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Abstract: In this paper we deal with the fuzzy optimization of the mean number of customers and the mean 

waiting time of a customer in the queue in a preemptive priority discipline with two priority classes where the 

preemptive units do not return to service but are lost. Poisson arrival, Exponential service time, single server 

and infinite waiting line are assumed. Fuzzyfying the parameters in the mean number of customers and the 

mean waiting time of a customer in the queue, optimization is obtained using statistical technique. A Numerical 

example for fuzzy optimization is illustrated. 
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I. Introduction 

 Nowadays priority queueing problems play an important role in queueing theory. If r<s then the first 

came unit in class(r) is selected for service in preference to a unit in class (s). A unit of class (r) cannot go for 

service until the class (r-1) is empty. Within each class, first-come first-served policy is adopted. When an unit 

of higher priority arrives, the unit of a lower priority in service may be allowed to complete its service or its 

service be interrupted immediately and it be displaced. The displaced unit may return to service again or be lost. 

When it resumes its service again, the time which it already spent in service may be deducted or be allowed to 

start the service from the beginning. So we consider that the arrival and service rates are independent.   [2, 4] 

Bailey and Barry (1956) introduced the preemptive queueing system and the work was extended by white, 

Christie and Stephan in (1958). White proposed a difference between preemptive resume and repeat. [3] have 

given an interesting applications of combinatorics  of lattice paths to solve some non-trivial problems in 

queueing theory. Classical problems like Ma/Mb/I systems with and without global blocking, queueing models 

related to random walks in a quarter planes like Flatto-Hahn model with preemptive priorities have been 

discussed. 

 Later many researchers have stated many results on preemptive priority queueing models [l, 5, 9]. [6, 

8,12] stated many results on the elementary model and time based priority queueing system. However most of 

the time the parameters used is not deterministic because of the nature of the problem. So, the fuzzy concept was 

introduced in queueing theory to develop the uncertain optimality analysis. [13] Introduced the fuzzy concept in 

the year 1978. [9] Later, R.J.Lie, E.S.Lee (1989) introduced fuzzy queueing model and investigated fuzzy Erlang 

queueing model. [7] have proposed a mathematical programming and developed a membership function of the 

system performance after giving fuzzy triangular numbers for the arrival and service rates of the two priority 

classes, for the convenience of testing the validity of the proposal. Using -cuts, by Zadeh’s extension principle 

they have reduced the fuzzy queue to a family of crisp queues.  [11] Considered the mathematical model of 

Preemptive priority as a multidimensional random walk of a limited environment. 

 

II. Description of the preemptive priority model [11]: 
 The preemptive priority queue discipline considered is a single server model with infinite waiting line 

and two priority classes (1) and (2) only, where the preempted units do not return to service but are lost. The 

arrivals in the priority classes (1) and (2) form Poisson processes with arrival rates 21  and  respectively. 

The service times in priority classes (1) and (2) form Exponential distribution with service rates 1 and 2
respectively. The arrival and service times in each class are independent. The characteristics of each class are 

described by the corresponding M/M/1 model. 

 If there are s priority types, the types (1),(2),…(r), r<s  are independent of (r+1),(r+2),…(s) on the input 

process. It behaves similar to a system where only first r priorities are taken. If rt  is the time spent by an item of 

class (r), it has the distribution  
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Where tr is the service time of a class (r) item with no interruption in service Ti; i=1, 2, 3, …r-1 is the length of 
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State Transition diagram for 2-priority M/M/1 Queue with preemptive priority 
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 If pnk,  n, k = 0, 1, 2, 3,… are the steady state probabilities that there are n class (1) items and k class (2) 

item, then the steady state equations are  
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Then the mean value W  of the waiting time is 




























21

2

2

11

2
1

1

2

1

21 11

1














w

   where

  
















1

2

1

21

1

1

1






tw    and  



























21

2

2

11

2

1

21

2

1

1










tw

which corresponds to the relation

 21  


qL
W , where 21   LLq is the expected number of items in the queue. 

I. Fuzzy Optimization Procedure 

 The arrival and service rates of fuzzy queueing parameters denoted by  and  are defined as
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Similarly we optimize Wq. Finally we trace the regression line using the  -cut values of Lq and wq to find the 

fuzzy optimum values. 

 

III. Numerical Example 
 Let us consider the system follows the preemptive priority discipline with different possibility level of 

arrival and service rates. These queue parameters are considered as       1=[ 1 2 3 ], 2=[2 5 6]  and  1= [ 

10,11,12]  and  2= [ 12,14,15]. We Find the expected number of customers in the queue and analyze the 

performance measures of the system. 

Using -cuts we find the upper and lower bounds of the arrival and service rates as   
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Table: 2 Chi-Square test table 
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Table: 3    11 values for th e  cuts of the performance measures are as follows: 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
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Table : 4 Chi-Square test table 

 
 

Table : 5 Relation between Lq and Wq 

 
 

 
 

IV. Result and discussion 
 In this paper, we found the value of Lq=0.36443 and Wq= 0.05607from crisp values obtained using 

Robust ranking method. The regression line is traced using the  -cut values of Lq and wq. From the figure we 

obtain the fuzzy optimum values of Lq and wq at  =0.6 as 0.007337 and 0.000191433. This concludes that 

fuzzy optimization is a better optimization. 
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