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Abstract: In this paper, we will solve three portfolio models with singular covariance matrix. These portfolio 

models include Mean-Variance Portfolio Model, Value-at-Risk portfolio Model, and Conditional Value-at-Risk 

portfolio Model. By studying and calculating, we fond: the effective boundary of these three types of portfolio 

models must be the effective boundary of their maximal linearly independent groups or their maximal linearly 

independent groups and risk-free assets. 
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I. Introduction 

Markowitz first proposed in 1952 that the expected yield of risk assets and the use of variance to 

quantitatively replace returns and risks, so that abstract risk data can measure and estimate risks. However, both 

theory and practice show that variance is not an effective risk measure because it treats up and down deviations 

equally. The risk measure of variance is defined as follows:  
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VaR: Under normal market conditions, the worst expected loss within a holding period of a given 

confidence interval. It represents the fractional of the profit and loss distribution of an investment instrument 

or portfolio. Compared to variance, VaR considers the investor's risk aversion. However, the verification found 

that the effect of VaR's resulting hand rate distribution and given confidence level only considered the 

probability of adverse events, and did not consider the degree of loss at the time of adverse events. Therefore, 

VaR is non-secondary and its non-convex. Therefore, it is not a consistency risk measure. VaR's risk 

measurement is defined as follows: 

CVaR: Proposed by Rockferer and Uryasev，CVaR refers to a loss that exceeds VaR's conditional expectation. 

CVaR not only retains VaR's point, but also overcomes VaR's limitations. It is not only a consistent risk 

measure, but also a convex risk measure, and the measurement of risk is more accurate. CVaR's risk 

measurement is defined as follows: 
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By transforming:  
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II. The discussion of Mean-Variance Portfolio Model with singular covariance matrix 

Theorem 2.1: First set 
r21 ,...,,  （r<n）is a very linearly independent group of N risk assets. When V is a 

singular Matrix, which means | V | = 0, the optimal selection of the risk asset portfolio in N gets the optimal 

result, or the best result for the optimal selection of the R risk asset portfolio. Either the optimal result is 

obtained for the optimal choice of this R type of risk asset and a risk-free asset portfolio. 

 

Lemma 2.1: If there is a real number that is not all zero nkkk ,...,, 21 , so that akkk nn   ...2211 (a 

is a constant), then indicate n ,...,, 21  have the relationship of Linear correlation. 

 

Lemma 2.2: If there are real numbers nkkkk ,...,,, 210 , so that nnkkkk   ...22110 , then we can 

say that ξcan be linearly replaced by n ,...,, 21 . 

 

Lemma 2.3: If r21

r21 ,...,,


 is n ,...,, 21 , whose r maximal linearly independent vectors are 

rearranged to the first r positions, then


 r21 ,...,, is the maximal linear independent group of 

n ,...,, 21  , and 
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 n21 ,...,,  rr
can be linearly replaced by 


 r21 ,...,,  . 

 

Proof:  

Since V is a singular matrix, then n ,...,, 21 must be linearly related. From Lemma 2.1, there are real 

numbers nkkk ,...,, 21 ( nkkk ,...,, 21 is not all zero), zhen akkk nn   ...2211 (a is a constant), which 
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covariance matrix of the asset n ,...,, 21 ，respectively. 

Let the investment ratio vector of r assets be
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T

rrrrR ),...,,( 21

 and rrRV * are the yield expectation vector and singular covariance matrix of asset 

r21

r21 ,...,,


 , respectively, and rrRV * is a non-singular matrix. 

 

Case 1: If for all t, there is 0-1
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Case 2: If t exists, let 0-1
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III. Optimal solution and its effective frontier of mean - risk model when V is Singular matrix 
(1) Mean - variance model 

Case 1: If for all t, there is 0-1
1
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This is solution of the optimal solution and its effective boundary of mean - variance portfolio without 

risk-free assets under non-singular matrix. 

By reference, we can get: 
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Case 2: If for all t, there is 0-1
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（2）Mean—VaR model 
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From the reference, it is strictly greater than 0 at a given confidence level (α>50%). 

In addition, it can be proved that the inequality constraint is tight at the optimal solution, so the mean-VaR 

model's solution is the same as the standard mean-variance model, with the same boundary combination. So the 

optimal solution and effective boundary are solved in the following two cases: 

Case 1: If for all t, there is 0-1
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This is solution of the optimal solution and its effective boundary of mean - VaR portfolio without 

risk-free assets under non-singular matrix. 

By reference, we can get: 

Optimal solution is   
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And let 
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Case 2: If for all t, there is 0-1
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（3）Mean - CVaR model 
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The solution of mean-CVaR model is the same as the solution of standard mean-variance, with the same 

boundary combination. So in both cases the optimal solution and the effective boundary are solved as follows: 

Case 1: If for all t, there is 0-1
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This is solution of the optimal solution and its effective boundary of mean - CVaR portfolio without risk-free 

assets under non-singular matrix. 

By reference, we can get: 
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RVR Ta RVI T 1b   

IVI T 1c  bac （a>0,c>0） 

 

IV. Conclusion 
(1)If the V of these three kinds of mean - risk model is a singular covariance matrix, first determine whether 

there is 01
1


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ti
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k  for all t. If yes, it is case 1, the equivalent is the optimization problem of the risk 

 portfolio composed of the maximally linear irrelevant group; if not all 0, the equivalent is the risk portfolio 

of the extremely linear irrelevant group and a risk-free asset. Optimization problem. 

(2)If A of these three kinds of mean - risk models is a singular covariance matrix, the effective boundary of the n 

kinds of risk assets is F, and the effective boundary of the risky asset portfolio composed of the extremely linear 

irrelevant group is the risky asset composed of the extremely linear independent group. The effective boundary 

of the combination and a risk-free asset is 
2F , either 

1FF  , or 
2FF  . 
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