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I. Introduction 
The neutral stochastic differential equations can play an important role in describing many 

sophisticated dynamical systems in physical, biological, medical, chemical engineering, aero elasticity and 

social sciences [4],[13],[14],[15] and[22] . More over many dynamical systems not only depend on present and 

past states but also involve derivatives with delays. Deterministic neutral functional differential equations, 

which was originally introduced by Hale and Lunel [9] are of great interest in theoretical and practical 

applications. Moreover, one of the simplest stochastic processes that is Gaussian, self – similar, and has 

stationary increments is FBm [2]. In particular, FBm is a generalization of the classical Brownian motion, which 

depends on a parameter H ∈ (0,1) called the Hurst index [8]. It should be mentioned that when H = 1 2 , the 

stochastic process is a standard Brownian motion; when H ≠ 1/2, it behaves completely in a different way than 

the standard Brownian motion, In particular neither is a semi martingale nor a Markov process. It is a self-

similar process with stationary increments and has a long- memory when H≠ 1/2. These significant properties 

make FBm a natural candidate as a model for noise in a wide variety of physical phenomena such as 

telecommunications networks, finance markets, biology and so on [10]. 

The existence and uniqueness of mild solutions for a class of stochastic differential equations in a 

Hilbert space with a standard, cylindrical FBm with the Hurst parameter in the interval (1/2,1) has been studied 

[6]. Dung studied the existence and uniqueness of impulsive stochastic volterraintegro-differential equations 

driven by FBm in [7]. LI [17] investigated the the existence of mild solution to a class of stochastic delay 

fractional evolution equations driven by FBm. Caraballo et al[5], and Boufousssi and Hajji [3] have discussed 

the existence, uniqueness and exponential asymptotic behaviour of mild solutions by using the wiener integral. 

Even though there are many valuable results about neutral stochastic partial differential equations, they 

are mainly concerned with first order case. In many cases it is advantageous to treat the second order stochastic 

differential equations rather than to convert them to first-order systems. The second –order stochastic 

differential equations are the right model in continuous time to account for integrated processes than can be 

made stationary. For instance, it is useful for engineers to model mechanical vibrations or charge on a capacitor 

or condenser subjected to white noise excitation through a second- order evolution equation governed by the 

generator of a strongly continuous cosine family was proposed in [8,22] Ren and sakthivel [19] investigated the 

existence, uniqueness and stability of second order neutral stochastic evolution equations with infinite delay, 

Liang and Guo [16] probed the behaviour for second-order stochastic evolution equations with memory; Arthi et 

al [1] discussed the exponential stability for second-order neutral stochastic differential equations with impulses 

.Inspired by this consideration, in this paper we consider the second – order neutral stochastic functional 

differential equation driven by FBm with hurst parameter 1/2< h <1. 

 

𝑑  𝑥 ′ 𝑡 − 𝑔  𝑡, 𝑥 𝑡 − 𝑟 𝑡     

=  𝐴𝑥 𝑡 + 𝑓  𝑡, 𝑥 𝑡 − 𝜌 𝑡    𝑑𝑡 + 𝑕  𝑡, 𝑥 𝑡 − 𝛿 𝑡   𝑑𝑤 𝑡 + 𝜍 𝑡 𝑑𝐵𝑄
𝐻 𝑡 ,    𝑡 ≥ 0, 

𝑥0 𝑡 =  𝜙 𝑡 𝜃 ∈ 𝐵𝐶𝐹0
𝑏  −𝑟, 0 ; 𝐻 , 
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T ∈  −𝑟, 0  , 𝑥 ′ 0 = ∅1 

 

Where  A : D(A)⊂ 𝐻 → 𝐻 is the infinitesimal generator of a strongly continuous cosine family on H, 𝐵𝑄
𝐻  is a 

fractional Bronian motion with Hurst parameter H ∈ (1/2, 1) and w is a standard wiener process on a real and 

separable Hilbert space K: [ 0, +∞) ×B→ 𝐻 𝑖 = 0,1 , h: [0,+∞)×B→ 𝐿2
0  g,f and 𝞂: [ 0,+∞) → 𝐿2(𝐾, 𝐻)] are 

some appropriate mappings specified  later, Now Let us recall some basic concepts and facts on cosine families 

of operators (see [11]. 

 

II. Preliminaries 
 In this section, we briefly give some basic definitions and results for stochastic equations in infinite 

dimensions and cosine families of operators.We refer to [5],[12],[21] and the references therein).Let (ℍ,  ∙ 𝕜, ∙
 ,∙𝕜) are two real separable Hilbert spaces. The notation 𝐿2ℙ,ℍstands for the space of all ℍ - valued random 

variables x such thatΕ 𝑥 2 =  ∫
Ω
 𝑥 2𝑑ℙ < ∞ . For𝑥 ∈ 𝐿2 ℙ,ℍ , let  𝑥 2 =  ∫   𝑥 2𝑑ℙ 

1

2
Ω

. It is easy to check 

that 𝐿2 ℙ,ℍ  is a Hilbert space equipped with the norm  

 ∙ 2.Let ℒ(𝕜,ℍ) denotes the space of all bounded linear operators from𝕜𝑡𝑜ℍ, and Q∈ 𝐿2 Κ, Κ represents a 

non- negative self-adjoint operator.Let{W(t),t∈ ℝ} be a standard cylindrical Wiener process with values in 𝕜 

and defined on (Ω, ℱ, ℙ) [18]. 

Let 𝕃2
0 =  𝕃2(𝕂0,ℍ) 𝑏𝑒𝑎separable Hilbert space with respect to the Hilbert-Schmidt norm  ∙ 𝕃2

0 . Let 𝕃𝑄
0 (𝕜,ℍ) 

be the space of all 𝜓 ∈ ℒ(𝕜,ℍ) such that 𝜓𝑄
1

2 is a Hilbert-Schmidt operator from 𝕜𝑡𝑜ℍ. Let 𝕃2
0(Ω, ℍ) denote 

the space of ℱ0 − measurable, ℍ−valued and square integrable stochastic processes. 

Let  Ω, ℱ, ℙ be a complete probability space. Consider a time interval  0, 𝑇  with arbitrary fixed horizon T and 

let  𝛽𝐻 𝑡 , 𝑡 ∈  0, 𝑇   be the one-dimensional fractional Brownian motion with Hurst parameter H ∈

 
1

2
, 1 .This means by definition that 𝛽𝐻is a centered Gaussian process with covariance function: 

𝑅𝐻 𝑡, 𝑠 = 𝔼 𝛽𝑡
𝐻𝛽𝑠

𝐻  =  
1

2
 𝑡2𝐻 + 𝑠2𝐻 −  𝑡 − 𝑠 2𝐻 . 

More over 𝛽𝐻has the following Wiener integral representation: 

𝛽𝐻 𝑡 =   Κ𝐻 𝑡, 𝑠 𝑑𝛽 𝑠 
𝑡

0

 

where𝛽 =    𝛽𝐻 𝑡 , 𝑡 ∈  0, 𝑇     is a Wiener process and Κ𝐻 𝑡, 𝑠  is the kernel given by 

Κ𝐻 𝑡, 𝑠 =  𝑐𝐻𝑠
1

2
−𝐻   𝑢 − 𝑠 𝐻−

1

2 𝑢𝐻−
1

2  𝑑𝑢
𝑡

𝑠

 

for t > 𝑠 , where 𝑐𝐻 =   𝐻 2𝐻 − 1 /𝛽  2 − 2𝐻,𝐻 −
1

2
   and 𝛽 . , .   denotes the Beta function.We put 

Κ𝐻 𝑡, 𝑠 = 0 if t ≤ 𝑠. 
We will denote by ℋ the reproducing kernel Hilbert space of theFBm. In factℋisthe closure of set of indicator 

functions  𝔩 0,𝑡 , 𝑡 ∈  0, 𝑇  with respect to the scalar product 

 𝔩 0,𝑡 ,  𝔩 0,𝑠   ℋ =  𝑅𝐻 𝑡, 𝑠 . 

The mapping𝔩 0,𝑡 → 𝛽𝐻 𝑡  can be extended to an isometry betweenℋ andthe first Wiener chaos and we will 

denote by 𝛽𝐻 𝜑 the image of𝜑  by the previous isometry. 

We recall that for 𝜓,𝛷 ∈ ℋ their scalar product in ℋis given by 

 𝜓,  𝜑  ℋ = 𝐻 2𝐻 − 1   𝜓 𝑠 𝜑 𝑡  𝑡 − 𝑠 2𝐻−2𝑑𝑠𝑑𝑡.

𝑇

0

𝑇

0

 

Let us consider the operator 𝐾𝐻
∗ from  ℋ to 𝐿2  0, 𝑇  [ 19 ] defined by  

 𝐾𝐻
∗  𝑠 =   𝜑 𝑟 

𝜕Κ

𝜕𝑟
 𝑟, 𝑠 𝑑𝑟

𝑇

𝑠

 

Then 𝐾𝐻
∗  is an isometry between  ℋ and𝐿2  0, 𝑇  . 

Moreover for any∈ ℋ, we have 

𝛽𝐻 𝜑 =  ∫  𝐾𝐻
∗  𝑡 𝑑𝛽 𝑡 .

𝑡

0
 Let {𝛽𝑛

𝐻 𝑡 }𝑛∈ℕ  be a sequence of two-sided one- dimensional standard FBm 

mutually independent on  Ω, ℱ, ℙ . 
Consider the following series  

 𝛽𝑛
𝐻 𝑡 𝑒𝑛,              

∞
𝑛=1 t≥ 0, 

Where  𝑒𝑛 𝑛∈ℕ is a complete orthonormal basis in 𝕜,  the series does not necessarily converge in the 

space𝕜. Therefore,we consider a 𝕜- valued stochastic process 𝛽𝑄
𝐻 𝑡 given by the following series: 
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𝛽𝑄
𝐻 𝑡 =   𝛽𝑛

𝐻 𝑡 𝑄
1

2𝑒𝑛,               
∞
𝑛=1 t≥ 0, 

Moreover, if Q ia s non-negative self-adjoint trace class operator,then this series converges in the space K, that 

is, it holds that 𝛽𝑄
𝐻 𝑡 ∈ 𝐿2 ℙ, 𝕜 . Also, the above 𝛽𝑄

𝐻 𝑡  is a𝕜 −valuedQ-cylindrical FBm with covariance 

operator Q. For example, if  𝜍𝑛 𝑛∈ℕis abounded sequence of non-negative real numbers such that Q𝑒𝑛=𝜍𝑛𝑒𝑛 , 

assuming that Q is a nuclear operator in𝕜, then the stochastic process 

𝛽𝑄
𝐻 𝑡  = 𝛽𝑛

𝐻 𝑡 𝑄
1

2𝑒𝑛,     
∞
𝑛=1 =   𝜍𝑛𝛽𝑛

𝐻 𝑡 𝑄
1

2𝑒𝑛,               
∞
𝑛=1 t ≥ 0, 

 Is well- defined as a 𝕜 − valued Q-cylindrical FBm [5] 

Definition 2.1[5] Let 𝜑:  0, 𝑇 → ℒ𝑄
0  𝕜,ℍ  such that 

  𝐾𝐻
∗(𝜑𝑄

1

2𝑒𝑛) 
𝐿2( 0,𝑇 ;ℍ)

< ∞

∞

𝑛=1

 

Then, its stochastic integral with respect to the FBm𝐵𝑄
𝐻 𝑡 𝑖𝑠 defined, for t≥ 0, as follows: 

∫ 𝜑 𝑠 𝑑𝐵𝑄
𝐻 𝑠 ≔  𝜑 𝑠 ∞

𝑛=1
𝑡

0
𝑄

1

2𝑒𝑛d𝛽𝑛
𝐻 =   ∫  𝐾𝐻

∗  𝜑𝑄
1

2𝑒𝑛   𝑠 𝑑
𝑡

0
∞
𝑛=1 𝛽(𝑠). 

Lemma 2.2 [5]For any 𝜑:  0, 𝑇 → ℒ𝑄
0  𝕜,ℍ  such that 

  𝜑𝑄
1

2𝑒𝑛 
𝐿1 𝐻 ( 0,𝑇 ;ℍ)

< ∞

∞

𝑛=1

 

Holds, and for any 𝛼, 𝛽 ∈  0, 𝑇 with> 𝛽, we have 

E ∫ 𝜑 𝑠 𝑑𝐵𝑄
𝐻 𝑠 

𝛽

𝛼
 

2

≤ 𝑐𝐻(2𝐻 − 1) 𝛼 − 𝛽 2𝐻−1  ∫  𝜑𝑄
1

2𝑒𝑛 
2

𝑑𝑠
𝛽

𝛼
∞
𝑛=1 , 

Where c = c(H). In addition, if   𝜑 𝑡 𝑄
1

2𝑒𝑛 
∞
𝑛=1 is uniformly convergent for t ∈  0, 𝑇 , 𝑡𝑕𝑒𝑛 

E ∫ 𝜑 𝑠 𝑑𝐵𝑄
𝐻 𝑠 

𝛽

𝛼
 

2

≤ 𝑐𝐻(2𝐻 − 1) 𝛼 − 𝛽 2𝐻−1 ∫  𝜑 
ℒ𝑄

0
2 𝑑𝑠.

𝛽

𝛼
 

In this work,we will employ an axiomatic definition of the phase space ℬ introduced in [12] 

Definition 2.3ℬis a linear space of family of ℱ0-measurable functions from (-∞, 0] into ℍ endowed with a norm 

 ∙ ℬ, which satisfies the following axioms: 

(i) If x: (--∞, 𝑇) → ℍ,    𝑇 > 0, is such that 𝑥0 ∈ ℬ, then, for every t ∈  0, 𝑇 , the following conditions hold: 

(a) 𝑥𝑡 ∈ ℬ; 

(b) 𝑥 𝑡  ≤ 𝑚 𝑥𝑡 ℬ; 
(c)  𝑥𝑡 ℬ ≤ 𝔎 𝑡 𝑛 sup0≤𝑠≤𝑡 𝑥 𝑠  + 𝑁 𝑡  𝑥0 ℬ , 
Where m > 0 is a constant, 𝔎,𝑁:  0, +∞ →  1, +∞ , 𝔎  is continuous, N is locally bounded, 𝔎,𝑁  are 

independent of x (∙). 
(ii) The space ℬ𝑖𝑠complete. 

 

Lemma 2.4[20] Let x:(--∞, 𝑇] → ℍ be an ℱ𝑡− adapted measurable process such that the ℱ0 − adapted process𝑥0 

= 𝜑 ∈ ℒ2
0 Ω , ℬ , then 

E 𝑥𝑠 ℬ ≤ 𝔎supE0≤𝑠≤𝑡 𝑥 𝑠  + 𝑁𝐸  𝜑 ℬ , 
Where N = 𝑠𝑢𝑝𝑡∈𝐼  {𝑁 𝑡 } and 𝔎 =  sup

𝑡∈𝐼
{ 𝔎(𝑡)} 

 

Definition 2.5 [20] Denote by ℳ2(−∞, 𝑇], ℍ) be the space of all ℍ− valued continuous ℱ𝑡− adapted process 

x= {x(t)} −∞<𝑡≤𝑇 such that  

(i) 𝑥0 =  𝜑 ∈ ℬandx(t) is continuous on [0,T]; 

(ii) Define the norm  ∙ ℳ in ℳ2(−∞, 𝑇], ℍ) by  

 𝑥 ℳ
2 = 𝐸 𝜑 ℬ

2
+ 𝐸 ∫  𝑥(𝑠) 2𝑑𝑡 < ∞.

𝑇

0
                     (2.1) 

Then, ℳ2(−∞, 𝑇], ℍ) with the norm (2.1) is a Banach space. 

 

III. Existence and Uniqueness results 
Definition 3.1 One parameter family∁(𝑡)𝑡≥0  is called a strongly continuous cosine family if the following 

conditions hold: 

(i) ∁(𝑡) = I; 

(ii) ∁ 𝑡 x is continuous in t on R for all x∈H; 

(iii) ∁ 𝑡 + 𝑠 + ∁(𝑡 − 𝑠) = 2∁(𝑡) ∁(𝑠) for all t, s ∈ R. 

The corresponding strongly continuous sine family 𝑆(𝑡)𝑡≥0; which is defined as S(t)x = ∫ 𝐶 𝑠 𝑥𝑑𝑠,
𝑡

0
 t ∈ R, X 

∈ 𝐻. As for the infinitesimal generator A : D(A)⊂ 𝐻 → 𝐻 of a cosine family of operators ∁(𝑡)𝑡≥0, define Ax = 
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𝑑2

𝑑𝑡 2 ∁(𝑡)𝑥 𝑡 = 0.  A is also a closed and densely defined operator on H. Throughout this paper, we impose the 

following assumptions: 

(H1)The cosine familyof operators (∁(𝑡))𝑡≥0 and its corresponding sine family (𝑆(𝑡))𝑡≥0 satisfy the following 

conditions for all t ≥ 0 ∁(𝑡) 2 ≤ 𝑀,  𝑆(𝑡) 2 ≤ 𝑀, t ≥0 for a positive constant M 

(H2) The function:𝜍: [0, +∞) → 𝐿2
0 (𝐾, 𝐻) satisfies the following conditions: 

(i) there exists a positive constant L such that  σ t  
ℒ𝑄

2
2 ≤ 𝐿 uniformly in [0, , ∞] 

(ii) for thecomplete orthonormal basis  𝑒𝑛 𝑛∈ℕ in 𝕂, we have   𝜍𝑄
1

2𝑒𝑛 
∞
𝑛=1 <∞,   𝜍𝑄

1

2𝑒𝑛 
∞
𝑛=1  is uniformly 

convergent for t ∈ [0, , ∞],which imply that ∫  σ t  
ℒ𝑄

2
2 𝑑𝑠 < ∞

𝑡

0
 for every t ∈ [0, , ∞]. 

 

(H3) For all t∈  0, ∞ , there exists a positive constant ∧,  𝑓 𝑡, 0  2 ∨  𝑔 𝑡, 0  2 ∨  𝑕 𝑡, 0  2 ≤∧ 

(H4) The functions f,g : [0,+∞)× 𝔅 → 𝐻and h:  I ×𝔅 → 𝐿20, 𝐻) satisfy for all t ∈ 𝜑, 𝜓 ∈ 𝔅 and t ≥ 0 

 𝑓 𝑡, 𝜑 − 𝑓 𝑡, 𝜓  2 ∨  𝑕 𝑡, 𝜑 − 𝑕 𝑡, 𝜓  2 ≤ 𝑘  𝜑 − 𝜓 𝛽
2   

and 

 𝑔 𝑡, 𝜑 − 𝑔 𝑡, 𝜓  2 ∨  𝑕 𝑡, 𝜑 − 𝑕 𝑡, 𝜓  2 ≤ 𝑘  𝜑 − 𝜓 𝛽
2   

Where k .   is concave. Non decreasing, continuousfunction from 𝑅+ to 𝑅+  such that k(0) = 0 ,k (y) > 0 for 

y> 0 and ∫
𝑑𝑢

𝑘 𝑦 0+    =  ∞ 

 

Definition 3.2 

A continuous stochastic process x : ( -∞, 𝑇)  → 𝐻 is said to be a mild solution of (1.1) if 

(i) x(t) is ℱ𝑡  – adapted and [ 𝑥𝑡  : t ∈ [0, 𝑇] is B – valued 

        (ii)  ∫  𝜍 𝑠  
𝐿2

0 
2 𝑑𝑠 < ∞,           

𝑇

0
 

        (iii) x(t) satisfies the following integral equations 

𝑥 𝑡 = 𝑐 𝑡 𝜑 0  + 𝑠 𝑡  𝜑1 − 𝐺 0, 𝑥(0 − 𝑟(0)  

+  𝑐 𝑡 − 𝑠 𝑔  𝑠, 𝑥 𝑠 − 𝑟 𝑠   𝑑𝑠 +  𝑆 𝑡 − 𝑠 𝑓  𝑠, 𝑥 𝑠 − 𝜌 𝑠   𝑑𝑠
𝑡

0

𝑡

0

+  𝑆 𝑡 − 𝑠 𝑕  𝑠, 𝑥 𝑠 − 𝛿 𝑠   𝑑𝑤 𝑠 +  𝑆 𝑡 − 𝑠 𝜍 𝑠 𝑑𝐵𝐻 𝑠 
𝑡

0

𝑡

0

 

(iv)𝑥0=𝜑 ∈ ℬ 

Note 3.2 Let us give some concrete functions k( ∙) . Let C > 0 and 𝛿 ∈ (0,1) be sufficiently small. Define 

𝑘1 𝑦 = 𝐶𝑦 , 𝑦 ≥ 0. 

𝑘2 𝑦 =   
𝑦𝑙𝑜𝑔 𝑦−1 ,             0 ≤ 𝑦 ≤ 𝛿

𝛿 log(𝑦−1) + 𝑘2
,  𝛿 −  𝑦 − 𝛿 ,      𝑦 > 𝛿 . 

𝑘3 𝑦 =   
𝑦𝑙𝑜𝑔 𝑦−1 log log 𝑦−1 ,             0 ≤ 𝑦 ≤ 𝛿

𝛿 log(𝑦−1) log 𝑙𝑜𝑔 𝛿−1 +  𝑘3
,  𝛿 −  𝑦 − 𝛿 ,      𝑦 > 𝛿  

Here 𝑘2
,
and 𝑘3

,
are the left derivative of  𝑘2 and 𝑘3 at the point 𝛿.All the functions are concave nondecreasing 

and satisfy ∫ 𝑑𝑢 𝜅(𝑢) 
0+ = +∞( I = 1,2,3). Also, it can be seen that the Lipschitz condition is a special case of 

the proposed conditions. 

In order to obtain the uniqueness of solutions, we present the Bihari in- equality,  

 

Lemma 3.1[Bihari inequality] : Let Τ > 0 and c> 0. Let k: ℝ+ to  ℝ+ be a continuous nondecreasing function 

such that 𝜅(t) > 0 for all t >0. Let u(.) be a Borel measurable bounded nonnegative function n  0, Τ . If  

𝑢 𝑡 ≤ 𝑐 + ∫ 𝑣 𝑠 𝑘 𝑢 𝑠  𝑑𝑠
𝑡

0
for all  0≤ 𝑡 ≤ Τ. 

𝔲 𝑡 ≤ 𝐽−1  𝐽 𝑐 +   𝔳 𝑠 𝑑𝑠
𝑡

0

 ,  

holds for all such t∈  0, Τ  that 

𝐽 𝑐 + ∫ 𝔳 𝑠 𝑑𝑠
𝑡

0
∈ Dom (𝐽−1), 

where 𝐽 𝑟 =  ∫ 𝑑𝑠 𝑘 𝑠 , 
𝑟

0
on   r > 0  , and 𝐽−1  is the inverse function of 𝐽  . In Particular,if, c = 0 and 

∫ 𝑑𝑠 𝜅 𝑠 =  ∞, 
𝑟

0+ then 𝔲 𝑡 = 0 for all t∈  0, Τ . 
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Further in order to prove the existence and uniqueness result, we construct the sequence of successive 

approximations as follows 

𝑥0 𝑡 =  𝐶 𝑡 𝜑 0 + 𝑆 𝑡  𝜑1 − 𝑓 0, 𝜑  ,  t∈  0, Τ . 

𝑦𝑛 𝑡 =    𝐶 𝑡 𝜑 0 + 𝑆 𝑡  𝜑1 − 𝑓 0, 𝜑  +  𝐶 𝑡 − 𝑠 𝑓  𝑠, 𝑥𝑛−1 𝑠 − 𝑟 𝑠   𝑑𝑠
𝑡

0

+  𝑆 𝑡 − 𝑠 𝑔  𝑠, 𝑥𝑛−1 𝑠 − 𝜌 𝑠   𝑑𝑠  
𝑡

0

+  𝑆 𝑡 − 𝑠 𝑕  𝑠, 𝑥𝑛−1 𝑠 − 𝛿 𝑠   𝑑𝑤 𝑠 +  𝑆 𝑡 − 𝑠 𝜍 𝑠 𝑑𝐵𝐻 𝑠 
𝑡

0

𝑡

0

 

𝑥𝑛 𝑡 =  𝜑 𝑡 , 
The following theorem establish the existence anduniqueness of mild solution to equation (1.1)  

 

Theorem 3.1 

Then Assume that the condition (H1) – (H3) hold. Then there exists a unique mild solution of (1.1) in 

ℳ2(−∞, 𝑇], 𝐻 ) proof of this theorem is long and technical, therefore it is convenient to divide it into three 

steps. 

 

Step 1: 

For all t∈  0, Τ and n≥ 0  it holds that 𝑦𝑛 𝑡 ∈ ℳ2(−∞, 𝑇], 𝐻] ie there exists a +ve constant𝐶1 , which is 

independent of n such that  𝑦𝑛(𝑡) 2 ≤ 𝐶1. It is obvious that 𝑦0 𝑡 ∈ ℳ2(−∞, 𝑇], 𝐻]by induction.  We prove 

that 𝑦𝑛 𝑡 ∈ ℳ2(−∞, 𝑇], 𝐻] . It follows from (3.2) Lemma 2.2, Holders and Doob’s Inequality 

𝔼  
𝑠𝑢𝑝

0 ≤ 𝑡 ≤ 𝑇
 𝑦𝑛 𝑡  2 ≤ 6𝑀𝔼 𝜑 0  2 + 12𝑀𝐸 𝜉 2 + 12 𝑀𝐸 𝑓(0, 𝜑 2 + 

 6𝑀𝑇𝔼 ∫ 𝑓  𝑠, 𝑥𝑛−1 𝑠 − 𝑟 𝑠   𝑑𝑠
𝑡

0
 

2

+ 

 6𝑀𝑇𝔼 ∫ 𝑔  𝑠, 𝑥𝑛−1 𝑠 − 𝜌 𝑠   𝑑𝑠
𝑡

0
 

2

+ 

6𝑀𝑇𝔼  𝑕  𝑠, 𝑥𝑛−1 𝑠 − 𝛿 𝑠   𝑑𝑤 𝑠 
𝑡

0

 

2

+ 

6MC𝐻 2𝐻 − 1 𝑇2𝐻−1 ∫  𝜍(𝑠) 
ℒ𝑄

0
2 𝑑𝑠

𝑡

0
 

≤ 6𝑀𝔼 𝜑 0  2 + 12𝑀𝐸 𝜉 2 + 24 𝑀𝐸𝑘  𝜑 𝐵)
2  + 24𝑀 ∧ +     

12 𝑀𝑇𝔼 𝑘    𝑘  𝑥𝑛−1(𝑠 − 𝑟(𝑠) 𝐵
2  𝑑𝑠

𝑡

0

 
𝐵

2

 +  12𝑀𝑇2 ∧ +
𝑡

0

 

                                                                12𝑀𝑇𝔼 ∫ 𝑘   ∫ 𝑘  𝑥𝑛−1(𝑠 − 𝑟(𝑠) 𝐵
2  𝑑𝑠

𝑡

0
 
𝐵

2

 
𝑡

0
+ 12 M𝑇2 ∧ + 

 12𝑀𝑇𝔼∫ 𝑘   ∫ 𝑘  𝑥𝑛−1(𝑠 − 𝑟(𝑠) 𝐵
2  𝑑𝑠

𝑡

0
 
𝐵

2

 
𝑡

0
+ 12 M𝑇2 ∧+ 

6MC𝐻 2𝐻 − 1 𝑇2𝐻𝐿 

Where 𝐾1 = 6 𝑀𝐸 𝜑 𝐵
2 + 12 𝑀𝐸 𝜉 2 + 24 𝑀𝐸𝐾  𝜑 𝐵

2  + 24𝑀 ∧ +12𝑀𝑇 2𝑇 + 1 ∧ +6 𝑀𝑐𝐻 2𝐻 −
1𝑇2𝐻𝐿. Given that k(∙) is concave and k(0) = 0, we can find positive constants a and b such that k(y) ≤a + by , 

for all y ≥ 0. Also, by using the Lemma 2.4 in the above inequality, we obtain 

E  
𝑠𝑢𝑝

0 ≤ 𝑡 ≤ 𝑇
 𝑦𝑛 𝑡  2  

≤ 𝐾1 + 24 𝑀𝑎𝑇2 + 24𝑀𝑇𝑏𝐸𝑡   𝑦𝑠
𝑛 𝐵

2
𝑡

0

𝑑𝑠 + 12 𝑀𝑎𝑇 + 12 𝑀𝑏𝐸  𝑦𝑠
𝑛 𝐵

2
𝑡

0

𝑑𝑠 

≤ 𝐾1 + 12 𝑀𝑎𝑇 2𝑇 + 1 + 12𝐵𝑀𝑀 2𝑇 + 1 𝐸  
𝑠𝑢𝑝

0 ≤ 𝑟 ≤ 𝑠
 𝑦𝑛−1 𝑟  + 𝑁 𝑦0

𝑛 𝐵 
2

𝑑𝑠
𝑡

0

 

≤ 𝐾3 + 24 𝑏𝑀 2𝑇 + 1  
𝑠𝑢𝑝

0 ≤ 𝑟 ≤ 𝑠
 𝑦𝑛−1 𝑟  𝑑𝑠

𝑡

0

 

Where 𝐾3  =  𝐾1 + 12 𝑀𝑎𝑇 2𝑇 + 1 + 12𝐵𝑀𝑀 2𝑇 + 1 𝑁2𝐸 𝜑 𝐵
2
. From any k≥ 1,it follows from (3.3) that  

  MaxE  
𝑠𝑢𝑝

0 ≤ 𝑡 ≤ 𝑇
 𝑦𝑛 𝑡  2  

≤ 𝐾3 + 24 𝑏𝑀 2𝑇 + 1   𝐸 𝑦0 𝑠  2 + 𝐸𝑚𝑎𝑥  
𝑠𝑢𝑝

0 ≤ 𝑟 ≤ 𝑠
 𝑦𝑛−1 𝑟   

2

 𝑑𝑠
𝑡

0

 

≤ 𝐾3 + 24 𝑏𝑀 2𝑇 + 1   𝑀𝔼 𝜑 𝐵
2 + 2𝑀𝐸 𝜉 2 + 4 𝑀𝐸𝑘  𝜑 𝐵)

2  + 4𝑀 ∧ 𝑑𝑠
𝑡

0
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+24 𝑏𝑀 2𝑇 + 1 ∫ 𝐸
𝑚𝑎𝑥

   0 ≤ 𝑟 ≤ 𝑠
 

𝑠𝑢𝑝
0 ≤ 𝑟 ≤ 𝑠

 𝑦𝑛 𝑟   
2

𝑑𝑠
𝑡

0
 

≤ 𝐾3 + 24 𝑏𝑀 2𝑇 + 1   𝐸
𝑚𝑎𝑥

   0 ≤ 𝑟 ≤ 𝑠
 

𝑠𝑢𝑝
0 ≤ 𝑟 ≤ 𝑠

 𝑦𝑛 𝑟   
2

𝑑𝑠
𝑡

0

,
𝑡

0

 

Where 𝐾4= 𝐾3 + 48 𝑏𝑀2 2𝑇 + 1 𝑇 𝔼 𝜑 𝐵
2 + 2𝑀𝐸 𝜉 2 + 4𝑎 + 4𝑏𝐸  𝜑 𝐵)

2  + 4 ∧ . 

Using the Gronwall inequality in the above inequality, we get 
𝑚𝑎𝑥

   1 ≤ 𝑛 ≤ 𝑘
 

𝑠𝑢𝑝
0 ≤ 𝑟 ≤ 𝑠

 𝑦𝑛 𝑟   
2

≤ 𝐾4𝑒
24𝑀𝑏 2𝑇+1 𝑇 .  

Since k is arbitrary, we have 

𝐸  
𝑠𝑢𝑝

0 ≤ 𝑟 ≤ 𝑠
 𝑦𝑛 𝑟   

2

≤ 𝐾4𝑒
24𝑀𝑏 2𝑇+1 𝑇 . 𝑓𝑜𝑟𝑎𝑙𝑙 0 ≤ 𝑡 ≤ 𝑇, 𝑛 ≥ 1. 

 Hence by the result, we obtain 

 𝑦𝑛 2 = E 𝑢0
𝑛 𝐵

2 + 𝐸 ∫  𝜑 𝐵
2 2
𝑑𝑠 ≤ 𝐶1 < ∞

𝑇

0
 

Where 𝐶1 = E 𝜑 𝐵
2  + T≤ 𝐾4𝑒

24𝑀𝑏 2𝑇+1 𝑇.  

 

Step 2. Next we show that there exists a positive constant 𝐶 which independent of n such that 

such that, for all  0 ≤ 𝑡 ≤ 𝑇 and 𝔫,𝔪 ≥ 0 

𝔼
𝑠𝑢𝑝

   0 ≤ 𝑡 ≤ 𝑇
 𝑥𝔫+𝔪 𝑠 − 𝑥𝔫 𝑠  2 ≤ ∁  𝜅  𝔼

𝑠𝑢𝑝
    0 ≤ 𝑢 ≤ 𝑠

 𝑥𝔫+𝔪−1  𝑢 − 𝑥𝔫−1 𝑢  2 𝑑𝑠.
𝑡

0

 

For 𝔫,𝔪 ≥ 1, from 3.2, we obtain 

𝔼
𝑠𝑢𝑝

   0 ≤ 𝑡 ≤ 𝑇
 𝑥𝔫+𝔪 𝑠 − 𝑥𝔫 𝑠  2 ≤ 3 𝑀 2𝑇 + 1 𝐸  𝜅  𝑥𝔫+𝔪−1  𝑢 − 𝑥𝔫−1 𝑢  2 𝑑𝑠.

𝑡

0

 

≤ 3 𝑀 2𝑇 + 1 𝐸  𝜅  
𝑠𝑢𝑝

    0 ≤ 𝑟 ≤ 𝑠
 𝑥𝔫+𝔪−1  𝑢 − 𝑥𝔫−1 𝑢  2 𝑑𝑠.

𝑡

0

 

Further, it follows from the Jensen’s inequality that 

𝔼
𝑠𝑢𝑝

   0 ≤ 𝑡 ≤ 𝑇
 𝑥𝔫+𝔪 𝑠 − 𝑥𝔫 𝑠  2 ≤ 𝐶2  𝜅  

𝑠𝑢𝑝
    0 ≤ 𝑟 ≤ 𝑠

 𝑥𝔫+𝔪−1  𝑢 − 𝑥𝔫−1 𝑢  2 𝑑𝑠.
𝑡

0

 

Where𝐶2  =  3 𝑀 2𝑇 + 1 . The proof of Step 2 is complete. 

 

Step 3. By using a similar procedure as in the proof of (Lemma. 15, [19]), we can prove that there a positive 

constant 𝐶3 such that E (𝑠𝑢𝑝0≤𝑟≤𝑡 𝑥
𝔫+𝔪 𝑠 − 𝑥𝔫 𝑠  2)   ≤ 𝐶3𝑡 for all 0≤ 𝑡 ≤ 𝑇,  n, m ≥ 1. Next, we define 

𝜑1  𝑡  =  𝐶3(t), 

𝜑𝑛+1  𝑡  =  𝐶2 ∫ 𝜅 𝜑𝑛 𝑠  𝑑𝑠, 𝔫 ≥ 1 
𝑡

0
 , 

𝜑𝑛,𝑚  𝑡 = 𝐸  
𝑠𝑢𝑝

   0 ≤ 𝑡 ≤ 𝑇
 𝑥𝔫+𝔪 𝑟 − 𝑥𝔫 𝑟  2 ,   𝔫,𝑚 ≥ 1. 

Choose 𝑇1     ∈[0,T) such that 𝐶2𝑘  (𝐶3t)≤ 𝐶3,for all 0 ≤ 𝑡 ≤ 𝑇1. Next, by following the similar procedure as in 

(Lemma 16, [19] , by induction one can show that there exists a positive 0 ≤ 𝑇1 ≤ 𝑇. Such that for all n,m 

≥ 1, 0 ≤ 𝜑𝑛,𝑚  𝑡 ≤ 𝜑𝑛 𝑡 ≤ 𝜑𝑛−1  𝑡 ≤ ⋯… ≤ 𝜑1  𝑡  for all 0 ≤ 𝑡 ≤ 𝑇1. 

Next we prove the existence and uniqueness results: 

 

Uniqueness:  Let x(t) and y(t) be any solutions of (1.1). By employing the similar procedure as in Step 2, on the 

interval (-∞, 0] and for 0 ≤ 𝑡 ≤ 𝑇, we have 

𝔼
𝑠𝑢𝑝

    0 ≤ 𝑡 ≤ 𝑇
 𝑥 𝑠 − 𝑦 𝑠  2 ≤  3 𝑀 2𝑇 + 1  𝜅  𝔼

𝑠𝑢𝑝
    0 ≤ 𝑡 ≤ 𝑇

 𝑥 𝑠 − 𝑦 𝑠  2 𝑑𝑠
𝑡

0

 

Further, it follows from the Bihari inequality that  

𝔼
𝑠𝑢𝑝

    0 ≤ 𝑡 ≤ 𝑇
 𝑥 𝑠 − 𝑦 𝑠  2 = 0, t∈  0, 𝑇 . 

Consequently x=y which implies the uniqueness.The proof of theorem is complete. 

 

Existence: In order to prove the existence result, we claim that  

𝔼
𝑠𝑢𝑝

    0 ≤ 𝑠 ≤ 𝑡
 𝑦𝔫+1  𝑠 − 𝑦𝑛 𝑠  2 → 0 

For al∞ ≤ 𝑡 ≤ 𝑇1 , as n,m → ∞.  Notice that 𝜑𝑛 is continuous on [0,𝑇1 ], and for each t, 𝜑𝑛 𝑖𝑠a decreasing 

sequence. Now, we can define the function 𝜑(𝑡)  as 𝜑(𝑡) 

=𝑙𝑖𝑚𝑛→∞𝜑𝑛 𝑡 =  𝑙𝑖𝑚𝑛→∞𝐶2 ∫ 𝑘 𝜑𝑛−1  𝑠  𝑑𝑠 =
𝑡

0
𝐶2 ∫ 𝑘 𝜑  𝑠  𝑑𝑠

𝑡

0
𝑑𝑠𝑓𝑜𝑟𝑎𝑙𝑙0 ≤ 𝑡 ≤ 𝑇1 . Also, from Step 3, 

we have 𝜑𝑛,𝑛 𝑡 ≤ 𝑠𝑢𝑝0≤𝑡≤𝑇1
𝜑𝑛 ≤ 𝜑𝑛 𝑇1 → 0 as n→ ∞.That is 𝑦𝑛 𝑡  is a Cauchy sequence in 𝐿2 on (-∞, 𝑇1].  
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Also from Step 1, we can obtain that  𝑦(𝑡) 2 ≤ 𝐶, where C is a positive constant. More over, for all 0 ≤ 𝑡 ≤
𝑇1, by using the property of the function k(∙), we can obtain 

E ∫ 𝐶(𝑡 − 𝑠) [ 𝑓 𝑠, 𝑦𝑛 𝑡 − 𝑟(𝑡)  − 𝑓 𝑠, 𝑦(𝑡 − 𝑟(𝑡) 𝑑𝑠
𝑡

0
 

2

→ 0, 𝑎𝑠𝑛 → ∞, 

E ∫ 𝑆(𝑡 − 𝑠) [ 𝑔(𝑠, 𝑦𝑛 𝑡 − 𝜌 𝑡  − 𝑔 𝑠, (𝑦 − 𝜌 𝑡  𝑑𝑠
𝑡

0
 

2

→ 0, 𝑎𝑠𝑛 → ∞, 

and 

  E  ∫ 𝑆(𝑡 − 𝑠) [  𝑕(𝑠, 𝑦𝑛 𝑡 − 𝛿 𝑡  − 𝑕 𝑠, (𝑦,  𝑠 − 𝛿 𝑡   𝑡  𝑑(𝑠)
𝑡

0
 

2

→ 0, 𝑎𝑠𝑛 → ∞, 

For all 0 ≤ 𝑡 ≤ 𝑇1 by taking limit on both sides of (3.2), we obtain 

𝑦𝑛 𝑡 =    𝐶 𝑡 𝜑 0 + 𝑆 𝑡  𝜑1 − 𝑓 0, 𝜑  +  𝐶 𝑡 − 𝑠 𝑓  𝑠, 𝑦𝑛−1 𝑠 − 𝑟 𝑠   𝑑𝑠
𝑡

0

+  𝑆 𝑡 − 𝑠 𝑔 𝑠, 𝑦𝑛−1 𝑠 − 𝜌(𝑠)  𝑑𝑠  
𝑡

0

+  𝑆 𝑡 − 𝑠 𝑕  𝑠, 𝑦𝑛−1 𝑠 − 𝛿 𝑠   𝑑𝑤 𝑠 +  𝑆 𝑡 − 𝑠 𝜍 𝑠 𝑑𝐵𝐻 𝑠 
𝑡

0

𝑡

0

 

The expression reveals that y (t) is one solution of (1.1) on [0, 𝑇1]  . By iteration technique, the 

existence of solutions of (1.1) on [0, T] can be obtained. Thus, the proof of this theorem is completed. 

Next, we investigate the stability of mild solutions for the stochastic equations (1.1). In particular, we 

will provide the continuous dependence of solutions on the initial value by using the Bihari inequality. In order 

to establish the stability result, we impose the following condition on f: 

(H5) For all t [0,T],𝜑,𝜓 ∈ ℬ, the function f satisfies  𝑓 𝑡, 𝜑 − 𝑓(𝑡, 𝜓) 2 ≤ 𝑘 𝜑 − 𝜓 ℬ
2  

Where k > 0 is a constant. 

 

Definition 3.3 [19] A mild solution 𝑦𝜉 ,𝑦(𝑡) of (1.1) with initial value (𝜉, 𝑦) is said to be stable in mean square if 

for all 𝜖, when E 𝜉 − 𝜂 ℬ
2  + E  𝑦 − 𝑧 2 ≤ 𝛿, 

Where𝑧𝜂 ,𝑧(𝑡) is another solution of (1.1) with initial value (𝜂, 𝑧). 
To obtain the stability of solutions, we need the following lemmas 

 

Lemma 3.2[14]: Let Τ > 0 and c> 0. Let k: ℝ+ to  ℝ+ be a continuous nondecreasing function such that 𝜅(t) > 

0 for all t >0. Let u(.) be a Borel measurable bounded nonnegative function n  0, Τ . If  

𝑢 𝑡 ≤ 𝑐 + ∫ 𝑣 𝑠 𝑘 𝑢 𝑠  𝑑𝑠
𝑡

0
for all  0≤ 𝑡 ≤ Τ. 

𝔲 𝑡 ≤ 𝐽−1  𝐽 𝑐 +   𝔳 𝑠 𝑑𝑠
𝑡

0

 ,  

holds for all such t∈  0, Τ that 

𝐽 𝑐 + ∫ 𝔳 𝑠 𝑑𝑠
𝑡

0
∈ Dom (𝐽−1), 

where 𝐽 𝑟 =  ∫ 𝑑𝑠 𝑘 𝑠 , 
𝑟

0
on   r > 0  , and 𝐽−1  is the inverse function of 𝐽  . In Particular,     if, c = 0 

and∫ 𝑑𝑠 𝜅 𝑠 =  ∞, 
𝑟

0+ then 𝔲 𝑡 = 0 for all t∈  0, Τ . 

 

Lemma 3.3 Let the assumptions of Lemma 3.3 hold and v(t) ≥ 0 for t 𝜖 0, 𝑇 .If for all 𝜖, > 0, there exists 

𝑡1 ≥ 0, 𝑓𝑜𝑟𝑎𝑙𝑙0≤ 𝑢0 < 𝜖, ∫ 𝑣 𝑠 𝑑𝑠
𝑇

𝑡1
≤ ∫

𝑑𝑠

𝑘(𝑠)

𝜖

𝑢0
 holds. Then for every t ∈  𝑡1, 𝑇 , the estimate u(t) ≤ 𝜖holds 

 

Theorem 3.2 

Assume that the conditions of Theorem 3.4 are satisfied and f satisfies (H4) instead of (H1), then the solution of 

(1.1) is stable in mean square. 

Proof. By assumption let 𝑦𝜉 ,𝑦(𝑡)  and 𝑧𝜂 ,𝑧(𝑡)  be two solutions of (1.1) with initial value ( ∙ )  and (𝜂, 𝑧) , 
respectively. Then for all 0≤ 𝑡 ≤ 𝑇 and using the same arguments as lemma 14. 

We get 

E 
𝑠𝑢𝑝

0 ≤ 𝑡 ≤ 𝑇
 𝑥 𝑠 − 𝑦 𝑠  2 ≤ 5𝑀 1 + 2𝐾1 𝐸 𝜉 − 𝜂 2 + 10 𝑀𝐸 𝑥 − 𝑦 2 

                                + 5𝑀𝑇  𝐸𝑥 𝑠 − 𝑟 𝑠  − 𝑦 𝑠 − 𝑟 𝑠   
2

+  5𝑀(1 + 𝑇)
𝑡

0

  𝑘(𝑥 𝑠 − 𝜌 𝑠  𝑦 𝑠 − 𝜌 𝑠   
2

𝑡

0

+ 10𝐶   𝑘(𝑥 𝑠 − 𝛿 𝑠  − 𝑦 𝑠 − 𝛿 𝑠   
2

𝑡

0

 



AExistence and stability results for second order neutral stochastic Partial Functional  

DOI: 10.9790/5728-1405024048www.iosrjournals.org47 | Page 

≤  5𝑀 1 + 2𝐾1 𝐸 𝜉 − 𝜂 2 + 10𝑀𝐸 𝑥 − 𝑦 2  

+ 5𝑀𝑇 𝐸  
𝑠𝑢𝑝

    0 ≤ 𝑡 ≤ 𝑇
 𝑥 𝑟 − 𝑦(𝑟) 2 𝑑𝑠

𝑡

0

+ 5  𝑀 1 + + 2𝐶  𝑘  
𝑠𝑢𝑝

0 ≤ 𝑡 ≤ 𝑇
 𝑥 𝑠 − 𝑦(𝑠) 2𝑑𝑠 

𝑡

0

 

Let 𝐾1 𝑢 = 5𝑀 𝑇 + 1 𝑘 𝑢 + 5𝑀𝑇𝑢, for k is a concave increasing function from R to R, such that k(0) = 0, 

k(u) > 0 and ∫
𝑑𝑢

𝑘(𝑢)0+ =  ∞. 𝑘1 0 = 0, 𝑘 𝑢 ≥ 𝑘 1 𝑢, for any     0 ≤ 𝑢 ≤ 1 and ∫
𝑑𝑢

𝑘(𝑢)0+ =  ∞. So, for all𝜀 > 0, 

letting 𝜖1 =
1

2
𝜖, we have lim𝑠→0 ∫

𝑑𝑢

𝑘1(𝑢)

𝜖1

𝛿
=  ∞. So there exists a positive constant 𝛿 < 𝜖1such that ∫

𝑑𝑢

𝑘1(𝑢)

𝜖1

𝑠
≥ 𝑇. 

Let 𝑢0 = 5𝑀 1 + 2𝑘1 𝐸 𝜉 − 𝜂 2+ 10 ME  𝑥 − 𝑦 2 , u(t) = E 
𝑠𝑢𝑝

0 ≤ 𝑡 ≤ 𝑇
 𝑥 𝑠 − 𝑦 𝑠  2 ,  v(t) =1. Therefore, 

when 𝑢0 ≤ 𝑡 ≤ 𝜀1, 

We have ∫
𝑑𝑢

𝑘1 𝑢 

𝜖1

𝑢0
≥ ∫

𝑑𝑢

𝑘1 𝑢 

𝜖1

𝛿
≥ 𝑇 = ∫ 𝑣 𝑠 

𝜖1

0
𝑑𝑠. 𝑆𝑜, 𝑓𝑜𝑟𝑎𝑛𝑦𝑡 ∈   0, 𝑇 , the estimate u(t) ≤ 𝜀1,  holds. This 

completes the proof of the theorem. 

 

IV. An Example 
Consider the following stochastic nonlinear wave equation with infinite delays driven by FBM 

in the following form 

𝜕  
𝜕 𝑡, 𝜓 

𝜕𝑡
− 𝑓1  𝑡, 𝑥 𝑡 − 𝜏, 𝜓   

=
𝜕2 𝑡, 𝜓 

𝜕𝜓2
𝜕𝑡 + 𝑓2  𝑡, 𝑥 𝑡 − 𝜏, 𝜓  𝜕𝑡 + 𝜑 𝑡, 𝑥 𝑡 − 𝜏, 𝜓  𝑑𝑤 𝑡 + Θ 𝑡 𝑑𝐵𝑄

𝐻(𝑡) 

0≤ 𝜓 ≤ 𝜋,0≤ 𝑡 ≤ 𝑇 

x(t,𝜓)  =   𝜑(𝑡, 𝜋)                -∞ < 𝑡 ≤ 0,    0 < 𝜓 < 𝜋 

x(t,0)  = x(t,𝜋) = 0 
𝜕𝑥 𝑡, 𝜓 

𝜕𝑡
=  𝜉 𝜓 0 < 𝜓 < 𝜋 

Where 𝜉 ∈ 𝐿0
2 Ω, 𝐻 𝜑 ∈ ℬ,   𝐻 =  𝐿2  0, 𝜋  w is an H-valued Winer Process and the phase ℬ which denotes the 

family of bounded continuous H- valued fuctions 𝜑defined ]-∞, 0],  
With norm  𝜑 ℬ =  𝑠𝑢𝑝−∞<𝜃≤0 𝜑(𝜃)  
The operation A is defined by 

A(z) (𝜓)  =  
𝑑2𝑧(𝜓)

𝑑𝜓2 , with domain D(A) = { z 𝜖𝐻: 𝐷 𝐴 = { 𝑧𝜖𝐻: 𝑧 0 = 𝑧 𝜋 }  

The spectrum of A consists of eigenvalues -𝑛2 for n 𝜖𝑁, with associated eigenvectors  

𝑧𝑛 𝜓 =   
2

𝜋
 

1 2 

sin(n𝜓). Furthermore the set {𝑧𝑛 : 𝑛𝜖𝑁} is an orthonormal basis of  H. 

In Particular 

Ax =  −𝑛2 𝑥, 𝑧𝑛  𝑧𝑛 ,∞
𝑛=1      x 𝜖𝐷(𝐴) 

And the operator C(t), defined by 

C(t) x = cos⁡(𝑛𝑡)∞
𝑛=1  𝑥, 𝑧𝑛  𝑧𝑛 ,   t  𝜖𝑅 

From a cosine function on H, with associated sine function 

S(t) x =  
𝑠𝑛(𝑛𝑡 )

𝑛
 𝑥, 𝑧𝑛 𝑧𝑛

∞
𝑛=1  t  𝜖𝑅 

From [21] for all  x𝜖𝐻,t  𝜖𝑅 𝑠(𝑡) ≤ 1 and  𝐶(𝑡) ≤ 1 

Therefore the above system can be rewritten in the form of (1) – (3). Assume that 𝑓𝑖 :  0, 𝑇 × 𝑅 → 𝑅 𝑖 =

1,2 , 𝜍:  0, 𝑇 × 𝑅 → 𝐿𝑄
 𝐻 

 satisfy the conditions of Therorem3.1 Then the above system has a unique mild 

solution 
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