On Scalar Quasi weak (m,n) - power Commutative Algebras

G.Gopalakrishnamoorthy¹, S.Geetha² and S.Anitha³

¹Advisor, Sri krishnasamy Arts and Science College, Sattur – 626203, Tamilnadu.

²Dept. of Mathematics, St.Michael College of Engineering and Technology, Kalaiyarkovil, Sivagangai - 630551.

³Lecturer, Raja Doraisingam Government Arts College, Sivagangai – 630 561, Tamil Nadu.

Corresponding Author: G.Gopalakrishnamoorthy

Abstract: A right near-ring N is called Quasi-weak commutative if xyz = yxz[3]. A right near-ring N is called quasi weak m- power commutative if xyz = ymxz for all $x,y,z \in N$, where $m \ge 1$ is a fixed integer [5]. An algebra A over a commutative ring R is called scalar quasi-weak commutative if for every $x,y,z \in A$ there exists $\alpha = \alpha$ (x,y,z) \in R depending on x,y,z such that $xyz = \alpha$ yxz. An algebra A over a commutative ring R is called scalar quasi-weak m - power commutativity if for every $x,y,z \in A$, there exists a scalar $\alpha \in R$ depending on x,y,z such that $xyz = \alpha$ ymxz [8]. In this paper, the concept of scalar quasi-weak m-power commutativity is generalized as scalar quasi-weak commutative (m,n) power commutativity and prove many results.

.....

Date of Submission: 26-11-2018 Date of acceptance: 07-12-2018

I. Introduction:

Let A be an algebra (not necessarily associative) over a commutative ring R.A is called scalar commutative if for each $x,y \in A$, there exists $\alpha \in R$ depending on x,y such that $xy = \alpha yx.Rich[11]$ proved that if A is scalar commutative over a field F,then A is either commutative or anti-commutative.KOH,LUH and PUTCHA [9] proved that if A is scalar commutative with 1 and if R is a principal ideal domain ,then A is commutative. A near-ring N is said to be weak-commutative if xyz = xzy for all $x,y,z \in N$ (Definition 9.4, p.289, Pliz[10]). An algebra A over a commutative ring R is called scalar quasi weak commutative if for every $x,y,z \in A$, there exists $\alpha = \alpha(x,y,z) \in R$ depending on x,y,z such that $xyz = \alpha yxz$ and is called scalar weak m – power commutative if x^m y $z = \alpha$ y^mxz.In this paper we define scalar - quasi weak (m,n) - power commutativity and obtain many results.

II. Preliminaries:

In this section we give some basic definitions and well known results which we use in the sequel.

2.1 Definition [**10**]:

Let N be a near-ring.N is said to be weak commutative if xyz = xzy for all $x,y,z \in N$.

2.2 Definition:

Let N be a near-ring.N is said to be anti-weak commutative if xyz = -xzy for all $x,y,z \in N$.

2.3 Definition [2]:

Let A be an algebra (not necessarily associative) over a commutative ring R.

A is called scalar commutative if for each $x,y \in A$, there exists $\alpha = \alpha(x,y) \in R$ depending on x,y such that $xy = \alpha yx$. A is called scalar anti- commutative if $xy = -\alpha yx$.

2.4 Lemma[5]:

Let N be a distributive near-ring. If $xyz = \pm xzy$ for all $x,y,z \in N$, then N is either weak commutative or weak anti-commutative.

III. Main Results:

3.1 Definition:

Let A be an algebra (not necessarily associative) over a commutative ring R. A is called scalar quasi-weak (m,n) - power commutative if for every $x,y,z \in A$, there exists scalar $\alpha \in R$ depending on x,y,z such that $x^m y^n z = \alpha y^m x^n z$.

3.2 Definition:

Let A be an algebra (not necessarily associative) over a commutative ring R. A is said to be scalar quasi-weak (m,n) - power anti-commutative if there exists scalar $\alpha = \alpha(x,y,z) \in R$ depending on x,y,z such that $x^m y^n z = -\alpha y^m x^n z$..

3.3 Theorem:

Let A be an algebra (not necessarily associative) over a field F.Let m,n $\in z^+$.

Let $(x+y)^k = x^k + y^k$ for k = m,n holds for all $x,y \in A$. Assume $\alpha^k = \alpha \forall \alpha \in R$, k = m,n.

If for each $x,y,z \in A$ there exists a scalar $\alpha \in F$ depending on x,y,z such that $x^m y^n z = \alpha y^m x^n z$.

Then A is either quasi weak (m,n) power commutative or quasi weak (m,n) power anti-commutative.

Proof:

Suppose $x^m y^n z = y^m x^n z$ for all $x, y, z \in A$, there is nothing to prove.

Suppose not, we shall prove that $x^m y^n z = -y^m x^n z$ for all $x, y, z \in A$.

First we shall prove that, if $x^m y^n z \neq y^m x^n z$, then $x^{m+n} z = y^{m+n} z = 0$.

So assume $x^m y^n z \neq y^m x^n z$.

Since A is scalar quasi weak (m,n) power commutative, there exists $\alpha = \alpha(x,y,z) \in R$ such that

$$x^{m}y^{n}z = \alpha y^{m}x^{n}z \qquad \rightarrow (1)$$

Also there exists a scalar $\gamma = \gamma(x, x+y, z) \in F$ such that $x^m (x+y)^n z = \gamma (x+y)^m x^n z$

i.e.,
$$x^m (x^n+y^n) z = \gamma (x^m+y^m) x^n z \rightarrow (2)$$

 \rightarrow (5)

(1) - (2) gives

$$x^{m}y^{n}z - x^{m+n}z - x^{m}y^{n}z = \alpha y^{m}x^{n}z - \gamma x^{m+n}z - \gamma y^{m}x^{n}z.$$

 $(1-\gamma) x^{m+n}z = (\gamma - \alpha) y^{m}x^{n}z$ \rightarrow (3)

Now

 $y^m x^n z \neq 0$ for if $y^m x^n z = 0$, then from (1) $x^m y^n z = 0$ and so $x^m y^n z = y^m x^n z$,

contradicting our assumption $x^m y^n z \neq y^m x^n z$.

Also $\gamma \neq 1$ for if $\gamma = 1$, then from (3), we get

$$\gamma = \alpha = 1$$
.

Then from (1) we get

 $x^m y^n z = y^m x^n z$, again a contradiction.

From (3)
$$x^{m+n} z = \frac{\gamma - \alpha}{1 - \gamma} y^m x^n z$$

i.e.,
$$x^{m+n} z = \beta y^m x^n z$$
 for some $\beta \in F$ \rightarrow (4)

Similarly
$$y^{m+n} z = \delta y^m x^n z$$
 for some $\delta \in F$

Also correcting to each choice of α_1 , α_2 , α_3 , α_4 in F, there is an $\eta \in F$ such that

$$(\alpha_1 x + \alpha_2 y)^m (\alpha_3 x + \alpha_4 y)^n z = \eta (\alpha_3 x + \alpha_4 y)^m (\alpha_1 x + \alpha_2 y)^n z$$

$$(\alpha_1^m x^m + \alpha_2^m y^m) (\alpha_2^n x^n + \alpha_4^n y^n) z = n (\alpha_2^m x^m + \alpha_4^m y^m) (\alpha_1^n x^n + \alpha_2^n y^n) z$$

$$\alpha_1^{\ m} \alpha_3^{\ n} x^{m+n} z + \alpha_1^{\ m} \alpha_4^{\ n} x^{m} v^{n} z + \alpha_2^{\ m} \alpha_3^{\ n} v^{m} x^{n} z + \alpha_2^{\ m} \alpha_4^{\ n} v^{m+n} z$$

Also confecting to each choice of
$$\alpha_1$$
, α_2 , α_3 , α_4 in Γ , there is an $\gamma \in \Gamma$ such that $(\alpha_1 x + \alpha_2 y)^m (\alpha_3 x + \alpha_4 y)^n z = \eta (\alpha_3 x + \alpha_4 y)^m (\alpha_1 x + \alpha_2 y)^n z$
 $(\alpha_1^m x^m + \alpha_2^m y^m) (\alpha_3^n x^n + \alpha_4^n y^n) z = \eta (\alpha_3^m x^m + \alpha_4^m y^m) (\alpha_1^n x^n + \alpha_2^n y^n) z$
 $\alpha_1^m \alpha_3^n x^{m+n} z + \alpha_1^m \alpha_4^n x^m y^n z + \alpha_2^m \alpha_3^n y^m x^n z + \alpha_2^m \alpha_4^n y^{m+n} z$
 $= \eta (\alpha_3^m \alpha_1^n x^{m+n} z + \alpha_3^m \alpha_2^n x^m y^n z + \alpha_4^m \alpha_1^n y^m x^n z + \alpha_4^m \alpha_2^n y^{m+n} z)$
 $\alpha_1 \alpha_3 x^{m+n} z + \alpha_1 \alpha_4 x^m y^n z + \alpha_2 \alpha_3 y^m x^n z + \alpha_2 \alpha_4 y^{m+n} z$

$$\alpha_1 \alpha_3 x^{m+n} z + \alpha_1 \alpha_4 x^m y^n z + \alpha_2 \alpha_3 y^m x^n z + \alpha_2 \alpha_4 y^{m+n} z$$

$$= \eta \left(\alpha_3 \alpha_1 x^{m+n} z + \alpha_3 \alpha_2 x^m y^n z + \alpha_4 \alpha_1 y^m x^n z + \alpha_4 \alpha_2 y^{m+n} z \right) \rightarrow (6)$$

$$\alpha_1 \alpha_3 \beta y^m x^n z + \alpha_1 \alpha_4 x^m y^n z + \alpha_2 \alpha_3 y^m x^n z + \alpha_2 \alpha_4 \delta y^m x^n z$$

$$= \eta (\alpha_1 \alpha_3 \beta y^m x^n z + \alpha_2 \alpha_3 x^m y^n z + \alpha_1 \alpha_4 y^m x^n z + \alpha_2 \alpha_4 \delta y^m x^n z)$$

$$= \eta (\alpha_1 \alpha_3 \beta y^m x^n z + \alpha_2 \alpha_3 x^m y^n z + \alpha_1 \alpha_4 y^m x^n z + \alpha_2 \alpha_4 \delta y^m x^n z)$$

$$\alpha_1 \alpha_3 \beta \alpha^{-1} x^m y^n z + \alpha_1 \alpha_4 x^m y^n z + \alpha_2 \alpha_3 \alpha^{-1} x^m y^n z + \alpha_2 \alpha_4 \delta \alpha^{-1} x^m y^n z$$

$$= \eta (\alpha_1 \alpha_3 \beta y^m x^n z + \alpha_2 \alpha_3 y^m x^n z + \alpha_1 \alpha_4 y^m x^n z + \alpha_2 \alpha_4 \delta y^m x^n z)$$

$$(\alpha_1 \alpha_3 \beta \alpha^{-1} + \alpha_1 \alpha_4 + \alpha_2 \alpha_3 \alpha^{-1} + \alpha_2 \alpha_4 \delta \alpha^{-1}) x^m y^n z$$

$$= \eta (\alpha_1 \alpha_3 \beta + \alpha_2 \alpha_3 \alpha + \alpha_1 \alpha_4 + \alpha_2 \alpha_4 \delta) y^m x^n z \rightarrow (7)$$

In (7) we choose $\alpha_2 = 0$, $\alpha_1 = \alpha_3 = 1$, $\alpha_4 = -\beta$ the R.H.S of (7) is zero where as the L.H.S of

(7) is

$$(\beta \alpha^{-1} - \beta) x^{m} y^{n} z = 0$$

 $\beta(\alpha^{-1} - 1) x^{m} y^{n} z = 0$

Since $x^m y^n z \neq 0$ and $\alpha \neq 1$, we get $\beta = 0$.

Hence from (4) we get $x^{m+n} z = 0$.

Also if in (7) we choose $\alpha_3 = 0$, $\alpha_2 = \alpha_4 = 1$ and $\alpha = -\delta$, the R.H.S of (7) is zero where as the L.H.S of (7) is

$$(-\delta + \delta \alpha^{-1}) x^m y^n z = 0$$

$$\delta(\alpha^{-1}-1) x^m y^n z = 0$$

Since $x^m y^n z \neq 0$ and $\alpha \neq 1$, we get $\delta = 0$.

Hence from (5) we get $y^{m+n} z = 0$.

Then (6) becomes

$$\alpha_1 \alpha_4 x^m y^n z + \alpha_2 \alpha_3 y^m x^n z = \eta (\alpha_2 \alpha_3 x^m y^n z + \alpha_1 \alpha_4 y^m x^n z)$$

$$(\alpha_1 \alpha_4 + \alpha_2 \alpha_3 \alpha^{-1}) x^m y^n z = \eta (\alpha_2 \alpha_3 + \alpha_1 \alpha_4 \alpha^{-1}) x^m y^n z.$$

This is true for any choice of α_1 , α_2 , α_3 , α_4 in F.

Choose
$$\alpha_1 = \alpha_3 = \alpha_4 = 1$$
 and $\alpha_2 = -\alpha^{-1}$, we get $(1 - (\alpha^{-1})^2) x^m y^n z = 0$.
Since $x^m y^n z \neq 0$, $1 - (\alpha^{-1})^2 = 0$, Hence $\alpha = \pm 1$.
Since $\alpha \neq 1$, we get $\alpha = -1$.
Thus $x^m y^n z = -y^m x^n z$.

i.e., A is either quasi weak weak (m,n) power commutative.

3.4 Note:

Taking n = 1, we get Theorem 3.1[8].

3.5 Lemma:

Let A be a algebra (not necessarily associative) over a commutative ring R.Let $m \in z^+$. Suppose A is scalar quasi weak (m,n) power commutative. Then for all $x,y,z \in A$, $\alpha \in R$, $\alpha x^m y^n z = 0$ iff $\alpha y^m x^n z = 0$. Also $x^m y^n z = 0$ iff $y^m x^n z = 0$.

Proof:

Let $x,y,z \in A$ and $\alpha \in R$ such that $\alpha x^m y^n z = 0$. Since A is scalar quasi weak (m,n) power commutative, there exists $\beta = \beta$ $(y,x,\alpha z) \in R$ such that $y^m x^n (\alpha z) = \beta x^m y^n (\alpha z)$ i.e., $\alpha y^m x^n z = \alpha \beta x^m y^n z = 0$

Conversely assume α y^m xⁿ z = 0.Since A is scalar quasi weak(m,n) power commutative, there exists $\gamma = \gamma$ (x,y, α z) \in R such that x^m yⁿ (α z) = γ y^m xⁿ (α z)

i.e.,
$$\alpha x^m y^n z = \gamma \alpha y^m x^n z = 0$$

Thus $\alpha x^m y^n z = 0 \text{ iff } \alpha y^m x^n z = 0$

Now assume $x^m y^n z = 0$. Since A is scalar quasi weak (m,n) power commutative, there exists a scalar $\delta(y,x,z) \in R$ such that $y^m x^n z = \delta x^m y^n z = 0$.

Conversely assume $y^m x^n z = 0$. Then there exists scalars $\eta = \eta(x,y,z) \in R$ such that $x^m y^n z = \eta y^m x^n z = 0$.

Thus
$$x^m y^n z = 0$$
 iff $y^m x^n z = 0$.

3.6 Note:

Proof:

Taking n = 1, we get Lemma 3.5 [8].

3.7 Lemma:

Let A be an algebra (not necessarily associative) over a commutative ring R.Let $m,n \in Z^+$. Suppose that $(x+y)^k = x^k + y^k$, k = m,n for all $x,y \in A$. Assume that $\alpha^k = \alpha$, k = m,n for all $\alpha \in R$. Let $x,y,z,u \in A$, $\alpha,\beta \in R$ such that $x^m u^n = u^m x^n$, $y^m x^n z = \alpha x^m y^n z$ and $(y+u)^m x^n z = \beta x^m (y+u)^n z$ then $(x^m u^n - \alpha x^m u^n) - \beta (x^m u^n + \alpha \beta x^m u^n) z = 0$.

Given

$$(y+u)^{m} x^{n} z = \beta x^{m} (y+u)^{n} z$$

$$y^{m} x^{n} z = \alpha x^{m} y^{n} z$$

$$x^{m} u = u^{m} x \rightarrow (3)$$

$$(1)$$

$$(2)$$

From (1) we get

$$(y^{m} + u^{m}) x^{n} z = \beta x^{m} (y^{n} + u^{n}) z$$

$$y^{m} x^{n} z + u^{m} x^{n} z = \beta x^{m} y^{n} z + \beta x^{m} u^{n} z$$

$$\alpha x^{m} y^{n} z + u^{m} x^{n} z = \beta x^{m} y^{n} z + \beta x^{m} u^{n} z$$

$$\alpha x^{m} y^{n} z + x^{m} u^{n} z = \beta x^{m} y^{n} z + \beta x^{m} u^{n} z$$

$$(using (2))$$

$$\alpha x^{m} y^{n} z + x^{m} u^{n} z = \beta x^{m} y^{n} z + \beta x^{m} u^{n} z$$

$$x^{m} (\alpha y^{n} + u^{n} - \beta y^{n} - \beta u^{n}) z = 0$$

$$x^{m} (\alpha y + u - \beta y - \beta u)^{n} z = 0$$

By Lemma (3.5) we get

$$(\alpha y + u - \beta y - \beta u)^{m} x^{n} z = 0.$$

$$((\alpha y)^{m} + u^{m} - (\beta y)^{m} - (\beta u)^{m}) x^{n} z = 0.$$

$$(\alpha y^{m} + u^{m} - \beta y^{m} - \beta u^{m}) x^{n} z = 0.$$

$$(\alpha y^{m} x^{n} z + u^{m} x^{n} z - \beta y^{m} x^{n} z - \beta u^{m} x^{n} z = 0$$

$$(\alpha y^{m} x^{n} z + u^{m} x^{n} z - \alpha \beta x^{m} y^{n} z - \beta u^{m} x^{n} z = 0$$

$$(\alpha y^{m} x^{n} z + u^{m} x^{n} z - \alpha \beta x^{m} y^{n} z - \beta u^{m} x^{n} z = 0$$

$$(\alpha y^{m} x^{n} z + u^{m} x^{n} z - \alpha \beta x^{m} y^{n} z - \beta u^{m} x^{n} z = 0$$

$$(\alpha y^{m} x^{n} z + u^{m} x^{n} z - \alpha \beta x^{m} y^{n} z - \beta u^{m} x^{n} z = 0$$

$$(\alpha y^{m} x^{n} z + u^{m} x^{n} z - \alpha \beta x^{m} y^{n} z - \beta u^{m} x^{n} z = 0$$

$$(\alpha y^{m} x^{n} z + u^{m} x^{n} z - \alpha \beta x^{m} y^{n} z - \beta u^{m} x^{n} z = 0$$

From (4) we get

$$y^{m} x^{n} z - \beta x^{m} y^{n} z - \beta x^{m} u^{n} z + u^{m} x^{n} z = 0$$

Multiplying by α

$$\alpha y^{m} x^{n} z - \alpha \beta x^{m} y^{n} z - \alpha \beta x^{m} u^{n} z + \alpha u^{m} y^{n} z = 0$$
 \rightarrow (6)
(5) - (6) gives
$$u^{m} x^{n} z - \beta u^{m} x^{n} z + \alpha \beta x^{m} u^{n} z - \alpha u^{m} y^{n} z = 0$$

u x z -
$$\beta$$
 u x z + α β x u z - α u y z = 0
 α β x w u - α u y z - β u x z + u y z = 0
(u x - α u x - β u x - β u x - β x u z - α u z = 0
(x u - α x u - β x u - β x u - β x u z - α u z = 0
(x u - α x u - α x u - β x u - α β x u z - α u z = 0
(using (3))

3.8 Corollary:

Taking
$$u = x$$
,we get
$$(x^{m+n} - \alpha x^{m+n} - \beta x^{m+n} + \alpha \beta x^{m+n}) z = 0$$

$$(x^m - \alpha x^m) (x^n - \beta x^n) z = 0.$$

3.9 Note:

Taking n = 1, we get Lemma 3.7 [8] and corollary 3.8 [8].

3.10 Theorem:

Let A be an algebra (not necessarily associative) over a commutative ring R.

Let m,n $\in Z^+$. Assume $(x + y)^k = x^k + y^k$, k = m,n for all $x,y \in A$ and that A has no zero divisors. Assume $\alpha^k = \alpha$, k = m,n for all $\alpha \in R$. If A is scalar quasi weak (m,n) power commutative, then A is quasi weak (m,n) power commutative.

Proof:

Let $x,y,z \in A$. Since A is scalar quasi weak (m,n) power commutative, there exists scalars $\alpha = \alpha$ (y,x,z) \in R and $\beta = \beta$ (y+x,x,z) \in R such that

$$(y+x)^{m+n} x^n z = \beta x^m (y+x)^n z \rightarrow (1)$$

 $y^m x^n z = \alpha x^m y^n z \rightarrow (2)$

From (1) we get

$$(y^{m} + x^{m}) x^{n} z = \beta x^{m} (y^{n} + x^{n}) z$$
i.e., $y^{m} x^{n} z + x^{m+n} z = \beta x^{m} y^{n} z + \beta x^{m+n} z$

$$\alpha x^{m} y^{n} z + x^{m+n} z - \beta x^{m} y^{n} z - \beta x^{m+n} z = 0$$

$$x^{m} (\alpha y^{n} + x^{n} - \beta y^{n} - \beta x^{n}) z = 0$$

$$x^{m} (\alpha y + x - \beta y - \beta x)^{n} z = 0$$

By Lemma 3.5 we get

(
$$\alpha y + x - \beta y - \beta x$$
)^m $x^n z = 0$
($\alpha y^m + x^m - \beta y^m - \beta x^m$) $x^n z = 0$
 $\alpha y^m x^n z + x^{m+n} z - \beta y^m x^n z - \beta x^{m+n} z = 0$
 $\alpha y^m x^n z + x^{m+n} z - \alpha \beta x^m y^n z - \beta x^{m+n} z = 0$ (using (2)) \rightarrow (4)

Multiply (3) by
$$\alpha$$
,
$$\alpha y^m x^n z + \alpha x^{m+n} z - \alpha \beta x^m y^n z - \alpha \beta x^{m+n} z = 0$$
 $(4) - (5)$ gives,

(4) - (5) gives,

$$x^{m+n} \ z - \alpha \ x^{m+n} \ z - \beta \ x^{m+n} \ z + \alpha \beta \ x^{m+n} \ z = 0$$

$$(x^{m+n} - \alpha \ x^{m+n} - \beta \ x^{m+n} + \alpha \beta \ x^{m+n}) \ z = 0$$

$$x^{m+n-2} \ (x - \alpha \ x) \ (x - \beta \ x) \ z = 0$$

Since A has no zero divisors,

$$z = 0$$
 or $x^m - \alpha x^m$, $x^n - \beta x^n = 0$, $x = 0$

If
$$x = 0$$
 or $z = 0$ then $x^m y^n z = y^m x^n z \quad \forall x,y,z \in A$.

If $x = \alpha x$, from (2) we get $y^m x^n z = x^m y^n z$.

If $x = \beta x$, then from (3) we get

$$y^{m} x^{n} z + x^{m+n} z = x^{m} y^{n} z + x^{m+n} z$$

 $y^{m} x^{n} z = x^{m} y^{n} z$

3.11 Note:

Taking n = 1, we get Lemma 3.10 [8].

3.12 Definition:

Let R be any ring.Let m>1 be a fixed integer. An element $a \in R$ is said to be m – potent if $a^m = a$.

3.13 Lemma:

Let A be an algebra with unity over a P.I.D R, let m, $n \in Z^+$. Assume $(x + y)^k = x^k + y^k$, k = m,n for all $x,y \in A$ and that $\alpha^k = \alpha$, k = m,n for all $\alpha \in R$. If A is scalar quasi weak (m,n)power commutative, $x \in A$ such that $O(x^{m+n+1}) = 0$, then $x^m y^n z = y^m x^n z$ for all $y,z \in A$.

Proof:

Let $x \in A$ such that $O(x^{m+n}) = 0$.Let $y,z \in A$.Then there exists scalars $\alpha = \alpha$ $(y,x,z) \in R$ and $\beta = \beta$ (y+x,x,z) \in R such that

$$(y+x)^m x^n z = \beta x^n (y+x)^n z$$
and $y^m x^n z = \alpha x^m y^n z$ \rightarrow (1)
$$(2)$$

From (2) we get

$$(y^{m} + x^{m}) x^{n} z = \beta x^{m} (y^{n} + x^{n}) z$$

$$\begin{array}{l} y^m \, x^n \, z + x^{m+n} \, z - \beta \, x^m \, y^n \, z - \beta \, x^{m+n} \, z = 0 \\ \alpha \, x^m \, y^n \, z + x^{m+n} \, z - \beta \, x^m \, y^n \, z - \beta \, x^{m+n} \, z = 0 \\ \qquad \qquad \qquad \text{i.e., } x^m \, (\alpha y^n + x^n - \beta \, y^n - \beta \, x^n \,) \, z = 0 \\ x^m \, (\alpha y + x - \beta \, y - \beta \, x \,)^n \, z = 0 \end{array}$$

By Lemma 3.5, we get

$$\begin{array}{l} (\alpha y + x - \beta y - \beta x)^m x^n z = 0 \\ (\alpha y^m + x^m - \beta y^m - \beta x^m) x^n z = 0 \\ \alpha y^m x^n z + x^{m+n} z - \beta y^m x^n z - \beta x^{m+n} z = 0 \\ \alpha y^m x^n z + x^{m+n} z - \alpha \beta x^m y^n z - \beta x^{m+n} z = 0 \end{array} \quad \text{(using (2))} \quad \rightarrow (4)$$

Multiply (3) by α

$$\alpha y^m x^n z + \alpha x^{m+n} z - \alpha \beta x^m y^n z - \alpha \beta x^{m+n} z = 0$$
 \rightarrow (5)

(4) - (5) gives

$$x^{m+n} z - \beta x^{m+n} z - \alpha x^{m+n} z + \alpha \beta x^{m+n} z = 0$$

$$(1 - \alpha - \beta + \alpha \beta) x^{m+n} z = 0$$

$$(1 - \alpha) (1 - \beta) x^{m+n} z = 0$$

$$(6)$$

Thus for each $z \in A$, there exists scalars $\gamma \in R$, $\delta \in R$ such that

$$\gamma \times (8)$$
 - $\delta \times (7)$ gives
 $\gamma \delta x^{m+n} z + \gamma \delta x^{m+n} - \gamma \delta x^{m+n} z = 0$
 $\gamma \delta x^{m+n} = 0$

Since $O(x^{m+n}) = 0$ we get $\gamma = 0$ or $\delta = 0$.

Hence from (6) we get

$$(1-\alpha) = 0 \text{ or } (1-\beta) \qquad = 0.$$
 If $\alpha = 1$, from (2) we get

$$y^{m} x^{n} z = x^{m} y^{n} z$$
If $\beta = 1$ from (3) we get
$$y^{m} x^{n} z + x^{m+n} z - x^{m} y^{n} z - x^{m+n} z = 0$$

$$y^{m} x^{n} z = x^{m} y^{n} z$$
Hence the theorem.

3.14 Lemma:

Let A be an algebra with identity over a P.I.D R.Let $m \in Z^+$. Suppose $(x+y)^k = x^k + y^k$ for k = m,n and for all $x,y \in A$ and that every element of R is m-potent. Suppose that A is scalar quasi weak (m,n) - power commutative. Assume further that there exists a prime $p \in R$ such that $p^{mn} A = 0$. Then A is quasi weak.

Proof:

Let $x,y \in A$ such that $O(y^m x^n) = p^k$ for some $k \in Z^+$.

We prove by induction on k that $x^m\,y^n\,u=y^m\,x^n\,u$ for all $u\in A.$

If k = 0, then $O(y^m x^n) = p^0 = 1$ and so $y^m x^n = 0$.

So $y^m x^n u = 0$ for all $u \in A$.

By Lemma 3.5 $x^m y^n u = 0$ for all $u \in A$.

So assume that k > 0 and that the statement is true for all 1 < k.

If $x^m y^n u - y^m x^n u = 0$, $\forall u \in A$, there is nothing to prove.

So, let $x^m y^n u - y^m x^n u \neq 0$.

Since A is scalar quasi weak (m,n) power commutative there exists scalars $\alpha = \alpha$ (x,y,u) \in R and $\beta = \beta$ (x,y+x,u) \in R such that

$$x^{m} y^{n} u = \alpha y^{m} x^{n} u$$
and
$$x^{m} (y + x)^{n} u = \beta (y + x)^{m} x^{n} u$$

$$\rightarrow (1)$$

$$\rightarrow (2)$$

From (2) we get

$$x^{m} (y^{n} + x^{n}) u = \beta (y^{m} + x^{m}) x^{n} u$$

$$x^{m} y^{n} u + x^{m+n} u = \beta y^{m} x^{n} u + \beta x^{m+n} u$$

$$\alpha y^{m} x^{n} u + x^{m+n} u = \beta y^{m} x^{n} u + \beta x^{m+n} u$$

$$(using(1))$$

$$(\alpha - \beta) y^{m} x^{n} u = (\beta - 1) x^{m+n} u$$

$$(4)$$

If $(\alpha - \beta) y^m x^n u = 0$, we get $(\beta - 1) x^{m+n} u = 0$.

Since $x^{m+n} u \neq 0$, we get $\beta = 1$.

Hence from (3) we get

 $x^m y^n u = y^m x^n u$, contradicting our assumption that $x^m y^n u - y^m x^n u \neq 0$.

So $(\alpha - \beta)$ y^mxⁿ u \neq 0.Inparticular $(\alpha - \beta) \neq$ 0.

Let $(\alpha - \beta) = p^t \delta$ for some $t \in Z^+$ and $\delta \in R$ with $(\delta, p) = 1$. If $t \ge k$, then since $O(y^m x^n) = p^k$ we

would get
$$(\alpha - \beta)$$
 y $^m x^n$ u = 0, again a contradiction.
Hence t < k.Since $p^k y^m x^n$ u = 0 by Lemma 3.5, $p^k x^m y^n$ u = 0.
So,from (4) we get $p^{k-t} (\beta - 1) x^{m+n} u = p^{k-t} (\alpha - \beta) y^m x^n u$

$$= p^k \delta y^m x^n u = 0.$$

Let $O(x^{m+n} u) = p^i$. If i < k, then by induction hypothesis $x^m y^n u = y^m x^n u$, a contradiction. so $i \ge k$.

$$p^{k} | p^{i} | p^{(k-t)} (\beta - 1).So p^{t} | (\beta - 1).$$

Let $(-1) = p^t \gamma$ for some $\gamma \in \mathbb{R}$.

Then from (4) we get

Hence by induction hypothesis

$$(\delta y - \gamma x)^m x^n (uw) = x^m (\delta y - \gamma x)^n (uw) = 0$$
 for all $w \in A$.

Taking u = 1, we get

Taking
$$u = 1$$
, we get
$$(\delta y - \gamma x)^m x^n w = x^m (\delta y - \gamma x)^n w = 0$$
i.e., $\delta y^m x^n w - \gamma x^{m+n} w = \delta x^m y^n w - \gamma x^{m+n} w$

$$\delta (y^m x^n w - x^m y^n w) = 0.$$
Since $(\delta p) = 1$ there exists $u = \delta \in \mathbb{R}$ such that $u = p^m + \gamma \delta \in \mathbb{R}$

Since $(\delta, p) = 1$, there exists μ , $\delta \in R$ such that $\mu p^m + \gamma \delta = 1$

Therefore
$$\mu$$
 p^m (y^m xⁿ w - x^m yⁿ w) + $\gamma\delta$ (y^m xⁿ w - x^m yⁿ w) = y^m xⁿ w - x^m yⁿ w

$$0 + 0 = y^{m} x^{n} w - x^{m} y^{n} w = 0.$$
i.e., $y^{m} x^{n} w - x^{m} y^{n} w = 0.$

Hence the Lemma.

References

- R.Coughlin and M.Rich, On Scalar dependent algebras, J.Math 24(1972), 696-702. [1].
- R.Coughlin, K.Kleinfield and M.Rich, Scalars dependent algebras, Proc. Amer. Math. Soc, 39(1973), 69-73. [2].
- [3]. G.Gopalakrishnamoorthy, M.Kamaraj and S.Geetha, On quasi-weak commutative Near- rings, International Journal of Mathematics Research, Vol5(5), (2013), 431-440.
- [4]. G.Gopalakrishnamoorthy, S.Geetha S.Anitha,On quasi-weak and commutative Near-rings-II.Malava Mathematik, Vol3(3), (2015), 327-337.
- [5]. G.Gopalakrishnamoorthy and S.Geetha,On (m,n) - Power Commutativity of rings and Scalar (m,n) - Power Commutativity of Algebras, Jour. of Mathermatical Sciences, Vol 24(3), 2013, 97-110.
- G.Gopalakrishnamoorthy, S.Geetha and S.Anitha,On quasi-weak m- power commutative Near rings and quasi-weak (m,n) [6]. power commutative Near-rings, ISOR-Journal of Mathematics, Vol 12(4) VerII, (2016), 87-90.
- [7]. G.Gopalakrishnamoorthy, S.Geetha and S.Anitha, On Scalar-weak commutative Algebras, ISOR- Journal of Mathematics, Vol13(2) VerI(2017),107-114.
- G.Gopalakrishnamoorthy, M.Kamaraj, S.Anitha, On Scalar Quasi-weak Commutative Algebras, ISOR Journal of Mathematics, Vol [8]. 14(3)(2018),30-37.
- G.Gopalakrishnamoorthy, M.Kamaraj and S.Anitha, On Scalar quasi weak m-power commutative Algebras, ISOR. Journal of [9]. mathematics, Vol14(4), (2018), 14-19.
- K.Koh.J.Luh and M.S.Putcha,On the associativity and commutativity of algebras over commutative rings,Pacific Journal of [10]. Mathematics 63(2),(1976),423-430.
- [11]. Pliz, Gliner, Near-rings, North Holland, Anater dam (1983).

DOI: 10.9790/5728-1406016772

 $M. Rich, A\ commutativity\ theorem\ for\ algebras, Amer. Math. Monthly, 82 (1975), 377-379.$ [12].

G.Gopalakrishnamoorthy." On Scalar Quasi weak (m,n) - power Commutative Algebras." IOSR Journal of Mathematics (IOSR-JM) 14.6 (2018): 67-72.