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Abstract: In this paper, the mathematical and stability analyses of the SIR model of malaria with the inclusion 

of infected immigrants are analyzed. The model consists of SIR compartments for the human population and SI 

compartments for the mosquito population. Susceptible humans become infected if they are bitten by infected 

mosquitoes and then they move from susceptible class to the infected class. In the similar fashion humans from 

infected class will go to recovered class after getting recovered from the disease. A susceptible mosquito 

becomes infected after biting an infected person and remains infected till death. The reproduction number 𝑅0 of 

the model is calculated using the next generation matrix method. Local asymptotical stabilities of the steady 

states are discussed using the reproduction number. If the average number of secondary infections caused by an 

average infected, called the basic reproduction number, is less than one a disease will die out otherwise there 

will be an epidemic. The global stability of the equilibrium points is proved using the Lyapunov function and 

LaSalle Invariance Principle. The results of the mathematical analysis of the model are confirmed by the 

simulation study. It is concluded that the infected immigrants will contribute positively and increase the disease 

in the population. Thus, it is recommended to prevent infected immigrants so as to bring the disease under 

control. 
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I. Introduction 
Malaria is one of the diseases that have their presence constantly in human population. It is caused by 

the entry of the malaria parasite called Plasmodium into the bloodstream, due to the bite of an infected female 

Anopheles mosquito. A single bite by a malaria-carrying mosquito can lead to extreme sickness or death. 

Malaria starts with an extreme cold, followed by high fever and severe sweating. These symptoms can be 

accompanied by joint pains, abdominal pains, headaches, vomiting, and extreme fatigue [1].  

According to the estimations of World Health Organization (WHO) in 2015, 3.2 billion persons were at 

risk of infection and 2.4 million new cases were detected with 438,000 cases of deaths. However sub-Saharan 

Africa remains the most vulnerable region with high rate of deaths due to malaria [2]. 

To reduce the impact of malaria on the globe, considerable scientific efforts have been put forward 

including the construction and analysis of mathematical models. The first mathematical model to describe the 

transmission dynamics of malaria disease has been developed by Ross [3]. According to Ross, if the mosquito 

population can be reduced to below a certain threshold, then malaria can be eradicated from the human 

population. Later, Macdonald modified the Ross model by including super infection and shown that the 

reduction of the number of mosquitoes has a little effect on the epidemiology of malaria in areas of intense 

transmission [4]. Nowadays, several kinds of mathematical models have been developed so as to help the 

concerned bodies in reducing the death rate due to malaria [4]. In spite of the continuous efforts being made, it 

has still been remained difficult to eradicate malaria completely from the human world. Hence, there is a need 

for developing new models and for continuing research [2]. 

The use of mathematical modeling has a significant role in understanding the theory and practice of 

malaria disease transmission and control. The mathematical modeling can be used in figuring out decisions that 

are of significant importance on the outcomes and provide complete examinations that enter into decisions in a 

way that human reasoning and debate cannot [5]. 

 Several health reports and studies in the literature address that malaria is increasing in rigorousness, 

causing significant public health and socioeconomic trouble [6, 7]. Malaria remains the world’s most common 

vector-borne disease. Despite decades of global eradication and control efforts, the disease is reemerging in 

areas where control efforts were once effective and emerging in areas thought free of the disease. The global 

spread necessitates a concerted global effort to combat the spread of malaria. The present study illustrates the 

use of mathematical modeling and analysis to gain insight into the transmission dynamics of malaria in a 
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population, with main objective on determining optimal control measures. In order to manage the disease, one 

needs to understand the dynamics of the spread of the disease. Some health scientists have tried to obtain some 

insight in the transmission and elimination of malaria using mathematical modeling [8]. 

Years have been exhausted in finding ways to control and completely remove malaria from the human 

population, but all efforts have been in vain. The disease was once endemic and confined to certain parts of the 

world, but has now even spread to areas which were previously free of the disease. Even when eradicated for a 

period of time, it recurs in certain areas repeatedly. One major factor which has contributed to the wide spread 

nature of malaria is infected human immigration and travel. An area with an uninfected population of 

mosquitoes can also get infected when an infected individual enters the area and is bitten by these mosquitoes 

[9].  

There are no dormant forms of malaria. If the parasite enters the body, it will surely cause a disease, 

unlike certain other conditions in which the diseased state does not occur even for years after infection. It is 

logical to assume that infected humans will be unable to travel or migrate due to the symptoms brought on by 

the disease. However, there is a period of around 10 days to 4 weeks from the moment of infection to the actual 

onset of disease, and unaware people might travel during this time. During this period, the disease cannot be 

diagnosed by blood tests either as the parasite multiplies in the liver, thus allowing the infection to be carried to 

a new place. Such people will become infected after a certain period of dormancy. As a result of this, 

immigration of infected people has a huge impact on the spread of malaria within, as well as, among populations 

[9].  

Even if the infected immigrants are not introducing the parasite to a new population, their entry into an 

already infected population will cause an increase in the infected mosquitoes of the area as they will be biting 

more number of infected people. Therefore this paper will present the effect of infected immigrants on the 

spread and dynamics of Malaria by using an SIR mathematical model. 

In this paper, the disease-free equilibrium points are calculated and the reproduction number of the 

model is formulated. Analysis of the stability of these disease-free equilibrium points are also given in detail. 

The local and global stability analysis of the disease-free equilibrium points are determined by the basic 

reproduction number. 

This paper is organized as follows. In section 2, the mathematical model of the problem is formulated. 

Section 3 provides the mathematical analysis of the model. In section 4, numerical simulations are performed. In 

order to illustrate the mathematical model given the results and discussion are given in section 5. In the last 

section, section 6, conclusions are drawn for the results discussed for the given model. 

 

II. Formulation of the Model 
The endemic model of malaria transmission considered in this study is SIR in human population and SI 

in mosquito population. The model is formulated for the spread of malaria in the human and mosquito 

population with the total population size at time t denoted by  𝑁ℎ 𝑡   and  𝑁𝑣 𝑡  respectively. 

The human populations are further compartmentalized into epidemiological classes as 

susceptible  𝑆ℎ (𝑡), infected  𝐼ℎ (𝑡) , and recovered   𝑅ℎ(𝑡). The mosquito populations are similarly 

compartmentalized into epidemiological classes as susceptible    𝑆𝑣 𝑡  and infected  𝐼𝑣 𝑡 . The vector 

component of the model does not include an immune class as mosquitoes never recover from the infection, that 

is, their infected period ends with their death due to their relatively short lifecycle. Hence   𝑁ℎ 𝑡 =  𝑆ℎ 𝑡 +
 𝐼ℎ (𝑡) +  𝑅ℎ(𝑡)   and   𝑁𝑣 𝑡 =  𝑆𝑣 𝑡 +  𝐼𝑣(𝑡). 

Thus, the immune class in the mosquito population is negligible and natural death occurs equally in all 

groups. The model can be used for diseases that persist in a population for a long period of time with vital 

dynamics. The present basic model is built on a set of assumptions mentioned as follows: Both the human and 

vector total population sizes are assumed to be constants. The recovered individuals in human population 

develop permanent immunity. The populations in compartments of both humans and vectors are non-negative 

which are proved in theorem 1, and so are all the parameters involved in the model (See Table 1). All newborns 

are susceptible to infection and the development of malaria starts when the infected female mosquito bites the 

human host. Individuals move from one class to the other as their status with respect to the disease evolves. 

Humans enter the susceptible class through birth rate   𝜇ℎ   and recruitment rate   𝜋ℎ , leave from the susceptible 

class through death rate  𝛼ℎ  and infected rate  𝛽ℎ𝑆ℎ . Human enter the infected class through immigration 

rate  𝛿ℎ𝐼ℎ  and infected rate  𝛽ℎ𝑆ℎ . It leaves the infected class through the recovered rate   𝛾ℎ𝐼ℎ .  All human 

individuals, whatever their status, are subject to a natural death, which occurs at a rate  𝛼ℎ  and disease induced 

death rate  𝜌ℎ . 
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Table 1 Descriptions of model variables 

𝑺𝒉: Number of susceptible humans  

𝑰𝒉: Number of infected humans  

𝑹𝒉: Number of recovered humans  

𝑺𝒗: Number of susceptible mosquitoes  

𝑰𝒗: Number of infected mosquitoes  

𝑵𝒉: The total human population. 

𝑵𝒗: The total mosquito population  

Table 2 Descriptions of model parameters 

𝜶𝒉: Natural death rate for humans  

𝛒𝐡: Disease-induced death rate for humans 

𝛅𝐡: Infected migration rate for humans  

𝜷𝒉: The human contact rate  

𝛂𝐯: Natural death rate for mosquitoes 

𝜸𝒉: Recovery rate for humans 

𝝅𝒉: Recruitment rate of humans 

𝜷𝒗: The mosquito contact rate 

𝝅𝒗: Recruitment rate of mosquitoes 

 

 

By considering the above assumptions and the notations of variables and parameters, the ordinary differential 

equations describing the dynamics of malaria in the human and mosquito populations take the form as 

 

dSh dt = 𝜋ℎ − 𝛽ℎ𝑆ℎ𝐼𝑣 − αh Sh                                                                                (1) 

dIh dt = 𝛽ℎ𝑆ℎ 𝐼𝑣 + 𝛿ℎ𝐼ℎ − ρ
h

Ih − γ
h

Ih − αh Ih                                                                       (2) 

dRh dt = γ
h

Ih − αh Rh                (3) 

dS𝑣 dt = 𝜋𝑣 − β
𝑣

S𝑣Ih − α𝑣S𝑣                                                                                                   (4) 

dI𝑣 dt = β
𝑣

S𝑣Ih − α𝑣I𝑣                                                                                                            (5) 
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Further, the initial conditions of the model are denoted by 

 Sh 0 = Sh0 ,   Ih 0 = Ih0, Rh 0 = Rh0   and   S𝑣 0 = S𝑣0,   I𝑣 0 =  I𝑣0. The total population sizes 𝑁ℎ  and 

𝑁𝑣  of humans and mosquitoes can be determined by 

𝑆ℎ + 𝐼ℎ + 𝑅ℎ = 𝑁ℎ              (6) 

 𝑁ℎ + 𝐼𝑣 = 𝑁𝑣                 (7) 

In this model, the terms  𝛼ℎ𝑆ℎ ,   𝛼ℎ 𝐼ℎ   and  𝛼ℎ𝑅ℎ  refer to the total number of removed susceptible, infected and 

recovered humans per unit of time due to natural death. The terms  𝛼𝑣𝑆𝑣   and   𝛼𝑣𝐼𝑣   are the number of removed 

susceptible and infected mosquito populations per unit of time due to natural death. The term   𝜌ℎ𝐼ℎ   is the 

number of removed human population because of the disease per unit of time, whereas   𝛾ℎ𝐼ℎ   is the total 

recovered human population per unit of time. The term  β
h

Sh I𝑣   denotes the rate at which the infected human 

hosts  Ih  get infected by the mosquito vector 𝐼𝑣 , and   β
𝑣

S𝑣Ih   refers to the rate at which the susceptible 

mosquitoes  S𝑣   are infected by the infected human hosts Ih  at a time  𝑡. Thus, both the terms β
h

Sh I𝑣  and β
𝑣

S𝑣Ih  

are important parts of the model as they describe the interactions between the two populations. 

 

III. Mathematical analysis of the model 
The mathematical analysis of the model described by the system (1-5) is presented here. The model 

represented by the systems of coupled differential equation (1-5) will be analyzed in the feasible region and 

since the model represents the populations all the state variables and the parameters are assumed to be positive. 

The invariant region for the model (1-5) is 

  Ωh =     𝑆ℎ ,𝑅ℎ ,𝐼ℎ ∈  ℝ+
3  ∶   𝑆ℎ +𝑅ℎ+𝐼ℎ ≤  𝜋ℎ 𝛼ℎ       

  Ωv =     𝑆𝑣,𝐼𝑣 ∈ ℝ+
2  ∶   𝑆𝑣+𝐼𝑣  ≤  𝜋𝑣 𝛼𝑣      

Therefore, the solutions of the system of ordinary differential equations (1-5) are feasible for all t > 0 if they 

enter the invariant region  Ω = Ωh × Ωv . 

 

3.1 Positivity of the solutions 

In order that the model equations (1-5) are biologically and epidemiologically meaningful and well posed it is 

appropriate to show that the solutions of all the state variables are non-negative. This requirement is stated as a 

theorem and its proof is provided as follows: 

 

Theorem 1: If   Sh 0 > 0, Ih 0 > 0,   Rh 0 > 0,   S𝑣 0 > 0  and   I𝑣 0 > 0  then the solution region 

    Sh t , Ih t , Rh t , S𝑣 t , I𝑣 t     of the system of equations (1-5) is always non-negative. 

Proof: To show the positivity of the solution of the dynamical system (1-5), each differential equation is 

considered separately and shown that its solution is positive.  

Positivity of infected mosquito population: Considering the fifth differential equation of the system of 

differential equations (1-5) it can be shown that   𝑑𝐼𝑣 𝑑𝑡  =  𝛽𝑣𝑆𝑣𝐼ℎ − 𝛼𝑣𝐼𝑣  ≥  −𝛼𝑣𝐼𝑣  . Now, separation of the 

variables reduces it to   𝑑𝐼𝑣 𝐼𝑣 ≥  −𝛼𝑣𝑑𝑡 . On integrating it yields to the solution   𝐼𝑣 𝑡  ≥  𝐼𝑣0  𝑒− 𝛼𝑣𝑑𝑠
𝑡

0  > 0. 

Thus, it is clear from the solution that  I𝑣 t   is positive since the initial value   I𝑣0   and the exponential 

functions are always positive. 

Positivity of infected human population: Considering the second differential equation of the system of 

differential equations (1-5) and that can be rewritten as   𝑑𝐼ℎ 𝑑𝑡 = 𝛽ℎ𝑆ℎ𝐼𝑣 + 𝛿ℎ𝐼ℎ −  𝜌ℎ + 𝛾ℎ + 𝛼ℎ 𝐼ℎ ≥
− 𝜌ℎ + 𝛾ℎ + 𝛼ℎ 𝐼ℎ . Separating the variables it yields to   𝑑𝐼ℎ 𝐼ℎ ≥ − 𝜌ℎ + 𝛾ℎ + 𝛼ℎ 𝑑𝑡. Further, integrate to 

find the solution as   𝐼ℎ 𝑡  ≥  𝐼ℎ0  𝑒−  𝜌ℎ +𝛾ℎ +𝛼ℎ  𝑑𝑠
𝑡

0  > 0 . It is clear from the solution that Ih t  is positive since 

Ih0 > 0 and the exponential function is always positive. 

Positivity of susceptible human population: Considering the first differential equation of the system of 

differential equations (1-5) it can be shown that 𝑑𝑆ℎ 𝑑𝑡   = 𝜋ℎ − 𝛽ℎ𝑆ℎ 𝐼𝑣 − αh Sh   .  
Since 𝜋ℎ  is a positive quantity, the equation can be expressed as an inequality as   𝑑𝑆ℎ 𝑑𝑡   ≥  −𝛽ℎ𝑆ℎ𝐼𝑣 − 𝛼ℎ𝑆ℎ . 

Using the technique of separation of variables and up on integration gives 𝑆ℎ 𝑡 ≥ 𝑆ℎ0𝑒
−  𝛽ℎ 𝐼𝑣+𝛼ℎ  𝑑𝑠

𝑡
0 . But, for 

any value of the exponent, the exponential term is always a non-negative quantity, that is 𝑒−  𝛽ℎ 𝐼𝑣+𝛼ℎ  𝑑𝑠
𝑡

0 ≥ 0. 

Also it is assumed that  Sh0 > 0. Thus, it is clear from the solution that Sh t  is positive  

Positivity of susceptible mosquito population: By observing at the fourth differential equation of the dynamical 

systems (1-5) and that can be expressed as 𝑑𝑆𝑣 𝑑𝑡 = 𝜋𝑣 − 𝛽𝑣𝑆𝑣𝐼ℎ − 𝛼𝑣𝑆𝑣  . Since  𝜋𝑣   is a positive quantity it 

can be rewritten as    𝑑𝑆𝑣 𝑆𝑣  ≥ − 𝛽𝑣𝐼ℎ + 𝛼𝑣 𝑑𝑡 

Now, integration leads to the solution  𝑆𝑣 𝑡 ≥ 𝑆𝑣0𝑒
−  𝛽𝑣𝐼ℎ +𝛼𝑣 𝑑𝑠

𝑡
0 . Note that for any value of the exponent, the 

exponential term is always a non-negative quantity, that is  𝑒−  𝛽𝑣𝐼ℎ +𝛼𝑣 𝑑𝑠
𝑡

0 ≥ 0 

Thus, it is clear from the solution that S𝑣 t  is positive since S𝑣0 > 0 and the exponential functions are always 

positives.  
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Positivity of recovered human population: Consider the third differential equation of the system of differential 

equations (1-5) and express it as 𝑑𝑅ℎ 𝑑𝑡 = 𝛾ℎ𝐼ℎ − 𝛼ℎ𝑅ℎ ≥ −𝛼ℎ𝑅ℎ  . Now, separation of the variables leads 

to  𝑑𝑅ℎ 𝑅ℎ ≥ −𝛼ℎ𝑑𝑡. Further, the integration gives the solution as  𝑅ℎ(𝑡) ≥ 𝑅ℎ0𝑒
− 𝛼ℎ𝑑𝑠

𝑡
0 > 0. It is clear from 

the solution that  Rh t    is positive since Rh0 > 0 and also the exponential function is always positive. 

 

3.2 Boundedness of the solution region 

In order that the model equations (1-5) are biologically and epidemiologically meaningful and well posed it is 

appropriate to show that the solutions of all the state variables are bounded. This requirement is stated as a 

theorem and its proof is provided as follows: 

 

Theorem 2:  The non-negative solutions characterized by theorem 1 are bounded. 

Proof: It suffices to prove that the total living population size is bounded for all 𝑡 >  0. That is, the solutions lie 

in the bounded region. 

Boundedness of total human population: The rate of change of total human population size   𝑁ℎ 𝑡 = 𝑆ℎ 𝑡 +
𝐼ℎ𝑡+𝑅ℎ𝑡   can be obtained as 𝑑𝑁ℎ𝑑𝑡=𝑑𝑆ℎ𝑑𝑡+  𝑑𝐼ℎ𝑑𝑡+ 𝑑𝑅ℎ𝑑𝑡 =𝜋ℎ−𝛽ℎ𝑆ℎ𝐼𝑣−αh  
Sh+𝛽ℎ𝑆ℎ𝐼𝑣+𝛿ℎ𝐼ℎ−ρhIh−γhIh−αhIh+γhIh−αhRh. After simplification it reduces to  𝑑𝑁ℎ𝑡𝑑𝑡  

= 𝜋ℎ − αh𝑁ℎ +  𝛿ℎ − ρ
h
 . Further, in case if the death rate of humans due to malaria disease is considered to 

be zero, i.e.,  𝛿ℎ − ρ
h
 = 0 then it is obtained as   𝑑𝑁ℎ 𝑡 𝑑𝑡 = 𝜋ℎ − αh𝑁ℎ . The solution of this differential 

equation is found to be   𝑁ℎ 𝑡 = 𝜋ℎ αh +  𝑁ℎ0 − 𝜋ℎ αh  𝑒−αh t   showing that  𝑁ℎ 𝑡 → 𝜋ℎ αh  as 𝑡 → ∞. The 

term 𝑁ℎ0 denotes the initial total human population and is a positive quantity. It can be interpreted that the total 

human population grows and asymptotically converges to a positive quantity given by 𝜋ℎ αh  under the 

condition that humans do not die due to malaria infection. Thus 𝜋ℎ αh  is an upper bound of the total human 

population  𝑁ℎ 𝑡  that is 𝑁ℎ ∞ ≤ 𝜋ℎ αh . Whenever the initial human population starts off low below 

𝜋ℎ αh   then it grows over time and finally reaches the upper asymptotic value 𝜋ℎ αh . Similarly, whenever the 

initial human population starts off higher than 𝜋ℎ αh   then it decays over time and finally reaches the lower 

asymptotic value 𝜋ℎ αh . 

Boundedness of total mosquito population: Just similar to the above, the rate of change of total mosquito 

population size 𝑁𝑣 𝑡 = 𝑆𝑣 𝑡 + 𝐼𝑣 𝑡  can be obtained by adding up the fourth and fifth equations of model (1-

5) as   𝑑𝑁𝑣 𝑡 𝑑𝑡  =   𝑑𝑆𝑣 𝑡 𝑑𝑡  +     𝑑𝐼𝑣 𝑡 𝑑𝑡   = 𝜋𝑣 − β
𝑣

S𝑣Ih − α𝑣S𝑣 + β
𝑣

S𝑣Ih − α𝑣I𝑣 . Further, it is 

simplified as   𝑑𝑁𝑣 𝑡 𝑑𝑡  = 𝜋𝑣 − αv Nv . Thus, the solution of this differential equation is found to be  𝑁𝑣 𝑡 =
𝜋𝑣 𝛼𝑣 +  𝑁𝑣0 −  𝜋𝑣 𝛼𝑣𝑒

−𝛼𝑣𝑡    . This shows that Nv t → 𝜋𝑣 αv  as 𝑡 → ∞ since the term Nv0 denotes the 

initial total mosquito population and it a positive quantity. It can be interpreted that the total mosquito 

population grows and asymptotically converges to a positive quantity given by 𝜋𝑣 αv . Thus, 𝜋𝑣 αv  is an upper 

bound of the total mosquito population Nv t  i.e.  Nv ∞ ≤ 𝜋𝑣 αv . 

 

3.3 Disease Free Equilibrium 

Disease – free equilibrium points are steady state solutions where there is no malaria in the human 

population or plasmodium parasite in the mosquito population. We can define the diseased classes as the human 

or mosquito populations that are infected that is, 𝐼ℎ  and 𝐼𝑣 . In the absence of the disease this implies that 𝐼ℎ = 0 

and 𝐼𝑣 = 0 and when the right hand side of the fourth and fifth differential equations of  a non –linear system 

differential equations (1-5) is set zero we have: 

𝜋ℎ − 𝛽ℎ𝑆ℎ 𝐼𝑣 − αh Sh = 0                  (8) 

𝛽ℎ𝑆ℎ 𝐼𝑣 + 𝛿ℎ𝐼ℎ − ρ
h

Ih − γ
h

Ih − αh Ih = 0                          (9) 

γ
h

Ih − αh Rh = 0                                         (10) 

𝜋𝑣 − β
𝑣

S𝑣Ih − α𝑣S𝑣 = 0                        (11) 

β
𝑣

S𝑣Ih − α𝑣I𝑣  = 0                  

(12) 

    
The above equations (8) to (12) reduce to a pair of relations as   𝜋ℎ − αh Sh = 0   and    𝜋𝑣 − α𝑣S𝑣 = 0. Further, 

these imply that  𝑆ℎ
0 = 𝜋ℎ αh   and   𝑆𝑣

0 = 𝜋𝑣 α𝑣 . Thus, the disease – free equilibrium point of the malaria 

model formulated in (1-5) above is given by  

  𝐸0 =  𝑆ℎ
0,  𝐼ℎ

0,  𝑅ℎ
0 ,  𝑆𝑣

0,  𝐼𝑣
0 =  𝜋ℎ αh , 0, 0, 𝜋𝑣 α𝑣 , 0                  (13) 

Thus, the state   𝐸0   represents that there is no infection or the malaria disease is absent in both the human and 

mosquito populations. 
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3.4  Basic Reproduction Number 

Generally, the next generation operator approach as described by Diekmann et al. (1990) is used to find 

the basic reproduction number R0 as the number of secondary infections that one infected individual would 

create over the duration of the infected period, provided that everyone else is susceptible. Reproduction number 

R0 is the threshold for many epidemiology models as it determines whether a disease can invade a population or 

not. When 𝑅0 < 1 each infected individual produces on average less than one new infected individual so it is 

expected that the disease dies out. On the other hand if  𝑅0 > 1 then each individual produces more than one 

new infected individual so it is expected that the disease would spread in the population. This means that the 

threshold quantity for eradicating the disease is to reduce the value of  𝑅0 to be less than one. The following 

steps are followed to determine the basic reproduction number  𝑅0  by using the next generation approach.  

In the next generation method, 𝑅0 is defined as the largest eigenvalue of the next generation matrix. 

The formulation of this matrix involves determining two classes, infected and non-infected, from the model. 

That is, the basic reproduction number cannot be determined from the structure of the mathematical model alone 

but depends on the definition of infected and uninfected compartments. Assuming that there are 𝑛 compartments 

of which the first   𝑚 compartments to infected individuals [12].  

Let   𝑉𝑖   𝑥 =  𝑉𝑖
− 𝑥 −  𝑉𝑖

+ 𝑥   where   𝑉𝑖
+ 𝑥   is the rate of transfer of individuals into compartment 

 𝑖  by all other means and  𝑉𝑖
− 𝑥   is the rate of transfer of individual out of the  𝑖𝑡ℎ   compartment. It is assumed 

that each function is continuously differentiable at least twice in each variable. The disease transmission model 

consists of nonnegative initial conditions together with the following system of equations:  𝑥 𝑖 =  ℎ𝑖 𝑥 =
 𝐹𝑖 𝑥 −  𝑉𝑖   𝑥 ,   𝑖 =  1,2,3, …  𝑛  where   x   is the rate of change of 𝑥. 

The next is the computation of the square matrices 𝐹 and 𝑉 of order 𝑚 × 𝑚 , where 𝑚 is the number of infected 

classes, defined by   𝐹 =  𝜕𝐹𝑖(𝑥0) 𝜕𝑥𝑗      and   𝑉 =  𝜕𝑉𝑖(𝑥0) 𝜕𝑥𝑗     with  1 ≤  𝑖,   𝑗 ≤  𝑚  , such that 𝐹 is 

nonnegative, 𝑉 is a non-singular matrix and 𝑥0 is the disease – free equilibrium point (DFE). 

Since 𝐹 is nonnegative and 𝑉 nonsingular, then 𝑉−1 is nonnegative and also 𝐹𝑉−1 is nonnegative. Hence the 

matrix of 𝐹𝑉−1 is called the next generation matrix for the model. 

Finally the basic reproduction number  𝑅0  is given by 

𝑅0 = 𝜌  𝐹𝑉−1                                                                        (14)                                                              

Here in (14),   𝜌 𝐴  denotes the spectral radius of matrix  𝐴  and the spectral radius is the biggest nonnegative 

eigenvalue of the next generation matrix. Hence, the column matrices 𝐹𝑖  and 𝑉𝑖  are defined as 

𝐹𝑖 =  

𝛽ℎ𝑆ℎ𝐼𝑣

β
𝑣

S𝑣Ih

                                                                       (15) 

𝑉𝑖 =  
 ρ

h
+ γ

h
+ αh−𝛿ℎ 𝐼ℎ

α𝑣I𝑣

                                                                       (16) 

The partial derivatives of (8) with respect to   𝐼ℎ , 𝐼𝑣   and the Jacobian matrix of 𝐹𝑖  at the disease – free 

equilibrium point (6) takes the form as 

𝐹 =  
0 𝛽ℎ𝑆ℎ

β
𝑣

S𝑣 0
 =  

0 𝛽ℎ𝜋ℎ αh 

β
𝑣
𝜋𝑣 α𝑣 0

                                                        (17) 

Similarly, the partial derivatives of (16) with respect to (𝐼ℎ  , 𝐼𝑣  )  and the Jacobian matrix of 𝑉𝑖  at the disease – 

free equilibrium point (13) takes the form as 

 𝑉 =  
ρ

h
+ γ

h
+ αh−𝛿ℎ 0

0 α𝑣

                                                          (18) 

The inverse of the matrix 𝑉 is given as 

𝑉−1 =  
 ρ

h
+ γ

h
+ αh−𝛿ℎ 

−1
0

0 α𝑣
−1

                                                                     (19) 

Now both 𝐹𝑉−1 and  𝐹𝑉−1 𝐸0  are computed as 

 𝐹𝑉−1 =  

0 𝛽ℎ𝜋ℎ αhα𝑣 

β
𝑣
𝜋𝑣 α𝑣 ρ

h
+ γ

h
+ αh−𝛿ℎ  0

                                                            (20) 

 

𝐹𝑉−1 𝐸0 =  

0 𝛽ℎ𝜋ℎ αhα𝑣 

β
𝑣
𝜋𝑣 α𝑣 ρ

h
+ γ

h
+ αh−𝛿ℎ  0

                                                      (21) 
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From (21), it is now possible to calculate the eigenvalues to determine the basic reproduction number 𝑅0 by 

taking the spectral radius of the matrix 𝐹𝑉−1. Thus it is computed by  𝐹𝑉−1 𝐸0  −  𝜆𝐼  =  0, and it yields 

𝜆 = ±  
𝛽ℎ𝜋ℎ

αh α𝑣

  
β

𝑣
𝜋𝑣

α𝑣 ρ
h

+ γ
h

+ αh−𝛿ℎ 
  

Thus, the dominant eigenvalue of the matrix 𝐹𝑉−1 or the basic reproduction number is given by 

 

𝑅0 =   
𝛽ℎ𝜋ℎ

αh α𝑣
  

β𝑣𝜋𝑣

α𝑣 ρh +γh +αh −𝛿ℎ  
                                                                                                 (22) 

 

From this, it can be quantified that higher values of 𝛽ℎ , 𝜋ℎ ,  β
v
 and  𝜋𝑣  can allow the outbreak of the disease. 

Conversely, for small values of 𝛽ℎ , 𝜋ℎ ,  β
v
 and  𝜋𝑣  the disease dies out. The reproduction number is a powerful 

parameter which measures the existence and stability of the disease in the human and mosquito population. 

If    𝛽ℎ𝜋ℎ  β
v
𝜋𝑣 <  αhαv

2  ρ
h

+ γ
h

+ αh−𝛿ℎ , i.e., 𝑅0 < 1 the disease-free equilibrium is the only 

equilibrium point and then the disease dies out. If  𝛽ℎ𝜋ℎ  β
v
𝜋𝑣 <  αhαv

2  ρ
h

+ γ
h

+ αh−𝛿ℎ  i.e., 𝑅0 > 1 the 

unique endemic equilibrium exists and the disease persists within the human and mosquito population. 

 

3.5  Stability analysis of the Disease Free Equilibrium point  

The equilibriums are obtained by equating the right hand side of the system of differential equations (1-

5) to zero. Disease-free equilibrium (DFE) of the model is the steady-state solution of the model in the absence 

of the malaria disease. Hence, the DFE of the given malaria model (1-5) is given by 

  𝐸0 =  𝑆ℎ
0,  𝐼ℎ

0 ,  𝑅ℎ
0,  𝑆𝑣

0,  𝐼𝑣
0 =  𝜋ℎ αh , 0, 0, 𝜋𝑣 α𝑣 , 0  

 

Theorem 1: The DFE,  E0   of the system (1-5) is locally asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1. 

Proof: Consider the following functions so as to find the Jacobian matrix: 

𝑑𝑆ℎ 𝑑𝑡 = 𝜋ℎ − 𝛽ℎ𝑆ℎ𝐼𝑣 − αh Sh = 𝑓1   𝑆ℎ , 𝐼ℎ , 𝑅ℎ , 𝑆𝑣 , 𝐼𝑣   
𝑑𝐼ℎ 𝑑𝑡 = 𝛽ℎ𝑆ℎ 𝐼𝑣 + 𝛿ℎ𝐼ℎ − ρ

h
Ih − γ

h
Ih − αh Ih = 𝑓2 𝑆ℎ , 𝐼ℎ , 𝑅ℎ , 𝑆𝑣 , 𝐼𝑣   

𝑑𝑅ℎ 𝑑𝑡 = γ
h

Ih − αh Rh = 𝑓3 𝑆ℎ , 𝐼ℎ , 𝑅ℎ , 𝑆𝑣 , 𝐼𝑣   

𝑑𝑆𝑣 𝑑𝑡 = 𝜋𝑣 − β
𝑣

S𝑣Ih − αv Sv = 𝑓4 𝑆ℎ , 𝐼ℎ , 𝑅ℎ , 𝑆𝑣 , 𝐼𝑣   

𝑑𝐼𝑣 𝑑𝑡 = β
𝑣

S𝑣Ih − α𝑣I𝑣 =   𝑓5 𝑆ℎ , 𝐼ℎ , 𝑅ℎ , 𝑆𝑣 , 𝐼𝑣   

Thus, the Jacobian matrix is given by 

𝐽 =

 

 
 
 
 
 
 

𝜕𝑓1 𝜕𝑆ℎ 𝜕𝑓1 𝜕𝐼ℎ 𝜕𝑓1 𝜕𝑅ℎ 𝜕𝑓1 𝜕𝑆𝑣 𝜕𝑓1 𝜕𝐼𝑣 

𝜕𝑓2 𝜕𝑆ℎ 𝜕𝑓2 𝜕𝐼ℎ 𝜕𝑓2 𝜕𝑅ℎ 𝜕𝑓2 𝜕𝑆𝑣 𝜕𝑓2 𝜕𝐼𝑣 

𝜕𝑓3 𝜕𝑆ℎ 𝜕𝑓3 𝜕𝐼ℎ 𝜕𝑓3 𝜕𝑅ℎ 𝜕𝑓3 𝜕𝑆𝑣 𝜕𝑓3 𝜕𝐼𝑣 

𝜕𝑓4 𝜕𝑆ℎ 𝜕𝑓4 𝜕𝐼ℎ 𝜕𝑓4 𝜕𝑅ℎ 𝜕𝑓4 𝜕𝑆𝑣 𝜕𝑓4 𝜕𝐼𝑣 

𝜕𝑓5 𝜕𝑆ℎ 𝜕𝑓5 𝜕𝐼ℎ 𝜕𝑓5 𝜕𝑅ℎ 𝜕𝑓5 𝜕𝑆𝑣 𝜕𝑓5 𝜕𝐼𝑣  

 
 
 
 
 
 

 

Hence,  

𝐽 =

 

 
 
 
 
 
 

−𝛽ℎ𝐼𝑣 − αh 0 0 0 −𝛽ℎ𝑆ℎ

𝛽ℎ𝐼𝑣 𝛿ℎ − ρ
h

− γ
h

− αh 0 0 𝛽ℎ𝑆ℎ

0 γ
h

−αh 0 0

0 −β
𝑣

S𝑣 0 −α𝑣 0

0 β
𝑣

S𝑣 0 β
𝑣

Ih −α𝑣  

 
 
 
 
 
 

 

 

Therefore, the Jacobian matrix of model formulated at the disease-free equilibrium 𝐸0 is 
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𝐽 𝐸0 =

 

 
 
 
 
 
 

−αh 0 0 0 −𝛽ℎ𝜋ℎ αh 

0 𝛿ℎ − ρ
h

− γ
h

− αh 0 0 𝛽ℎ𝜋ℎ αh 

0 γ
h

−αh 0 0

0 −𝛽𝑣𝜋𝑣 α𝑣 0 −α𝑣 0

0 𝛽𝑣𝜋𝑣 α𝑣 0 0 −α𝑣  

 
 
 
 
 
 

                                               (23) 

 

The characteristic equation   J E0  −  𝜆𝐼  =  0  of (23) is expanded and simplified as follows: 

 

 

 

 

−αh − 𝜆 0 0 0 −𝛽ℎ𝜋ℎ αh 

0  𝛿ℎ − ρ
h

− γ
h

− αh − 𝜆 0 0 𝛽ℎ𝜋ℎ αh 

0 γ
h

−αh − 𝜆 0 0

0 − β
𝑣
𝜋𝑣 α𝑣 0 −α𝑣 − 𝜆 0

0 β
𝑣
𝜋𝑣 α𝑣 0 0 −α𝑣 − 𝜆

 

 

 

= 0 

 

 

 αh + 𝜆 

 

 

 𝛿ℎ − ρ
h

− γ
h

− αh − 𝜆 0 0 𝛽ℎ𝜋ℎ αh 

γ
h

−αh − 𝜆 0 0

− β
𝑣
𝜋𝑣 α𝑣 0 −α𝑣 − 𝜆 0

β
𝑣
𝜋𝑣 α𝑣 0 0 −α𝑣 − 𝜆

 

 

= 0 

 

 

− αh + 𝜆 2

 

 

 𝛿ℎ − ρ
h

− γ
h

− αh − 𝜆 0 𝛽ℎ𝜋ℎ αh 

− β
𝑣
𝜋𝑣 α𝑣 −α𝑣 − 𝜆 0

β
𝑣
𝜋𝑣 α𝑣 0 −α𝑣 − 𝜆

 

 
= 0 

 

 αh + 𝜆 2 −α𝑣 − 𝜆    𝛿ℎ − ρ
h

− γ
h

− αh − 𝜆  −α𝑣 − 𝜆 −  𝛽ℎ𝜋ℎ αh   β
𝑣
𝜋𝑣 α𝑣   = 0 

 

 αh + 𝜆 2 −α𝑣 − 𝜆  𝜆2+ω𝜆 + α𝑣ω −  𝛽ℎ𝜋ℎ αh   β
𝑣
𝜋𝑣 α𝑣   = 0 

 

 αh + 𝜆 2 = 0,      α𝑣 + 𝜆 = 0,  𝜆2+ω𝜆 + α𝑣ω 1 − 𝑅0
2  = 0 

 

Here  ω = ρ
h

+ γ
h

+ αh−𝛿ℎ . Hence the eigenvalues of (16) are 

  𝜆1 = 𝜆2 = −αh < 0   
𝜆3 = −α𝑣 < 0  

𝜆4 =
−ω −  ω2 − 4α𝑣ω 1 − 𝑅0

2 

2
< 0 

𝜆5 =
−ω +  ω2 − 4α𝑣ω 1 − 𝑅0

2 

2
< 0 𝑖𝑓 𝑅0 < 1  

Therefore the DFE, E0 of the system of differential equations (1-5) is locally asymptotically stable if 𝑅0 < 1 and 

unstable if 𝑅0 > 1. 
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Theorem 2: If 𝑅0 < 1, then the disease free equilibrium point 𝐸0 is globally asymptotically stable and the 

disease dies out, but if 𝑅0 > 1, then 𝐸0 is unstable. 

Proof: Consider the following Lyapunov function to show the global stability of  𝐸0. 

𝑉 𝐼ℎ , 𝐼𝑣 =  𝛼𝑣 𝛽ℎ  𝐼ℎ + 𝐼𝑣  

Then, the time derivative of V is  

𝑑𝑉 𝑑𝑡 =  𝛼𝑣 𝛽ℎ   𝑑𝐼ℎ 𝑑𝑡  +  𝑑𝐼𝑣 𝑑𝑡     

𝑑𝑉 𝑑𝑡 =  𝛼𝑣 𝛽ℎ   𝛽ℎ𝑆ℎ 𝐼𝑣 + 𝛿ℎ𝐼ℎ − ρ
h

Ih − γ
h

Ih − αh Ih + β
𝑣

S𝑣I𝑣 − α𝑣I𝑣      

𝑑𝑉 𝑑𝑡 =  𝛼𝑣 𝛽ℎ  𝛽ℎ𝑆ℎ 𝐼𝑣 −  𝛼𝑣 𝛽ℎ   ρ
h

+ γ
h

+ αh−𝛿ℎ 𝐼ℎ + β
𝑣

S𝑣Ih − α𝑣I𝑣      

𝑑𝑉 𝑑𝑡 = 𝛼𝑣𝑆ℎ 𝐼𝑣 −  𝛼𝑣 𝛽ℎ   ρ
h

+ γ
h

+ αh−𝛿ℎ 𝐼ℎ + β
𝑣

S𝑣Ih − α𝑣I𝑣      

𝑑𝑉 𝑑𝑡 = β
𝑣

S𝑣Ih −  𝛼𝑣 𝛽ℎ   ρ
h

+ γ
h

+ αh−𝛿ℎ 𝐼ℎ + 𝛼𝑣𝑆ℎ 𝐼𝑣 − α𝑣I𝑣      

𝑑𝑉 𝑑𝑡 =  β
𝑣

S𝑣 −  𝛼𝑣 𝛽ℎ   ρ
h

+ γ
h

+ αh−𝛿ℎ  𝐼ℎ − 𝛼𝑣 1 − 𝑆ℎ I𝑣      

𝑑𝑉 𝑑𝑡  ≤   β
𝑣

S𝑣 −  𝛼𝑣 𝛽ℎ   ρ
h

+ γ
h

+ αh−𝛿ℎ   𝐼ℎ   

𝑑𝑉 𝑑𝑡 =   β
𝑣
𝜋𝑣 αv  −  𝛼𝑣 𝛽ℎ   ρ

h
+ γ

h
+ αh−𝛿ℎ   𝐼ℎ  

𝑑𝑉 𝑑𝑡 =   𝑅0
2αhα𝑣 ρ

h
+ γ

h
+ αh−𝛿ℎ 𝛽ℎ𝜋ℎ  −  𝛼𝑣 𝛽ℎ   ρ

h
+ γ

h
+ αh−𝛿ℎ  𝐼ℎ  

𝑑𝑉 𝑑𝑡 =  𝛼𝑣 𝛽ℎ    ρ
h

+ γ
h

+ αh−𝛿ℎ   αh 𝜋ℎ  𝑅0
2 − 1 𝐼ℎ  

Thus, it is possible to establish that  𝑑𝑉 𝑑𝑡 < 0 if  𝑅0 < 1 and  𝑑𝑉 𝑑𝑡 = 0  if  𝐼ℎ = 0, 𝐼𝑣 = 0 since αh 𝜋ℎ  is 

always less than one. Therefore, the largest compact invariant set in      𝑆ℎ , 𝐼ℎ , 𝑅ℎ , 𝑆𝑣 , 𝐼𝑣 ∈ Ω ∶
:  𝑑𝑉𝑑𝑡=0 is the singleton set  𝐸0  in  Ω. From LaSalle’s invariant principle [10], every solution that starts in the 

region Ω approaches 𝐸0 as 𝑡 → ∞ and hence the DFE  𝐸0   is globally asymptotically stable   𝑅0 < 1  in  Ω. 

 

IV. Numerical Simulations 
In this section a numerical simulations of the model is presented which is carried out using a DE Discover 2.6.4. 

The values of the parameters used in the model are given in Table 3 and 4. 

 

Table 3 Parameter values 
Parameter Values Reference 

𝛼ℎ  0.05 [11] 

𝜋𝑣 25 Assumed 

 δh  0.001 Assumed 

 𝛽ℎ  0.01 [11] 

 αv  2 Assumed 

 𝛾ℎ  0.9 [11] 

 𝜋ℎ  10 Assumed 

𝛽𝑣 0.005 [11] 

ρh  0.01 [11] 

 

Assuming the parameter values in table 3 with the initial conditions 𝑆ℎ0  = 120, 𝐼ℎ0  = 20 , 𝑅ℎ0 = 18,
𝑆𝑣0 = 110 and  𝐼𝑣0 = 240 were used for the simulation shown in figure 2 below. In figure 2, the fractions of the 

populations 𝑆ℎ  , 𝐼ℎ  , 𝑅ℎ  , 𝑆𝑣  and   𝐼𝑣  are plotted versus time. The susceptible human populations will initially 

decreases with time and then increases and the fractions of infected human populations decrease. The 

reproduction number is less than one and thus the disease free equilibrium point 

  𝐸0 =  𝑆ℎ
0 ,  𝐼ℎ

0  ,  𝑅ℎ
0  ,  𝑆𝑣

0 ,  𝐼𝑣
0 =  𝜋ℎ αh  , 0 , 0 , 𝜋𝑣 α𝑣  , 0  is stable. The susceptible and 

infected mosquito population decreases over time as shown in the figure 2 indicating that the malaria outbreak 

will not occur in the population.  
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Figure 2: Numerical simulation of the model with respect to time for parameter values in Table 3 

and  𝐑𝟎 = 𝟎. 𝟐𝟓𝟓𝟐𝟖𝟖. The initial population size are 𝐒𝐡𝟎  = 𝟏𝟐𝟎,  𝐈𝐡𝟎  = 𝟐𝟎 ,   𝐑𝐡𝟎 = 𝟏𝟖, 𝐒𝒗𝟎 = 𝟏𝟏𝟎 

and 𝐈𝒗𝟎 = 𝟐𝟒𝟎. 

 

Table 4 Parameter values 
Parameter Values Reference 

𝛼ℎ  0.05 [11] 

𝜋𝑣 125 Assumed 

 δh  0.1 Assumed 

 𝛽ℎ  0.01 [11] 

 αv  0.06 [11] 

 𝛾ℎ  0.9 [11] 

 𝜋ℎ  2.5 [11] 

𝛽𝑣 0.005 [11] 

ρh  0.001 Assumed 

 

By considering the parameter values in table 4 and the initial conditions 𝑆ℎ0  = 360, 𝐼ℎ0  = 40 , 𝑅ℎ0 =
36, 𝑆𝑣0 = 220 and  𝐼𝑣0 = 480 the mathematical simulation of model (1-5) is conducted and the results are 

given in figure 3. In figure 3, the fractions of the populations 𝑆ℎ  , 𝐼ℎ  , 𝑅ℎ  , 𝑆𝑣  and  𝐼𝑣  are plotted versus time and 

also in figure 4, the fractions of the populations 𝑆ℎ  , 𝐼ℎ   and 𝑅ℎ  are plotted versus time. The susceptible 

mosquito populations will initially decreases with time and then increases as the immigration rate increases 

which in turn have an effect on the susceptible human population to be bitten by the mosquito and infected by 

malaria as well the malaria diseases persists in the population. Therefore, the reproduction number is greater 

than one and the disease free equilibrium 

point  𝐸0 =  𝑆ℎ
0 ,  𝐼ℎ

0 ,  𝑅ℎ
0  ,  𝑆𝑣

0 ,  𝐼𝑣
0 =  𝜋ℎ αh  , 0 , 0 , 𝜋𝑣 α𝑣  , 0  is unstable. The susceptible 

mosquito population increases over time as shown in the figure 3 and showing that a malaria outbreak will 

occur. 
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Figure 3: Numerical simulation of the model with respect to time for parameter values in Table 4 

and  𝐑𝟎 = 𝟏𝟎. 𝟎𝟗𝟗𝟕𝟏. The initial population size are 𝐒𝐡𝟎  = 𝟑𝟔𝟎, 𝐈𝐡𝟎  = 𝟒𝟎 , 𝐑𝐡𝟎 = 𝟑𝟔, 𝐒𝒗𝟎 = 𝟐𝟐𝟎 

and 𝐈𝒗𝟎 = 𝟒𝟖𝟎. 

 

 
Figure 4: The fractions of the populations 𝐒𝐡 , 𝐈𝐡 and 𝐑𝐡 versus time with   𝐑𝟎 = 𝟏𝟎. 𝟎𝟗𝟗𝟕𝟏 and the 

initial population size are 𝐒𝐡𝟎  = 𝟑𝟔𝟎, 𝐈𝐡𝟎  = 𝟒𝟎 , 𝐑𝐡𝟎 = 𝟑𝟔, and 𝐈𝐯𝟎 = 𝟒𝟖𝟎. 

 

V. Results and discussion 
      In this paper, the dynamics of an SIR model (1-5) is studied and applied to malaria transmission 

between human and mosquito populations. The basic reproduction number is derived and the existence and 

stability of Disease-Free Equilibrium DFE of model (1-5) are discussed. The analysis shows that if the 

reproduction number is less than one then the DFE is locally and globally asymptotically stable, this implies that 

only susceptible is present and the other populations reduces to zero, and the disease dies out as it is shown in 

figure 2. And if the reproduction number is greater than one then DFE is unstable, for the model (1-5). This has 

been verified by numerical simulation in figure 3.  

      Clearly, from the numerical simulations, the DFE is locally asymptotically stable whenever the 

reproduction number is less than one for the model (1-5). It is also noticed that in order to reduce the basic 

reproduction number below one, it is very necessary to give a focus on reduction of the infected immigration 

rate of the human population. Hence for the immigration of an infected human population from one place to the 
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other place it is recommended that to be tested for the malaria before immigration to decrease the malaria 

infection.  

 

VI. Conclusion 
  In this paper, a model for malaria is formulated taking into account both the human and mosquito 

populations. An SIR model with infected immigrants to infected human is formulated for humans and an SI 

model is formulated for mosquito with constant recruitment for both human and mosquito population. Mosquito 

dynamics is studied along with human dynamics because mosquito population determines to a large extent 

whether a malaria outbreak will occur or not. 

Further, the positivity and boundedness of the solution of the model developed is verified to discover 

that the model equation is mathematically and epidemiologically well posed. The disease free equilibrium 

theory is applied to the model developed to study the stability analysis. 

In particular, the stability properties were investigated by paying more attention to the basic reproduction 

number and Lyapunov function. The existing work is expanded by putting the missing detail i.e., incorporating 

the infected immigrants to infected human compartments to SIR model and making reasonable contributions in 

malaria control. From the numerical results, it is found that prevention of infected immigrants have a strong 

impact on the malaria disease control. 
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