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Abstract: In this paper, consider the controllability of a class of fractional dynamical systems with control 

delay. Necessary and sufficient conditions for the controllability of fractional linear systems with control delay 

are obtained. The results obtained in this paper are important for the study of controllability of nonlinear 

fractional dynamical systems with control delay. An example is also provided to illustrate the main results. 
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I. Introduction 

In recent years, there has been a growing interest in the fields of analysis of fractional systems. Many 

scientific phenomena can be modeled by fractional differential equations, for example, electrical circuits, 

diffusion in porous medium and biological systems. Controllability is one of the most important concepts in 

mathematical control theory. It means that a controllable system can be steered from every initial system state to 

every desired final state using a set of admissible control functions. Because the use of fractional derivatives and 

integral leads to better descriptions of scientific phenomena than those of integer order ones. The controllability 

of several of types of fractional dynamical systems was investigated by many authors [1]-[4]. 

A time-delay system means that in which the present rate of change of some unknown function 

depends upon past values of it.  Time-delays may occur in state or in control or in both[1]-[4]. Vijayakumar S. 

Muni et al. [1] studied the controllability of fractional dynamical systems with a constant times delay in control, 

and the authors obtained a necessary and sufficient condition for the controllability of the following linear 

fractional systems with control delays 
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 R. Joice Nirmala et al [2] investigated the controllability of fractional delay dynamical systems with 

delay in state variables. The solution representations of fractional differential equations with state delay have 

been given by Laplace transform technique and the Mittag-Leffler function. Necessary and sufficient conditions 

for the controllability criteria of the following linear fractional delay systems were established 
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Binbin He et al. [3] investigated the controllability of the following fractional damped systems with control 

delay 
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Sufficient and necessary conditions for the controllability of fractional damped dynamical systems with 

control delay are established. The controllability of various types of linear and nonlinear fractional dynamical 
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systems was considered by many authors. However, almost all of the previous results on controllability of 

nonlinear fractional dynamical systems is based on the controllability of the corresponding linear systems. So 

the controllability of linear fractional dynamical systems is one of the most important issues for the 

controllability problems. Motivated by the above paper, we consider, in this paper, the controllability of the 

following fractional dynamical systems with control delay 
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where Caputo  fractional derivative of order 10  , 1Xx ,  
2Xu , A  is a nn  matrix, B  and C   

are  mn  matrices, h  is a constant time delay in the control function.  

 

II.  Preliminaries for the Fractional  Linear Systems with Control Delay  
In this section, we shall present some basic Lemmas and Definitions required for the controllability of linear 

fractional dynamical systems. 

 

In this paper, let n
R  be n-dimensional Euclidean space, DC  represents Caputo fractional derivative, unless 

otherwise specified, define Banach space 
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represents Mittag-Leffler matrix function, and 
*A is the transpose of matrix A . 

Definition 2.1 The Caputo fractional derivative of order 0 , nn  1 , is defined as 
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where the function )(tx  has absolutely continuous derivative up to order 1n- . 

Definition 2.2 The fractional integral of order 0  with the lower limit zero for a function ),(1 XJLx  , is 

defined as 
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where )(  is the Euler gamma function. 

Lemma 2.1 ([1])  The systems (1.4) is said to be controllable on ],0[ T  over 
n

R , if for every pair of vectors 

nn

Txx RR ),( 0  and for every continuous and bounded function 
mhu R )0,[:)(0 , there exists at 

least one control function on ],0[ T , the corresponding solution to the system (1.4) with 0)0( xx  , 

)()( 0 tutu  , ]0,[ ht  , satisfies the condition TxTx )( . 

Lemma 2.2 The solution represent of linear fractional dynamical systems (1.4) at any time ],0[ Tt   is given 

by  
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Definition 2.3 The nn  matrix 
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is called the controllaibility Grammian matrix of  the system (1.4)  

 

III. Necessary and Sufficient Conditions of Controllability 

Theorem 3.1 The system (1.4) is controllable over  n
R  on ],0[ T , if and only if the controllability Grammian 

W  is non-singular. 

 

Proof: To show the sufficiency, let  W  be non-singular, therefore it is an invertible matrix. Define a control 

function for the system (1.4) as following 
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It is easy to obtain that 
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 The control function )(tu  given in (3.1) steers the state of system (1.4) to from initial state 0x  to 

finial state 
Tx , which means that the system (1.4) is controllable on ],0[ T . 

Now we shall prove the necessity by contradiction. First, we assume system (1.4) is controllable on ],0[ T  and 

controllability Grammian matrix W  is singular. Then there exists non-zero vector Z  such that  
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It is easy to get 

 BhsTAEhsTZCsTAEsTZ ))(()())(()( ,

1*

,

1* 





    

  0))(()())(()(
*

,

1*

,

1*   BhsTAEhsTZCsTAEsTZ 





  

Thus 

  0))(()())(()( ,

1*

,

1*   BhsTAEhsTZCsTAEsTZ 





  

Noting that system (1.4) is controllable on ],0[ T , choose initial state ))(())(()0( 0

1 TaZTAEx  
  and 

2)( Xtu  such that 0)( Tx , then 

 

  0)]())(()())(()(

)())(())(()(

)]())(()())(()()()(

h-

0
,

1

,

1

00

1

h-

0
,

1

,

1

00

















dssuBhsTAEhsTCsTAEsT

TaTaZTAEATE

dssuBhsTAEhsTCsTAEsTTaxATE

T

T


























Therefore 

 

 
dsTaxATEx

WBhsTAEhsTCsTAEsT

BhsTAEhsTCsTAEsTZ

T

T

))()((

))(()())(()(

))(()())(()(

00

1*

,

1

,

1

h-

0
,

1

,

1






























  

Since   0))(()())(()( ,

1*

,

1*   BhsTAEhsTZCsTAEsTZ 





  

Then 0* ZZ , so 0Z . This is contradiction. Hence W  is non-singular. 

 

Remark 3.1 The linear fractional dynamical system (1.4) can be reduced to the first order linear dynamical 

system when  1 ,  















)0,[),()(

0,)0(

],,0[:),()-()()(

0

0

 

 

httutu

thxx

TJttCuhtButAxtx

                        (3.2) 

The controllability Grammian is given as 

    ds)(
*)()(

h-

0

)()( BeCeBeCeTW hsTAsTA
T

hsTAsTA                         (3.3) 

A control function which can steers the state of the first order system form 0x  to Tx  is given as 
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Remark 3.2 Theorem 3.1 and Remark 3.1 are generalized forms of the results obtained in Vijayakumar S. Muni, 

Venkatesan, Govindaraj and  Raju K. George ([1], 2018) 

 

IV. Example 
To illustrate the main results, consider the linear fractional systems with control delay of the following type 
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After simple calculation using Matlab based on A , B  and C , if 0|| W , W  is a non-singular matrix, by 

theorem 3.1, System (4.1) is controllable on ]2,0[ . 
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