side 

being ’a’. As stated earlier the general equation of the 2-D wave equation for a square, (rectangular with length 

and breadth 𝑎 ×  𝑎) will be, 

𝑈𝑡𝑡  =  𝐶2(𝑈𝑥𝑥  +  𝑈𝑦𝑦 ) 

And since the edges of the membrane are fixed here too, the boundary conditions will be,  

𝑈(0, 𝑦, 𝑡)  =  𝑈(𝑎, 𝑦, 𝑡)  =  0;  0 ≤  𝑦 ≤  𝑎, 𝑡 ≥  0 

𝑈(𝑥, 0, 𝑡)  =  𝑈(𝑥, 𝑎, 𝑡)  =  0;  0 ≤  𝑥 ≤  𝑎, 𝑡 ≥  0 
And initial conditions will be,  

𝑈(𝑥, 𝑦, 0)  =  𝑓(𝑥, 𝑦);  (𝑥, 𝑦)  ∈  𝑅 

𝑈𝑡(𝑥, 𝑦, 0)  =  𝑔(𝑥, 𝑦);  (𝑥, 𝑦)  ∈  𝑅 

 So in solving the wave equation for the square membrane, the only change to that of the rectangular 

membrane will be length and breadth of the membrane being the same. So using the similar concept of applying 

variable separable method and superposition principle we can get the solution to the wave equation for a 

triangular membrane. In order to get that,general solution to the wave equation should be subtracted from the 

same solution with indices interchanged. Since the points on the main diagonal that are equidistant from the 

center must have the same solution, this procedure gives a wave function that vanishes along the diagonal and 

hence by doing so gives the wave equation for the triangular membrane (Isosceles). And thus by using this 

solution, like in the previous cases amplitude and frequency equations of the membrane can be constructed. The 

formula to calculate amplitude is, 

𝐴𝑚𝑝𝑛𝑚  =  𝑎𝑛𝑚  =
2

𝑎

2

𝑎
 𝑓 𝑥, 𝑦 𝑠𝑖𝑛  

𝑛𝜋𝑥

𝑎
 𝑠𝑖𝑛  

𝑚𝜋𝑦

𝑎
 𝑑𝑥𝑑𝑦

𝑎

0

−
2

𝑎

2

𝑎
 𝑓 𝑥, 𝑦 𝑠𝑖𝑛  

𝑚𝜋𝑥

𝑎
 𝑠𝑖𝑛  

𝑛𝜋𝑦

𝑎
 𝑑𝑥𝑑𝑦

𝑎

0

    (10) 

And to calculate frequency general equation used is, 

𝑓𝑛𝑚  =
𝜔𝑛𝑚

2𝜋
          (11) 

where, 𝜔𝑛𝑚  =  𝑐𝜋 
𝑛2

𝑎2  +
𝑚2

𝑏2 .  Therefore the equation for frequency will be, 

𝑓𝑛𝑚  =
𝑐

2
 
𝑛2

𝑎2
+
𝑚2

𝑏2
      (12) 

Then using these amplitude and frequency equations, respective amplitudes and frequencies for drum 

membranes with diff erent sizes can be calculated using Maple software and based on the results, their spectra 

can be constructed using Minitab software. 

 

III. Results 
 As stated above using a MAPLE program, amplitude and frequency of both rectangular and circular 

membranes were calculated when deformed anywhere on the membrane. Here the constant c is taken as 0.01 

everywhere. And‘c’ is the constant in the wave equation where, 

 

𝑐 =
𝑇𝑒𝑛𝑠𝑖𝑜𝑛 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔𝑡

𝑚𝑎𝑠𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
      (13) 

 

 Minitab software is used to draw the bar charts depicting the amplitude spectrum, which shows the 

diff erences in the spectra for diff erent shapes diagrammatically. 
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1) Rectangular membrane 

𝑎 =  2.4 𝑐𝑚 𝑎𝑛𝑑 𝑏 =  1.2 𝑐𝑚 

 

 
Fig.1: Amplitude of the rectangular membrane of length 2.4 and breadth 1.2 

 

2) Circular membrane 

𝑅𝑎𝑑𝑖𝑢𝑠 =  1.2 𝑐𝑚 

 
Fig.2: Amplitude of the circular membrane of radius 1.2 

 

3) Triangular membrane (Isosceles) 

 
Fig.3: Amplitude of the triangular membrane of length 2.4 

 

IV. Discussion 
 A drum when it was struck, produces several amplitudes which determines the sound output. So by a 

thorough investigation of those amplitudes, shapes of the respective drums can be determined, mainly because 

those amplitude spectra depends on the shape. A circular drum produces several significant amplitudes while 

rectangular drum doesn’t and the triangular drum produces several amplitudes alternatively. This makes them 

easier to identify by listening to the loudness. And if one listen carefully, the sound output of each type of 

membrane they can easily recognize that the rectangular drum gives a hollow, monotonous sound, circular drum 

has a goodmelody due to the overlapping of the frequencies and triangular has a high pitch and loudness. So the 
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amplitude spectra output shown in this can be considered accurate and can be used to diff erentiate the 

membrane shapes. And also it is clear from the results size of the membrane does not have a overall big impact 

on the amplitude spectra output. And the amplitude spectra doesn’t drastically change when the size of the 

membrane was changed. Even though there were some minute fluctuations in the amplitude values overall 

eff ect remains the same. 

 

V. Conclusion 
 Based on the results for rectangular and circular drums we can derive several conclusions. The major 

conclusion that we can procure through this study is in fact the confirmation of our research purpose. That is we 

can distinguish the three shapes (rectangular, circular and triangular) via spectral analysis. It is clearly seen that 

even though rectangular drum produces several amplitudes only one value is significant, there by aff ecting the 

loudness of the drum and as a result of that giving out a hollow monotonous sound output. But in the case of 

circular drum it produces a series of significant amplitudes and as a result of that it has a good sound and a 

melody. But in the case of triangular drums they produce significant amplitudes for high frequency nodes 

alternatively. Therefore they usually have a high pitch and a loudness. And also the results doesn’t change even 

when slight changes are made to the size of the membrane considered. 
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